小学六年级数学“比的应用”各种类型例题详解

合集下载

六年级数学比的应用题(解析版)

六年级数学比的应用题(解析版)

六年级数学比的应用题1、红花和黄共共70朵,红花与黄花的比是2:5,求红花与黄花各是多少朵?解: 70÷7×2=20(朵) 70÷7×5=50(朵)答:红花是20朵,黄花是50朵2、 一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?解:180÷9×2=40(度)180÷9×3=60(度)180÷9×4=80(度)答:这个三角形的度数分别是40度,60度,80度。

3、 某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?解:42÷7×4=24(人)答:男生有24人。

4、一桶重200克的盐水,盐和水的质量比是1:24,要使盐和水的质量比是1:29,要加多少克水?解:盐 200× 2411+= 8(克) 盐水8÷ 2911+=240(克) 要加水240-200=40(克)答:要加水40克。

5、一班有60人,二班有80人,从一班调多少人到二班,两班人数比才能为2:3?解:(60+80)×232+=56(人) 60-56=4(人) 答:从一班调4人到二班,两班人数比才能为2:3。

6、把300本作业按4∶5∶6分给四、五、六年级的同学,四、五、六年级的同学各得多少本作业本?解:4+5+6=15300÷15=2020×4=80(本),20×5=100(本),20×6=120(本)答:四年级得80本,五年级得100本,六年级得120本。

7、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=1015050÷101=50(千克)答:需要盐水50千克。

8、山羊和绵羊的头数比是2∶5,山羊40头。

山羊和绵羊一共有多少头?解:40÷2=20(头)20×(5+2)=140(头)答:山羊和绵羊一共有140头。

小学六年级奥数系列讲座:比的应用(含答案解析)

小学六年级奥数系列讲座:比的应用(含答案解析)

比的应用(一)一、知识要点我们已经学过比的知识,都知道比和分数、除法其实是一回事,所有比与分数能互相转化。

运用这种方法解决一些实际问题可以化难为易,化繁为简。

二、精讲精练【例题1】甲数是乙数的2/3,乙数是丙数的4/5,甲、乙、丙三数的比是():():()。

【思路导航】甲、乙两数的比 2:3乙、丙两数的比 4:5甲、乙、丙三数的比 8:12:15答:甲、乙、丙三数的比是 8:12:15。

练习1:1.甲数是乙数的4/5,乙数是丙数的5/8,甲、乙、丙三数的比是():():()。

2.甲数是乙数的4/5,甲数是丙数的4/9,甲、乙、丙三数的比是():():()。

3.甲数是丙数的3/7,乙数是丙数的2又1/2,甲、乙、丙三数的比是():():()。

【例题2】光明小学将五年级的140名学生,分成三个小组进行植树活动,已知第一小组和第二小组人数的比是2:3,第二小组和第三小组人数的比是4:5。

这三个小组各有多少人?【思路导航】先求出三个小组人数的连比,再按求出的连比进行分配。

①一、二两组人数的比 2:3 二、三两组人数的比 4:5一、二、三组人数的比 8:12:15②总份数:8+12+15=35③第一组:140×8/35=32(人)④第二组:140×12/35=48(人)⑤第三组:140×15/35=60(人)答:第一小组有32人,第二小组有48人,第三小组有60人。

练习2:1.某农场把61600公亩耕地划归为粮田与棉田,它们之间的比是7:2,棉田与其他作物面积的比6:1。

每种作物各是多少公亩?2.黄山小学六年级的同学分三组参加植树。

第一组与第二组的人数的比是5:4,第二组与第三组人数的比是3:2。

已知第一组的人数比二、三组人数的总和少15人。

六年级参加植树的共有多少人?3.科技组与作文组人数的比是9:10,作文组与数学组人数的比是5:7。

已知数学组与科技组共有69人。

数学组比作文组多多少人?【例题3】甲、乙两校原有图书本数的比是7:5,如果甲校给乙校650本,甲、乙两校图书本数的比就是3:4。

小学六年级上册 比的应用题和拓展 完整版题型训练+答案详解

小学六年级上册 比的应用题和拓展 完整版题型训练+答案详解

比的应用题和拓展内容总结:(1)按比例分配(2)单比化连比(3)列表法还原(4)比较估算例题讲解板块一:基础题型1.水果店运来了西瓜和哈密瓜共234个,如果西瓜和哈密瓜的个数比为5:4,那么水果店运来西瓜和哈密瓜各多少个?解答:西瓜和哈密瓜的个数比是5:4,可以把水果店运来的西瓜和哈密瓜总和看做5+4=9份,其中西瓜占5份,哈密瓜占4份;先求出每份的量;再求所求量。

每份:234 ÷(5+4)=26个西瓜:26×5=130个哈密瓜:26×4=104个2.有429名小学生参加数学冬令营,其中男生和女生的人数比为7:6.后来又有一些女生报名参赛,这时男生和女生的人数比变为11:10.请问:后来报名的女生有多少人?解答:开始男生与总人数的比是7:13,来了一些女生后,男生与总人数的比是11:21,因为男生是不变量,先求出男生人数,再求出来一些女生后的总人数,现在总人数减去以前的总人数就是增加的女生人数。

男生人数:429÷13×7=231人现在总人数:231÷11×21=441人后来报名女生人数:441-429=12人3.松鼠一家三口出门采摘松果,松鼠爸爸采得最快,他每采摘7颗松果,松鼠妈妈只能采摘6颗;松鼠宝宝采得最慢,他每采摘2颗,松鼠妈妈已经采摘了3颗.一天下来,他们一共采摘了340颗松果.试问:其中有多少颗是松鼠宝宝采的?解析:根据条件可知松鼠妈妈采摘6颗,松鼠宝宝可以采摘4颗;所以相同时间内松鼠爸爸松鼠妈妈和松鼠宝宝采摘的松果比是7:6:4。

松鼠宝宝采摘的:340÷(7+6+4)×4=80颗4.育才小学五年级学生分成三批去参观博物馆,第一批与第二批的人数比是5:4,第二批与第三批的人数比是3:2.已知第一批的人数比第二、三批的总和少55人.请问:育才小学五年级一共有多少人?解析:根据条件可知第一批,第二批和第三批的人数比是15:12:8。

小学六年级上册 比的应用题和拓展 完整版题型训练+答案详解

小学六年级上册 比的应用题和拓展 完整版题型训练+答案详解

比的应用题和拓展内容总结:(1)按比例分配(2)单比化连比(3)列表法还原(4)比较估算例题讲解板块一:基础题型1.水果店运来了西瓜和哈密瓜共234个,如果西瓜和哈密瓜的个数比为5:4,那么水果店运来西瓜和哈密瓜各多少个?解答:西瓜和哈密瓜的个数比是5:4,可以把水果店运来的西瓜和哈密瓜总和看做5+4=9份,其中西瓜占5份,哈密瓜占4份;先求出每份的量;再求所求量。

每份:234 ÷(5+4)=26个西瓜:26×5=130个哈密瓜:26×4=104个2.有429名小学生参加数学冬令营,其中男生和女生的人数比为7:6.后来又有一些女生报名参赛,这时男生和女生的人数比变为11:10.请问:后来报名的女生有多少人?解答:开始男生与总人数的比是7:13,来了一些女生后,男生与总人数的比是11:21,因为男生是不变量,先求出男生人数,再求出来一些女生后的总人数,现在总人数减去以前的总人数就是增加的女生人数。

男生人数:429÷13×7=231人现在总人数:231÷11×21=441人后来报名女生人数:441-429=12人3.松鼠一家三口出门采摘松果,松鼠爸爸采得最快,他每采摘7颗松果,松鼠妈妈只能采摘6颗;松鼠宝宝采得最慢,他每采摘2颗,松鼠妈妈已经采摘了3颗.一天下来,他们一共采摘了340颗松果.试问:其中有多少颗是松鼠宝宝采的?解析:根据条件可知松鼠妈妈采摘6颗,松鼠宝宝可以采摘4颗;所以相同时间内松鼠爸爸松鼠妈妈和松鼠宝宝采摘的松果比是7:6:4。

松鼠宝宝采摘的:340÷(7+6+4)×4=80颗4.育才小学五年级学生分成三批去参观博物馆,第一批与第二批的人数比是5:4,第二批与第三批的人数比是3:2.已知第一批的人数比第二、三批的总和少55人.请问:育才小学五年级一共有多少人?解析:根据条件可知第一批,第二批和第三批的人数比是15:12:8。

六年级数学比应用题

六年级数学比应用题

六年级数学比应用题一、简单的比的计算应用题(1 - 5题)1. 已知甲、乙两数的比是3:5,甲数是12,求乙数。

- 解析:- 因为甲、乙两数的比是3:5,设乙数为x,则(甲)/(乙)=(3)/(5)。

- 已知甲数是12,即(12)/(x)=(3)/(5)。

- 根据比例的性质,内项之积等于外项之积,可得3x = 12×5。

- 解得x=(12×5)/(3)=20。

2. 某班男、女生人数比是4:3,男生有24人,女生有多少人?- 解析:- 设女生有x人,因为男、女生人数比是4:3,所以(24)/(x)=(4)/(3)。

- 由比例性质可得4x = 24×3。

- 解得x=(24×3)/(4)=18人。

3. 一种药水是把药粉和水按照1:100的比配成的。

要配制这种药水4040克,需要药粉多少克?- 解析:- 药粉和水的比是1:100,那么药水就是1 + 100=101份。

- 这种药水共4040克,那么一份就是4040÷101 = 40克。

- 药粉占1份,所以需要药粉40克。

4. 学校图书馆里科技书和故事书的比是3:4,科技书有180本,故事书有多少本?- 解析:- 设故事书有x本,因为科技书和故事书的比是3:4,所以(180)/(x)=(3)/(4)。

- 根据比例性质3x=180×4。

- 解得x=(180×4)/(3)=240本。

5. 甲、乙两个数的比是5:6,它们的和是66,求甲、乙两数。

- 解析:- 甲、乙两个数的比是5:6,设甲数是5x,乙数是6x。

- 它们的和是66,则5x + 6x=66。

- 即11x = 66,解得x = 6。

- 所以甲数5x = 5×6 = 30,乙数6x=6×6 = 36。

二、比在几何中的应用题(6 - 10题)6. 一个长方形的长和宽的比是5:3,长是25厘米,宽是多少厘米?- 解析:- 设宽是x厘米,因为长和宽的比是5:3,所以(25)/(x)=(5)/(3)。

数学比的应用题有答案

数学比的应用题有答案

数学比的应用题有答案数学比的应用题及答案1. 问题:小明和小红一起买了一些苹果,小明买了苹果的2/5,小红买了苹果的3/5。

如果小红买了15个苹果,那么小明买了多少个苹果?答案:小明买了12个苹果。

2. 问题:一个班级有40名学生,其中男生和女生的比是3:2。

这个班级有多少男生和女生?答案:这个班级有24名男生和16名女生。

3. 问题:一个工厂生产两种类型的产品,A型产品和B型产品。

A型产品和B型产品的生产比是4:3。

如果工厂一天生产了120个A型产品,那么它生产了多少个B型产品?答案:工厂生产了90个B型产品。

4. 问题:在一个水果店,苹果和橘子的比例是5:3。

如果水果店有100个苹果,那么有多少个橘子?答案:水果店有60个橘子。

5. 问题:在一次长跑比赛中,小华和小李的速度比是3:2。

如果小华跑了3600米,那么小李跑了多少米?答案:小李跑了2400米。

6. 问题:一个公园的树木中,松树和柏树的比例是7:4。

如果公园里有42棵柏树,那么有多少棵松树?答案:公园里有63棵松树。

7. 问题:在一个合唱团中,男生和女生的人数比是5:4。

如果合唱团有30名男生,那么合唱团有多少名女生?答案:合唱团有24名女生。

8. 问题:一个农场的奶牛和山羊的头数比是6:5。

如果农场有45头奶牛,那么有多少头山羊?答案:农场有37.5头山羊,但由于山羊的数量必须是整数,所以实际上会有37头山羊。

9. 问题:一个学校的图书馆中,科学书籍和文学书籍的比例是2:3。

如果图书馆有60本科学书籍,那么有多少本文学书籍?答案:图书馆有90本文学书籍。

10. 问题:在一次数学竞赛中,小刚和小强的得分比是4:5。

如果小强得了50分,那么小刚得了多少分?答案:小刚得了40分。

比的应用题典型题归类

比的应用题典型题归类一、比的概念及基本性质比是数学中常用的一种比较两个数量大小关系的方法。

在解决实际问题时,经常会遇到涉及到比的应用题。

比的应用题主要包括比例、百分数、倍数等类型。

下面将对这些典型题目进行分类和归纳,以便更好地理解和掌握比的应用。

二、比例问题1. 比例问题一:已知一个长度为a的线段与一个长度为b的线段的比是m:n,求第一个线段的长度。

解析:根据比例关系可以得到 a/b = m/n,求解得到 a = mb/n。

2. 比例问题二:已知一个物体的重量与其体积的比是m:n,求该物体的质量。

解析:根据比例关系可以得到 m/n = p/V,其中p为物体的密度,V 为物体的体积,求解得到 m = p * V。

三、百分数问题1. 百分数问题一:某商品原价100元,现折扣20%,求折后价格。

解析:原价100元,折扣20%,即折扣为100 * 20% = 20元,所以折后价格为100 - 20 = 80元。

2. 百分数问题二:某数增加了p%,求增加前的数。

解析:设增加前的数为x,则增加了p%后的数为x + x * p% = x(1 + p/100),所以增加前的数为x = (增加后的数)/(1 + p/100)。

四、倍数问题1. 倍数问题一:某任务A需要3个小时完成,任务B比A多完成1/3的工作,求任务B完成所需的时间。

解析:设任务B完成所需的时间为x小时,则任务A完成的工作量为1,任务B完成的工作量为1 + 1/3。

根据工作量和时间的关系可得到:3/1 = x / (1 + 1/3),求解得到 x = 2小时。

2. 倍数问题二:某矿井A挖掘一定数量的煤需要9天,矿井B比A 快1/4,求矿井B挖掘同样数量的煤需要多少天。

解析:设矿井B挖掘同样数量的煤需要x天,则矿井A的挖掘速度为1,矿井B的挖掘速度为1 + 1/4。

根据速度和时间的关系可得到:9/1 = x / (1 + 1/4),求解得到 x = 6天。

小学六年级数学 比的应用题训练 PPT课件 例题+针对性练习(带答案)

【解析】因为产值=价格×产量,所以 甲产值:乙产值=(甲价格×甲产量):(乙价格×乙产量) 两厂的产值比为:(11×6):(10×5)=66:50 甲厂产值为:6960×66/(66+50)=3960(元) 乙厂产值为:6960×50(66+50)=3000(元) 答:两厂的产值分别是3960万元和3000万元。
【解析】根据路程的比和速度的比求出时间的比,从而求 出王刚和李华所用的时间,再求出各自所走的路程。 王刚和李华所用时间的比 1/4:2/10=5:4 王刚所用的时间 1÷(5-4)×5=5(小时) 甲地到丙地的路程 4×5=20(千米) 甲、乙两地的路程 20×(1+2)=60(千米)
练习5: 1.一辆汽车在甲、乙两站间行驶,往返一次共用去4小时(停车时间不算 在内)。汽车去时每小时行45千米,返回时每小时行30千米。甲、乙两地 相距多少千米?
答案:72千米
2.甲做3000个零件比乙做2400个零件多用1小时,甲、乙工作效率的比 是6:5。甲、乙每小时各做多少个?
答案:100个
3.下图是甲、乙、丙三地的路线图。已知甲地到丙地的路程与乙地到丙地 的路程的比是2:3。一辆货车以每小时40千米的速度从甲地开往丙地,一 辆客车同时以每小时50千米的速度从乙地开往丙地,客车比火车迟1小时 到达丙地。求甲、乙两地的路程?
六年级上学期数学 比的应用专题训练
【例题1】甲、乙两个学生放学回家,甲要比乙多走1/5的 路,而乙走的时间比甲少1/11,求甲、乙两人速度的比。
【解析】因为 速度=路程÷时间,所以,甲、乙速度的比 =甲路程/甲时间:乙路程/乙时间 (1)甲、乙路程的比:(1+1/5):1=6:5 (2)甲、乙时间的比:1:(1-1/11)=11:10 (3)甲、乙速度的比:6/11:5/10=12:11 答:甲、乙速度的比是12:11。

人教版六年级下学期数学 比例的应用 完整版例题+答案解析

比例的应用★知识概要1、比例尺1)数字比例尺:图上距离与实际距离的比。

前项是图上距离,后项是实际距离。

前项和后项的单位相同。

只能表示距离的比。

2)线段比例尺可以直观看出图上一厘米代表的实际距离。

2、正比例和反比例的应用:在实际问题中,两个呈比例的量,可以用比例的知识来解决。

1)两个成正比的量:比值相等列出比例方程。

2)两个成反比的量:乘积相等列出方程。

★精讲精练例1、(1)、化简。

20kg:10g = ___2000___: ____1____6 m : 120 cm = ___5___:____1____5cm: 250km=____1____:____500000____(2)、将线段比例尺化为数字比例尺0 20 40 60km1:2000000演练1、(1)、化简。

20km:15cm = ___4000____: ____3____6 cm : 150 m = ___1____:____2500____5cm: 24km=____1____:____480000____(2)、将线段比例尺化为数字比例尺0 30 60 90km1:3000000例2、(1)填表(2)一幅地图的比例尺为1 : 20000000,小芳在地图上量得广州到上海的 某条线路全长为7.5厘米。

那么广州到上海的这条线路实际距离是多少千米?实际距离:7.5x200=1500(千米)演练2、比例尺 图上距离 实际距离1:2000000 5cm 100km 15:17.5cm 5mm 1:7500002cm 15km(2)一幅地图的比例尺为 1 : 5000000,小新在地图上量得北京到上海的铁 路长度是29厘米。

一辆高速动车从北京南站出发,经过5小时到达 上海,这辆高速动车的时速是多少?实际距离:29÷50000001=145000000(厘米)=1450(千米) 速度:1450÷5=290(千米/小时)1599m30cm1:3000000例3、(1)学校篮球场平面图的比例尺为1 : 250,工程师在平面图上量得篮球场的长为11.2厘米,宽为6厘米。

小学六年级比的应用应用题题型解析

一、比的意义:两个数相除又叫两个数的比比与除法,分数的关系?比前项:(比号)后项比值除法被除数÷(除号)除数商分数分子-(分数线)分母分数值a:b=a÷b=ab(b≠0)比与除法,分数的不同点:比表示两个量或数之间的倍比关系,除法是一种运算,而分数则是一个数,除法是一种运算。

二、比的化简最简整数比:比的前项和后项都是整数,并且比的前项和后项的最大公因数是1.比的基本性质:比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。

化简比的方法三、比的应用应用一:已知总量及两个部分量间的比的关系,求各部分量例题:一个三角形,三个内角的度数比是1:2:6,这个三角形中最大的角是多少度?平均分法解析:可以把三角形的三个角的和看成(1+2+6)份,算出每一份多少度;其中一个三个角分别占1份,2份,6份解答:180°÷(1+2+6)=20°三个角分别20°×1=20° 20°×2=40° 20°×6=120°分数计算法解析:三角形的三个角的和可以看成共9份,其中三个角分别占192969解答:1+2+6=9 三个角分别 180°×19=20° 180°×29=40° 180°×69=120°练习题:1、一个三角形的内角度数的比是3∶2∶1,按角分这是个什么三角形?2、一个长方形周长是88cm,长与宽的比是4:7。

长方形的长、宽各是多少厘米?面积是多少?3、一种什锦糖是按2份奶糖、5份水果糖和3份软糖混合成的。

要配制这样的什锦糖40kg,需要水果糖多少千克?4、A,B两地相距480千米.甲乙两辆大巴同时从A,B两地相对开出,经过4.5小时,两车相遇后又相距120千米.这是甲乙两辆车所经过的路程比正好是8:7.甲.乙两辆车已经各行了多少千米?应用二:已知一个部分量及它与另一个部分量间的比,求总量例题:甲、乙两数的比是2:7,已知甲是108,甲、乙两数的和是多少?平均分法:甲乙两数之和看成9份,甲是108;占了2份,所以可以求出一份,然后乘以总共的9份是多少就是甲乙两数之和解答:108÷2=54 54×9=486分数计算法:(可以列式也可以用方程,建议用方程)甲是108,甲又占了总数的29,所以总数=甲÷甲所占份数解答:108÷29=486练习题:一种什锦糖是由水果糖、奶糖、软糖按5∶3∶2混合而成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级“比的应用”典型题详解
一、分数形式
这种形式的题目是它把比写成分数形式,这样迷惑学生。

例、六(1)班有50人其中女生是男生的2/3,男生和女生各多少人?
二、总量不明显
这种题目是待分配的总量不明显,需要先求出总量。

例、甲乙丙三人共同生产100个零件,甲完成了三成,乙和丙完成的数量比是2:5,乙和丙各完成多少个?
三、比不明显
在这种形式的题目中,几个项的比不明显,只有先找到几个项的比,才能够“按比例分配”。

例、一个车间有职工70人,男职工比女职工少25%,男职工和女职工各有多少人?
再如,一批零件共200个,由甲乙丙三个工人生产,甲乙两人生产的零件数之比是3﹕4,甲比丙多生产30个,他们三人各生产多少个?
四、已知比的某一项的具体量,求另一项的具体量
这种题型是已知两个量的比,并且知道比的前项或后项的具体量,求另一项的具体量。

例、小红读一本故事书,已读的和未读的页数的比是2﹕7,已经读了24页,还剩下多少页?
在一些题目中,已知几个量的某几项的比,但这些比是分离的,则需要把几个比合并为一个比。

例、一段公路长340千米,由甲、乙、丙三个工程队修,甲工程
4,甲、队与乙工程队完成的长度之比是2﹕3,甲工程队完成的是丙的
7
乙、丙三个工程队各完成多少千米?。

相关文档
最新文档