红外避障传感器

合集下载

红外避障传感器简介

红外避障传感器简介

红外避障传感器介绍(反射型)日期:2006-5-16 14:05:14 来源: 点击: 1572 添加到收藏夹实图:技术指标:主体外形尺寸:23×15.3×15.1mm(长×宽×高)重量:7g额定电压:直流电源5.0V检测范围(反射面为白色木板):1~ 40cm(挡板为白色时检测距离在40cm时达到临界点,超过此数值后检测效果变差)调节方式:多圈电阻式调节,逆时针方向旋转功率变小,顺时针方向旋转功率变大返回值:有信号(高电平)返回值为“1”,无信号(低电平)返回值为“0”状态指示方式:检测到信号指示灯亮红灯,无信号不亮安装方式:单颗Ø3螺丝安装线长:17.4cm±0.2cm(有效距离)连接方式:单条3芯排线,2510型3脚插头有效角度:30 左右原理与功能红外避障传感器(以下简称红外)。

红外具有一对红外信号发射与接收二极管,发射管发射一定频率的红外信号,接收管接收这种频率的红外信号,当红外的检测方向遇到障碍物(反射面)时,红外信号反射回来被接收管接应用介绍:红外是通过发射端发射红外信号,接收端接收由障碍物反射回来的红外信号,来判断是否有障碍物。

项目应用红外避障传感器在很多项目中都有使用。

在初中灭火、高中搜救项目中,机器人可以通过红外避障传感器走迷宫;在轨迹项目中,机器人可以通过黑、白色对红外线的反射和吸收值不同而用红外避障传感器来识别黑色的轨迹线。

注意事项:1、红外是数字传感器,红外接收管只有在接收到一定强度的红外信号时才会有数值的变化。

障碍物(反射面)太小时,红外会检测不到;障碍物(反射面)颜色为黑色或深色时,会被吸收大部分的红外信号,而只反射回一小部分,导致红外接收管接收到的红外信号强度不够,不足以产生有障碍物(反射面)的信号。

2、红外在暖光源的照射下(如白炽灯、太阳光)检测受到很大影响,它会受到所有相近红外信号的干扰,白炽灯和太阳光中含有红外信号成分较多,对红外的影响也较大。

红外避障传感器测试结果

红外避障传感器测试结果

红外避障传感器测试结果一、传感器原理传感器主动发射红外线,根据反射光探测,类似雷达,如果探测到障碍,传感器的OUT 脚输出0,否则1。

二、测试目的测试传感器的各项性能是否满项目的测量要求。

此传感器在项目设计中是用于测量纸卷厚度的,当纸卷剩余不多的时候需要传感器预报,因此对精度要求小于2mm 。

三、测试内容及方法1)传感器精度测试测试中传感器测量距离保持不变,移动被测物体(障碍物),由近及远,直到传感器输出的电平发生变化(由0变到1),停止移动,测量此时被测物体与传感器的距离,重复多次;移动被测物体由远及近,直到传感器输出的电平发生变化(由1变到0),停止移动,测量此时被测物体与传感器的距离,重复多次。

2)回滞性测试传感器距离设定不变,由于精度等原因,传感器测得的距离是在一定范围变化的,因此具有回滞特性。

表1是根据以上所述的测试方法测得的结果。

图1是根据表1绘制的回滞特性曲线。

表1 测试结果四、测试总结从表1的数据可以看出,传感器在设定距离不变的情况下,由近及远的误差电平 图1 红外避障传感器的回滞曲线 mm为3.28mm,由远及近的误差为4.18mm,在设定距离总的误差为6.06mm。

因此不符合我们的要求。

同时在测试中发现,传感器在测定距离的电平是动态变化的。

理想情况下,障碍物由近及远,传感器输出的电平应该是由0变到1,障碍物由远及近,传感器输出的电平由1变到0。

但是在实际测试中,障碍物移动到传感器电平发生变化的距离后,电平还是在变化,而且不规律。

波形如图2所示。

这是不符合我们要求的。

图2 示波器测得的传感器电平变化五、测试结论传感器不符合项目要求。

红外避障传感器

红外避障传感器

二.红外避障传感器避障传感器主要包括:超声波避障传感器,红外避障传感器,激光避障传感器等等。

1.可以希望在相当短的时间内获得较多的红外传感器测量值以及测距范考虑到发射光线是光,30cm以内,所以我们选择红外避障传感器安装在机器人上。

围较近,大致为 2.红外避障传感器的优点:1)环境适应性好,在夜间和恶劣气象条件下的工作能力优于可见光;(2)被动式工作,隐蔽性好,不易被干扰;()靠目标和背景之间各部分的温度和发射率形成的红外辐射差进行探测,因而识别伪装(3 目标的能力优于可见光;)红外系统的体积小、质量轻、功耗低;(4 )不受电磁波的干扰、非噪声源、可实现非接触性测量。

(5 红外避障传感器的不足: 3.周围的光线都能导方向、由于传感器测量光的差异,其受环境的影响非常大,物体的颜色、致较大的测量误差。

工作原理: 4. )红外避障传感器:(1接收管接收这发射管发射一定频率的红外信号,具有一对红外信号发射与接收二极管,红外信号反射回来被接当传感器的检测方向遇到障碍物(反射面)时,种频率的红外信号,机器人即可利用红外波经过处理之后,通过数字传感器接口返回到机器人主机,收管接收,的返回信号来识别周围环境的变化。

光学系统按结构不同可分为透射式红外线传感器包括光学系统、检测元件和转换电路。

热敏元件应用最和反射式两类。

检测元件按工作原理可分为热敏检测元件和光电检测元件。

通过转换电路变成热敏电阻受到红外线辐射时温度升高,电阻发生变化,多的是热敏电阻。

电信号输出。

)热敏检测元件(2 热阻效应:物质的电阻率随温度变化的物理现象叫热阻效应。

金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即)t0]Rt=Rt0[1+α(t-为温度系α(通常t0=0℃)时对应电阻值;Rt0Rt式中,为温度t时的阻值;为温度t0 数。

半导体热敏电阻的阻值和温度关系为Rt=AeB/t 取决于半导体材料的结构的常数。

B、A时的阻值;t为温度为Rt式中(3)光电检测元件光电效应:在高于某特定频率的电磁波照射下,某些物质内部的电子会被光子激发出来而形成电流,即光生电,分为外光电效应和内光电效应。

避障常用哪些传感器-几种传感器的基本工作原理

避障常用哪些传感器-几种传感器的基本工作原理

避障常用哪些传感器?几种传感器的基本工作原理导读避障是指移动机器人在行走过程中,通过传感器感知到在其规划路线上存在静态或动态障碍物时,按照一定的算法实时更新路径,绕过障碍物,最后达到目标点。

避障常用哪些传感器不管是要进行导航规划还是避障,感知周边环境信息是第一步。

就避障来说,移动机器人需要通过传感器实时获取自身周围障碍物信息,包括尺寸、形状和位置等信息。

避障使用的传感器多种多样,各有不同的原理和特点,目前常见的主要有视觉传感器、激光传感器、红外传感器、超声波传感器等。

下面我简单介绍一下这几种传感器的基本工作原理。

超声波超声波传感器的基本原理是测量超声波的飞行时间,通过d=vt/2测量距离,其中d是距离,v是声速,t是飞行时间。

由于超声波在空气中的速度与温湿度有关,在比较精确的测量中,需把温湿度的变化和其它因素考虑进去。

上面这个图就是超声波传感器信号的一个示意。

通过压电或静电变送器产生一个频率在几十kHz的超声波脉冲组成波包,系统检测高于某阈值的反向声波,检测到后使用测量到的飞行时间计算距离。

超声波传感器一般作用距离较短,普通的有效探测距离都在几米,但是会有一个几十毫米左右的最小探测盲区。

由于超声传感器的成本低、实现方法简单、技术成熟,是移动机器人中常用的传感器。

超声波传感器也有一些缺点,首先看下面这个图。

因为声音是锥形传播的,所以我们实际测到的距离并不是一个点,而是某个锥形角度范围内最近物体的距离。

另外,超声波的测量周期较长,比如3米左右的物体,声波传输这么远的距离需要约20ms 的时间。

再者,不同材料对声波的反射或者吸引是不相同的,还有多个超声传感器之间有。

红外避障传感器工作原理

红外避障传感器工作原理

红外避障传感器工作原理一、引言红外避障传感器是一种常见的电子产品,它通过发射和接收红外信号来检测物体的距离和位置,从而实现避障功能。

本文将详细介绍红外避障传感器的工作原理。

二、红外信号红外信号是指波长在0.75-1000微米之间的电磁波。

人眼无法看到这些波长范围内的光线,但是它们可以被一些电子设备所探测到。

红外信号在工业、医疗、安防等领域有着广泛的应用。

三、红外避障传感器结构红外避障传感器通常由发射模块和接收模块组成。

发射模块负责发射红外信号,接收模块负责接收反射回来的信号,并将其转换为电信号输出。

四、工作原理1. 发射模块发射模块通常由一个红外二极管组成。

当二极管被通电时,会产生一个特定频率和波长的光线。

这个频率和波长通常是38kHz和940nm。

2. 接收模块接收模块通常由一个红外接收头和一个信号处理电路组成。

当发射模块发出红外信号后,如果有物体遮挡在传感器前方,一部分光线会被物体反射回来,并被接收头接收。

接收头将这个信号转换为电信号,并将其送入信号处理电路中。

3. 信号处理信号处理电路通常由一个滤波器和一个比较器组成。

滤波器用于过滤掉杂波和干扰,只保留38kHz的频率。

比较器用于将接收到的信号与一个参考值进行比较,从而判断是否有物体遮挡在传感器前方。

五、应用场景红外避障传感器可以应用于机器人、智能家居、智能车等领域。

它可以检测机器人或车辆前方是否有障碍物,并及时做出反应,从而避免碰撞和损坏。

六、总结红外避障传感器通过发射和接收红外信号来检测物体的距离和位置,从而实现避障功能。

它由发射模块和接收模块组成,其中发射模块负责发射红外信号,接收模块负责接收反射回来的信号,并将其转换为电信号输出。

红外避障传感器在机器人、智能家居、智能车等领域有着广泛的应用。

智能小车红外避障原理

智能小车红外避障原理

智能小车红外避障原理
红外避障原理是利用红外线探测传感器检测车辆前方物体的距离,从而避免碰撞。

红外线探测传感器是一种能够感知物体距离的传感器,它可以将前方物体反射回来的红外线信号转化为电信号,从而实现对前方距离的测量。

在智能小车中,通常会使用多个红外线探测传感器分别放置在车体前方的左右两侧以及正前方。

当有障碍物出现在传感器的探测范围内时,传感器会感知到物体的距离并将信号传回中央处理器。

中央处理器会根据传感器的信号控制车体转向或停止行驶,从而实现避开障碍物的目的。

除了红外线探测传感器,智能小车还可以搭载其他类型的传感器,如超声波传感器、激光雷达等,以实现更加精准的避障功能。

总之,红外避障原理是智能小车实现自主行驶的重要手段之一,它可以使车辆在遇到障碍物时迅速反应并避开,从而保障了智能小车的安全性和稳定性。

- 1 -。

红外避障传感器原理

红外避障传感器原理

红外避障传感器原理
红外避障传感器是一种常用的传感器,它可以通过检测红外线来感知障碍物的
存在,从而实现避障的功能。

其原理主要基于红外线的发射和接收。

首先,红外避障传感器内部包含红外发射器和红外接收器。

红外发射器会不断
地发射红外线,而红外接收器则会接收这些红外线。

当没有障碍物时,红外线会直线传播并被接收器接收;而当有障碍物挡住红外线时,接收器就无法接收到红外线。

这时,传感器就会发出信号,从而实现避障的功能。

其次,红外避障传感器的工作原理是基于红外线的特性。

红外线是一种电磁波,它的波长比可见光长,人眼无法看到。

而红外避障传感器就是利用了这一点。

当有障碍物挡住红外线时,传感器就会感知到障碍物的存在,从而及时采取相应的措施,比如停止前进或改变方向,以避免碰撞。

此外,红外避障传感器还可以通过测量红外线的反射来判断障碍物的距离。


红外线照射到障碍物表面时,会发生反射,传感器可以通过测量反射的强度来判断障碍物的距离远近。

这样,机器人或其他设备就可以根据这些信息来调整自己的运动轨迹,实现避障的目的。

总的来说,红外避障传感器的原理是基于红外线的发射和接收,通过检测红外
线的存在与否以及反射强度来感知障碍物的存在和距离,从而实现避障的功能。

它在机器人、智能家居等领域有着广泛的应用,是一种非常重要的传感器。

希望本文能对大家对红外避障传感器的原理有所了解。

红外避障模块原理

红外避障模块原理

红外避障模块原理
红外避障模块是一种常用于智能小车、机器人等设备上的传感器模块,它能够
通过红外线来检测前方是否有障碍物,并向控制系统发送信号,从而实现避障功能。

那么,红外避障模块是如何实现这一功能的呢?接下来,我们将从原理方面进行详细介绍。

首先,红外避障模块由红外发射器和红外接收器组成。

红外发射器会发射一束
红外线,而红外接收器则会接收这束红外线。

当没有障碍物时,发射器发出的红外线会直接被接收器接收到;当有障碍物挡住红外线时,接收器就无法接收到完整的红外线。

这样,通过检测接收到的红外线的强弱,就可以判断前方是否有障碍物以及障碍物的距离。

其次,红外避障模块通过测量红外线的反射情况来判断障碍物的距离。

红外线
遇到障碍物后会发生反射,而红外接收器接收到的反射红外线的强度与距离成反比。

因此,通过测量接收到的红外线的强度,就可以间接地得知障碍物与红外避障模块的距离。

最后,红外避障模块通过处理接收到的红外信号来实现障碍物的识别。

一般来说,红外避障模块会将接收到的红外信号转换成数字信号,然后通过比较信号的强度来判断前方是否有障碍物以及障碍物的距离。

在实际应用中,可以根据具体情况设置不同的阈值,从而实现对不同距离障碍物的识别。

总的来说,红外避障模块通过发射和接收红外线,测量反射红外线的强度,并
处理接收到的红外信号,来实现对障碍物的检测和识别。

它在智能小车、机器人等设备中发挥着重要作用,为这些设备的自主避障功能提供了技术支持。

希望通过本文的介绍,能够让大家对红外避障模块的原理有一个更加清晰的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外避障传感器 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】
二.红外避障传感器
1.避障传感器主要包括:超声波避障传感器,红外避障传感器,激光避障传感器等等。

考虑到发射光线是光,可以希望在相当短的时间内获得较多的红外传感器测量值以及测距范围较近,大致为30cm以内,所以我们选择红外避障传感器安装在机器人上。

2.红外避障传感器的优点:
(1)环境适应性好,在夜间和恶劣气象条件下的工作能力优于可见光;
(2)被动式工作,隐蔽性好,不易被干扰;
(3)靠目标和背景之间各部分的温度和发射率形成的红外辐射差进行探测,因而识别伪装目标的能力优于可见光;
(4)红外系统的体积小、质量轻、功耗低;
(5)不受电磁波的干扰、非噪声源、可实现非接触性测量。

3. 红外避障传感器的不足:
由于传感器测量光的差异,其受环境的影响非常大,物体的颜色、方向、周围的光线都能导致较大的测量误差。

4.工作原理:
(1)红外避障传感器:
具有一对红外信号发射与接收二极管,发射管发射一定频率的红外信号,接收管接收这种频率的红外信号,当传感器的检测方向遇到障碍物(反射面)时,红外信号反射回来被接收管接收,经过处理之后,通过数字传感器接口返回到机器人主机,机器人即可利用红外波的返回信号来识别周围环境的变化。

红外线传感器包括光学系统、检测元件和转换电路。

光学系统按结构不同可分为透射式和反射式两类。

检测元件按工作原理可分为热敏检测元件和光电检测元件。

热敏元件应用最多的是热敏电阻。

热敏电阻受到红外线辐射时温度升高,电阻发生变化,通过转换电路变成电信号输出。

(2)热敏检测元件
热阻效应:物质的电阻率随温度变化的物理现象叫热阻效应。

金属热电阻的电阻值和温度一般可以用以下的近似关系式表示,即
Rt=Rt0[1+α(t-t0)]
式中,Rt为温度t时的阻值;Rt0为温度t0(通常t0=0℃)时对应电阻值;α为温度系数。

半导体热敏电阻的阻值和温度关系为
Rt=AeB/t
式中Rt为温度为t时的阻值;A、B取决于半导体材料的结构的常数。

(3)光电检测元件
光电效应:在高于某特定频率的电磁波照射下,某些物质内部的电子会被光子激发出来而形成电流,即光生电,分为外光电效应和内光电效应。

光电导效应:在光线作用下,电子吸收光子能量从键合状态过渡到自由状态,而引起材料电导率的变化。

当光照射到光电导体上时,若这个光电导体为本征半导体材料,且光辐射能量又足够强,光电材料价带上的电子将被激发到导带上去,使光导体的电导率变大。

基于这种效应的光电器件有光敏电阻。

(4)红外发射二极管的选择
红外发射二极管分为很多种。

红外发射二极管一般按峰值波长(λp)主要为:850nm、870nm、880nm、940nm、980nm,现在市场上使用较多为850nm和940nm 两种。

本次设计所使用的是峰值波长为940nm的红外发射二极管。

940nm红外发射二极管优点:光强度高,响应速度快,可用脉冲驱动,无色透明环氧树脂。

其主要应用领域:红外遥控系统,红外探测系统,红外幕墙保安系统,磁带、光盘监测器,光电开关/光传感器,主动红外夜视仪,电脑、手机等便携设备的红外数据传输系统。

在使用红外发射二极管时,发射管的辐射强度(Power)与输入电流(If)成正比。

辐射强度:Power(单位:W,W/sr,W/cm2),用以表示红外线发光二极管(IR)其辐射红外线能量之大小。

发射距离与辐射强度(Power) 成正比。

W/sr:表示红外线辐射强度的单位,为IR 发射红外线光之单位立体角(sr)所辐射出的光功率的大小。

W/cm2:表示照度的单位,为sensor单位面积(cm2)所接收IR发射之辐射功率的大小。

半功率角:2θ? 指红外线二极管其上下或左右两边所辐射出之红外线强度为该组件最大辐射强度的50%时,其上下或左右两边所夹的角度称为半功率角。

(5)红外接收器的选择
本次设计选用HS38B,该器件特性:低功耗、高灵敏度、优良的抗干扰能力。

一般用于家用电器、玩具等遥控接收。

红外接收器的电路原理框图
5.测量电路
红外发射与接收器电路图
红外线二极管发射红外光线,如果机器人前面有障碍物,红外线从物体反射回来,相当于机器人眼睛的红外检测(接收)器,检测到反射回的红外光线,并发出信号来表明检测到从物体反射回红外线。

红外线接收器有内置的光滤波器,除了需要检测的940nm波长的红外线外,他几乎不允许其他光通过。

红外检测器还有一个电子滤波器,它只允许大约的电信号通过。

这里使用三极管9013的原因是9013的基区做得很薄,当按图接时,发射结正偏,集电结反偏,发射区向基区注入电子,这时由于集电结反偏,对基区的电子有很强的吸引力,所以由发射区注入基区的电子大部分进入集电区,于是集电极的电流增大。

由于C51的I/O驱动能力较弱,加入三极管使其工作在开关状态,用小电流来控制大电流。

当P1_3(P3_6)置高电平时,从集电区经基区到发射区电路导通,加载在LED上的电压为VCC(5V),LED向外发射红外线;当P1_3(P3_6)置低电平时,电路又断开,LED停止发射。

本次设计提供了5V稳定直流电压,给LED串联一个470?的电阻帮助限流。

当三极管导通时,流过LED的电流在10mA左右,使 LED能正常
号输出给单片机,由单片机由电平的变化去控制电动机的工作实现避障。

6.注意事项:
(1)红外是数字传感器,红外接收管只有在接收到一定强度的红外信号时才会有
数值的变化。

障碍物(反射面)太小时,红外会检测不到;障碍物(反射面)颜色为
黑色或深色时,会被吸收大部分的红外信号,而只反射回一小部分,导致红外接收管接收到的红外信号强度不够,不足以产生有障碍物(反射面)的信号。

(2)红外在暖光源的照射下(如白炽灯、太阳光)检测受到很大影响,它会受到所有相近红外信号的干扰,白炽灯和太阳光中含有红外信号成分较多,对红外的影响也较大。

红外相互之间也存在干扰,因而在使用时需要注意。

(3)红外采用的是发射、接收原理,不同反射面对红外信号的吸收与散射,将影响其检测范围,根据测试红色的反射面效果最佳,白色其次,黑色最差;同时反射面的粗糙度和平整度也会影响检测的效果。

相关文档
最新文档