高分子物理chapter7粘弹性

合集下载

高分子物理第七章 聚合物的粘弹性资料

高分子物理第七章 聚合物的粘弹性资料

恒定应力下的蠕变柔 量函数
D(t ) D1 D2 (t )
t

第七章 聚合物的粘弹性
聚合物蠕变柔量与时间的关系
第七章 聚合物的粘弹性
高分子的蠕变
玻璃态 1 蠕变量很小,工程材料,作结构材料的
Tg远远高于室温
高弹态 1+2
粘流态 1+2+3 存在永久形变
第七章 聚合物的粘弹性
理想弹性体的应力取决于
d dt
模量与时间有关 E(,,T,t)
,理想粘性体的应力取决于 。
第七章 聚合物的粘弹性
粘弹性
实际材料同时显示弹性和粘性,即所谓的粘弹 性( Viscoelasticity )。与其他材料相比,聚 合物材料的粘弹性表现的更为显著。 线性粘弹性 非线性粘弹性
第七章 聚合物的粘弹性
第七章 聚合物的粘弹性
高分子的蠕变
(ii)高弹形变
(t) 材料受力,高分子链通过链段运动 产生的形变,形变量比普弹形变大 得多,但不是瞬间完成,形变与时 间相关。当外力除去后,高弹形变 可逐渐回复。
(t)
t 2(t)= t1 t2 t
0 (t<t1)
0
E2
(t )(t1 t t2 ) 0 D2 (t )
0 (t→)
E2-高弹模量 第七章 聚合物的粘弹性
高分子的蠕变
(iii)粘性流动
(t ) 受力时发生分子链的相对位移,外 力除去后粘性流动不能回复,是不 可逆形变,称为粘性流动.
(t )
t 3(t)= t1 t2 t
0 (t<t1)
0 t (t1 t t2 ) 3
0 (t2 t1 )(t t 2 ) 3

高分子物理7

高分子物理7

= D1σ
D1
=
1 E1
E1为普弹模量 D1为普弹柔量
高弹形变——由链段运动引起的形变 特点:形变大、模量小、可逆、
完成需要时间(松弛过程)
ε2
=
σ E2
⎜⎛1 − e −t τ ⎝
⎟⎞ ⎠
τ = η2 E2
E 2为高弹模量 τ为松弛时间 η 2为链段运动粘度
普弹形变 高弹形变
粘性流动——分子链之间产生相对滑移运动引起的形变 特点:形变很大、模量极小、不可逆、松弛过程
1.样品的应变(应力)是受力史的函数 2.各个力对应变(应力)的贡献是独立的,具有线性加和性
约定:过去受力时刻为s,当前观察时刻为t
在s1时刻施加应力Δσ1, 在s2时刻施加Δσ2, 在s3时刻施加Δσ3…
γ (t) = γ ∞ (1− e−t /τ ) = σJ∞ (1− e−t /τ )
( ) Δσ1在时刻s1施加, 作用时间为(t-s1) γ1 t = Δσ1J∞[1−e−(t−s1)/τ ]
总应变速率: dε = dε E + dεη
dt dt dt
代入虎克定律: σ = EεE
和牛顿定律: σV

dεη
dt
ε Ed=εησE=
dt
ση η
dε = 1 dσ + σ dt E dt η
Maxwell模型运动方程
运动方程适用于任何运动状态
恒定应变时 dε = 0
dt
即 0 = 1 dσ + σ E dt η
( ) ∑ γ t = J∞[1− e−(t−si )/τ ] Δσ i
i
J∞ = 0.5(Pa)−1 , τ = 100 / 2 = 50s

高分子物理---第七章 聚合物的粘弹性

高分子物理---第七章 聚合物的粘弹性
t
粘性响应

d dt
0 sin t
sin udu

d dt

0 sin t
0
cos u C
cos t /
0
d sin tdt

0
cos t

π
π
0 滞 sin( t ) 后 2 /2
线形聚合物 交联聚合物


t
t
不能产生质心位 移, 应力只能松 弛到平衡值
高分子链的构象重排和分子链滑移是导致材料 蠕变和应力松弛的根本原因。
影响应力松弛的主要因素
影响应力松弛的主要因素有温度和交联 温度:温度对应力松弛的影响较大。T≥Tg时,链运动 受到内摩擦力很小,应力很快松弛掉。T≤Tg时,如常 温下塑料,虽然链段受到很大应力,但由于内摩擦力很 大,链运动能力较弱,应力松弛很慢,几乎不易察觉, 只有Tg附近几十度范围内,应力松弛现象才较明显。 交联:橡胶交联后,应力松弛大大地被抑制,而且应力 一般不会降低到零。其原因:由于交联的存在,分子链 间不会产生相对位移,高聚物不能产生塑性形变。 和蠕变一样,交联是克服应力松弛的重要措施。
0
b

面积大小为单位体积内材料在每一次拉伸-回缩 循环中所消耗的功
(3) 内耗 Internal friction (力学损耗)
0 sin t 0 sin( t )
展开
0 sin t cos 0 cos t sin
类似于Hooke’s solid, 相当于弹性 类似于Newton Liquid, 相当于粘性



B 分子量:分子量增大,聚合物的抗蠕变性能变好。 因为随着聚合物分子量的增大,分子链之间的缠结 点增多(类似于物理交联点),故在一定程度上改 变材料的流动和蠕变行为。 C 交联:交联对高聚物的蠕变性能影响非常大。 理想的体型高聚物蠕变曲线仅有普弹和高弹形变, 回复曲线最终能回复到零,不存在永久变形,所以 说,交联是解决线型高弹态高聚物蠕变的关键措施。

《高分子物理》课件-第七章粘弹性

《高分子物理》课件-第七章粘弹性

第7 章聚合物的粘弹性形变对时间不存在依赖性εσE =虎克定律理想弹性体外力除去后完全不回复dt d εηγησ==.牛顿定律理想粘性体弹性与粘性弹性粘性储能性可逆性σ与ε的关系与t 关系瞬时性依时性储存耗散回复永久形变εσE =dt d εηγησ==.虎克固体牛顿流体粘弹性力学性质兼具有不可恢复的永久形变和可恢复的弹性形变小分子液体–粘性小分子固体–弹性在时间内,任何物体都是弹性体在时间内,任何物体都是粘性体在的时间范围内,任何物体都是粘弹体超短超长一定高分子材料具有显著的粘弹性粘弹性分类静态粘弹性动态粘弹性蠕变、应力松弛滞后、内耗7.1 粘弹性现象7.1.1 蠕变(creep)在一定的温度下,软质PVC丝钩一定的砝码,会慢慢伸长蠕变:指在一定的温度和较小的恒定外力作用下,材料的形变随时间的增加而逐渐增大的现象蠕变反映了材料的尺寸稳定性及长期负荷能力从分子运动和变化的角度分析线性PVC的形变—时间曲线,除去外力后,回缩曲线?11E σε=1ε1t 2t t键长和键角发生变化引起,形变量很小,瞬间响应σ:应力E 1:普弹形变模量1.普弹形变链段运动使分子链逐渐伸展发生构象变化引起τ:松弛时间,与链段运动的粘度η2和高弹模量E 2有关,τ=η2/ E 2)1(/22τσεt eE --=2ε1t t2t 2.高弹形变3ε2t 1t t外力作用造成分子间的相对滑移(线型高聚物)t33ησε=η3——本体粘度3.粘性流动t eE E t t 3/21321)1()(ησσσεεεετ+-+=++=-线型高聚物的蠕变曲线总应变交联聚合物的蠕变曲线1.由于分子链间化学键的键合,分子链不能相对滑移,在外力作用下不产生粘性流动,蠕变趋于一定值2. 无粘性流动部分,能完全回复T<T g 时,主要是(),T>T g 时,主要是()A ε1B ε2C ε3三种形变的相对比例依具体条件不同而不同下列情况那种形变所占比例大?A B聚合物蠕变的危害性蠕变降低了聚合物的尺寸稳定性抗蠕变性能低不能用作工程塑料如:PTFE不能直接用作有固定尺寸的材料硬PVC抗蚀性好,可作化工管道,但易蠕变影响蠕变的因素1.温度2.外力3.分子结构蠕变与T,外力的关系温度外力蠕变T过低外力过小T过高外力过大T g附近适当外力很小很慢,不明显很快,不明显明显(链段能够缓慢运动)23℃时几种高聚物蠕变性能10002000(%)小时2.01.51.00.512345t链的柔顺性主链含芳杂环的刚性高聚物,抗蠕变性能较好12345聚苯醚PCABS(耐热)POM尼龙如何防止蠕变?◆交联橡胶通过硫化来防止由蠕变产生不可逆的形变◆结晶微晶体可起到类似交联的作用◆提高分子间作用力7.1.2 应力松弛(stress relaxation)在一定温度、恒定应变的条件下,试样内的应力随时间的延长而逐渐减小的现象应力松弛的本质加力链段运动使分子链间相对位置的变化分子重排,以分子运动来耗散能量,从而维持一定形变所需要的力逐渐减小交联聚合物和线形聚合物的应力松弛t交联线性高聚物的应力松弛曲线t不同温度下的应力松弛曲线应力松驰与温度的关系温度过高应力松驰很快温度过低内摩擦力很大,应力松驰极慢T g 附近应力松驰最为明显123应力松弛的应用对密封制件,应力松弛行为决定其使用寿命高分子制件加工中,应力松弛行为决定残余应力的大小不变的量变化的量蠕变应力松弛蠕变与应力松弛比较温度力形变根本原因高分子链的构象重排和分子链滑移应力温度形变动态粘弹性在交变应力或交变应变作用下材料的力学行为σωtπ2πεωtδεωtδ正交变化的应力:t sin )t (0ωσσ=无相位差,无能量损耗理想弹性体tsin )t (0ωεε=有相位差,功全部损耗成热理想粘性液体)2-t sin( )t (0πωεε=相位差δ,损耗部分能量)-t sin( )t (0δωεε=聚合物(粘弹性)高聚物在交变应力作用下的应变变化落后于应力变化的现象tt o ωσσsin )(=)sin()(δωεε-=t t o 0<δ<π/2滞后现象原因链段运动时受到内摩擦阻力, 外力变化时,链段运动跟不上外力的变化内摩擦阻力越大,δ 也就越大,滞后现象越严重外力对体系做的功每次形变所作的功= 恢复形变时所作的功无滞后时没有功的消耗每一次循环变化会有功的消耗,称为内耗有滞后时产生形变提供链段运动时克服内摩擦阻力所需要的能量滞后现象的危害σεσ0ε1拉伸硫化橡胶拉伸—回缩应力应变曲线拉伸曲线下面积为外力对橡胶所作的功回缩曲线下面积为橡胶对外力所作的功滞后环面积越大,损耗越大ε0回缩ε2面积之差损耗的功δεπσsin o o W =∆δ :力学损耗角,常用tanδ来表示内耗大小)]dt-t cos(t)[sin ()t (d )t (W Δ020200δωωεωσεσωπωπ⎰⎰==σεσ0回缩拉伸内耗角δεπσsin o o W =∆δ=0,△W=0,所有能量都以弹性能量的形式存储起来滞后的相角δ决定内耗δ=900,△W→max , 所有能量都耗散掉了滞后和内耗对材料使用的利弊?用作轮胎的橡胶制品要求内耗小(内耗大,回弹性差)隔音材料和吸音材料要求在音频范围内有较大的力学损耗防震材料要求在常温附近有较大的力学损耗温度内耗很高很低T g 附近1. 温度影响滞后和内耗的因素高小小小小大大2.外力变化的频率高聚物的内耗与频率的关系频率 内耗很高很低适中小小小小大大橡胶品种内耗顺丁丁苯丁腈3.内耗与分子结构的关系对于作轮胎的橡胶,则选用哪种?内耗大的橡胶,吸收冲击能量较大,回弹性较差较小较大较大7.1.3 粘弹性参数静态粘弹性蠕变应力松弛模量柔量应力,应变与时间的关系模量、柔量与时间的关系蠕变柔量)()(σεt t D =应力松弛模量)()(εσt t E =tsin (t)0ωεε=t cos sin t sin cos (t)00ωδσωδσσ+=)t sin( (t)0δωσσ+=δεσcos '00=E δεσsin "00=E E ′—储能模量,反映材料形变时的回弹能力(弹性)E ″—耗能模量,反映材料形变时内耗的程度(粘性)1.力学损耗角,tg δ动态粘弹性2.动态模量用复数模量的绝对值表示(绝对模量)2''2'*||E E E E +==通常E ″<<E ′,常直接用E ′作为材料的动态模量。

高分子物理课件7聚合物的粘弹性

高分子物理课件7聚合物的粘弹性

7 聚合物的粘弹性
弹性与粘性比较
弹性
粘性
能量储存
能量耗散
形变回复
永久形变
虎克固体
E
模量与时间无关
牛顿流体
.
d
dt
模量与时间有关
E(,,T)
E(,,T,t)
7 聚合物的粘弹性
理想弹性体、理想粘性液体和粘弹性
理想弹性体(如弹簧)在外力作用下平衡形变 瞬间达到,与时间无关;理想粘性流体(如水)在 外力作用下形变随时间线性发展。
7 聚合物的粘弹性
本章教学内容、要求及目的
教学内容: 聚合物粘弹性现象、力学模型及数学描述; 聚合物材料在受力情况下所产生的各种粘弹现象、 分子运动机理、力学模型及数学描述; 教学目的: 了解和掌握聚合物的粘弹性行为,指导我们在材料 使用和加工过程中如何利用粘弹性、如何避免粘弹 性、如何预测材料的寿命。
➢ 蠕变较严重的材料,使用时需采取必要的补救 措施。
7 聚合物的粘弹性
➢ 例1:硬PVC抗蚀性好,可作化工管道,但易蠕变, 所以使用时必须增加支架。
➢ 例2:PTFE是塑料中摩擦系数最小的,所以有很 好的自润滑性能,但蠕变严重,所以不能作机械 零件,却是很好的密封材料。
➢ 例3:橡胶采用硫化交联的办法来防止由蠕变产生 分子间滑移造成不可逆的形变。
7 聚合物的粘弹性
7.1.2 Stress Relaxation 应力松弛
在恒温下保持一定的恒定应变时,材料内部的应力 随时间而逐渐减小的力学现象。
例如:拉伸一块未交联的橡胶至一定长度,并保持 长度不变。随着时间的增长,橡胶的回弹力逐渐减 小到零。这是因为其内部的应力在慢慢衰减,最后 衰减到0。
7 聚合物的粘弹性

高分子物理chapter7粘弹性

高分子物理chapter7粘弹性
滞后现象与哪些因素有关? a.化学结构:刚性链滞后现象小,柔性链滞后现象大. b.温度:当不变的情况下,T很高时滞后几乎不出现,温度 很低,也无滞后。在Tg附近的几十度的温度范围内,链段既 可运动又不太容易,此刻滞后现象严重。 c. : 外力作用频率低时,链段的运动跟的上外力 的变化, 滞后现象很小; 外力作用频率不太高时,链段可以运动,但是不能完 全跟上外力的变化,表现出明显的滞后现象。 外力作用频率很高时,链段根本来不及运动,聚合物好 像一块刚性的材料,滞后很小。
0 E E 'iE ' ' (cos isin ) 0
E”
实数模量是储能模量
虚数模量为能量的损耗.
E" tan E'

图13
E’
33
第7章 聚合物的黏弹性
④内耗的影响因素 a.结构因素: a.结构因素 b.温度 c.tan与关系
顺丁橡胶:内耗小,链上无取代基,链段运 动的内摩擦阻力小,做轮胎 链刚性内耗大, 链柔性内耗小. 丁苯,丁腈橡胶:内耗大,丁苯有一个苯环; 丁腈有一个-CN,极性较大,链段运动时内 摩擦阻力很大(吸收冲击能量很大,回弹性 差),用作吸音和消震的材料. BR< NR< SBR< NBR
1、蠕变Creep
在一定的温度和恒定应力(拉力,扭力或压力等)作用下, 材料的形变随时间的增长而逐渐增加的现象。 若除掉外力,形变随时间而减小--称为蠕变回复。 物理意义:蠕变大小反映了材料尺寸的稳定性和长期负载能力。
6
第7章 聚合物的黏弹性
7
第7章 聚合物的黏弹性
蠕变:一定温度、较小的恒定外力下,材料的形变随时间增加而逐渐增大
②理想交联聚合物,不存在粘流态, 3 =0, =1+2

七高聚物的高弹性粘流性粘弹性

七高聚物的高弹性粘流性粘弹性
e e1
e2+e3 e2 普弹形变
高弹形变
e3 粘性流动 t
e1
t1 t2
• 蠕变结果:形变保留(粘性流动产生的形变)
蠕变与受力时间有关,受 力时间越长,蠕变越严重。
蠕变:在外力作用下,被拉长的分
子中的一些链段逐渐适应了新的环境和
形态,使高能量的构象逐渐转化为较低
能量的构象。
高能量
较长时间以后
低能量 蠕变
力)、缠结的解开。
• • • • •
滞后和内耗的影响因素: (1)结构 (2)交联X (3)温度X (4)增强剂、增塑剂
• 应用:隔音、防震材料。
• 本章小结: • 高弹性的特点:弹性形变,形变大模量小,可以 恢复。 • 概念:牛顿流体非牛顿流体、弹性形变、粘弹性、 切力变烯体、蠕变、应力松弛、滞后现象、力学 内耗。 • 蠕变、应力松弛、力学内耗的影响因素:柔顺性 的影响因素同此。
柔性分子
抗蠕变性能好
易蠕变
ABS 中的聚 苯乙烯
顺丁橡胶
2、结晶
3、交联
结晶高聚物
交联高聚物 线形高聚物
一般抗蠕变性 能较好
抗蠕变性能好 酚醛塑料
抗蠕变性能差, 聚乙烯 易蠕变 抗蠕变性能好
4 、相对分子 质量
高相对分子 质量
外因
具 体 情 性能 况 有利于蠕 变 有利于蠕 变 抗蠕变 有利于蠕 变
e2
t1
t2
形变逐渐恢复 t
高弹形变示意图
(iii)粘性流动(e3): 受力时发生分子链的相对位移,外力 除去后粘性流动不能回复,是不可逆形变。 如下图:
e3 形变保留
受力时间(t2-t1) 越长,粘性流动形 变越大(蠕变)

高分子物理chapter7粘弹性

高分子物理chapter7粘弹性

特点:受外力作用平衡瞬时达到,除去外力应变立即恢复.
2.理想的黏性液体:符合牛顿流体的流动定律的流体,= 特点:应力与切变速率呈线性关系,受外力时应变随时间线 性发展,除去外力应变不能恢复.
“黏”指糨糊或胶水等所具有的能使一个物体附着在另一个物 体上的性质,如黏性液体、黏米等;“粘”指黏的东西附着在 物体上或相互连接,或用黏的东西使物件连接起来,如粘连。
29
第7章 聚合物的黏弹性
P194 式7-14
30
内耗的表达
第7章 聚合物的黏弹性
弹性形变的动力
克服摩擦阻力 反映弹性大小
反映内耗大小
第7章 聚合物的黏弹性
内耗的表达
当 t 0sin t时, 应力 ( t ) 0sin t
展开 : ( t ) 0 cos sin t 弹性形变的动力 0sin cost 消耗于克服摩擦阻力
' '
0 如果E 定义为同相的应力和应变的比值, E cos 0 0 '' E 为相差90角的应力和应变的振幅的比值E" sin 0
32
第7章 聚合物的黏弹性
应力的表达式
( t ) 0 E 'sin t 0 E ' 'cost
第7章 聚合物的黏弹性 Polymer Viscoelasticity
本章的主要内容 内部尺度--弹性和黏性
黏 弹 性 外观表现--4个力学松弛现象 力学模型描述 时温等效原理--实用意义,WLF方程
1
第7章 聚合物的黏弹性
一、黏弹性的基本概念 1.理想弹性固体:受到外力作用,形变立刻响应,且符合胡 克定律。 =E= /D, E杨氏模量, D柔性模量.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滞后现象与哪些因素有关? a.化学结构:刚性链滞后现象小,柔性链滞后现象大. b.温度:当不变的情况下,T很高时滞后几乎不出现,温度 很低,也无滞后。在Tg附近的几十度的温度范围内,链段既 可运动又不太容易,此刻滞后现象严重。 c. : 外力作用频率低时,链段的运动跟的上外力 的变化, 滞后现象很小; 外力作用频率不太高时,链段可以运动,但是不能完 全跟上外力的变化,表现出明显的滞后现象。 外力作用频率很高时,链段根本来不及运动,聚合物好 像一块刚性的材料,滞后很小。
26
f
F
σ 第7章 聚合物的黏弹性
σ
F
f
σ为拉伸应力 f为内摩擦力 F为回复力
Mechanical loss 力学损耗 Hysteresis loss 滞后损耗,内耗
σ0
1 2 3
第7章 聚合物的黏弹性
2.内耗: 的现象. 由于力学滞后或者力学阻尼而使机械功转变成热
产生的原因: 当应力与形变的变化相一致时,没有滞后现象,每次形变所 作的功等于恢复形变时所作的功,没有功的消耗
图4 线形非晶态聚合物的蠕变及回复曲线
12
第7章 聚合物的黏弹性
蠕变Creep
•加力瞬间,键长、键角立即产生形变,形变直线上升 •通过链段运动,构象变化,使形变增大 •分子链之间发生质心位移
Creep recovery 蠕变回复
•撤力一瞬间,键长、键角等次级运动立即恢复,形变直线下降 •通过构象变化,使熵变造成的形变恢复
②理想交联聚合物,不存在粘流态, 3 =0, =1+2
14
第7章 聚合物的黏弹性
蠕变的影响因素
(1)温度:温度升高,蠕变程度变大 原因:外力作用下,温度高使分子运动速度加快,松弛加快
(2)外力作用大,蠕变大,蠕变速率快(同于温度的作用)

外 力 增 大
温 度 升 高
图5 蠕变与,T的关系
9
第7章 聚合物的黏弹性
• Rubber elastic deformation • Retarded elastic deformation 高弹形变 推迟弹性形变
形变随时间延长而发展 分子间的粘性阻力,使形变和应力不能 建立即时平衡,而需推迟一段时间所致
2
0
E2
1 e
t
图7

t
18
第7章 聚合物的黏弹性
2、应力松弛 Stress Relaxation
• 在恒定温度和形变下,维持此形变所需的应力随时间增加而逐渐衰减
0e

0
t
松弛时间 交联高分子 应力衰减至某一平衡值
Crosslinked polymer
Linear polymer
0
t
未交联高分子 应力最终衰减至零
恒值 (t>t2)

t1
t2
t
3-----本体粘度
分子间滑移,不可恢复
11
图3 理想粘性流动蠕变
第7章 聚合物的黏弹性
当聚合物受力时,以上三种形变同时发生,聚合物的总形变 方程:
2+3 1
1 2 3
t
( t ) 1 2 3 -t
(1 e ) t E1 E2 3
29
第7章 聚合物的黏弹性
P194 式7-14
30
内耗的表达
第7章 聚合物的黏弹性
弹性形变的动力
克服摩擦阻力 反映弹性大小
反映内耗大小
第7章 聚合物的黏弹性
内耗的表达
当 t 0sin t时, 应力 ( t ) 0sin t
展开 : ( t ) 0 cos sin t 弹性形变的动力 0sin cost 消耗于克服摩擦阻力
4
第7章 聚合物的黏弹性
5. 力学松弛 聚合物的力学性质随时间变化的现象,叫力学松弛。 包括蠕变及其回复,应力松弛和动态力学实验等。 蠕变 静态的黏弹性 力学松弛 动态黏弹性 力学损耗(内耗)
5
应力松弛 滞后现象
第7章 聚合物的黏弹性
二、静态黏弹性 应力或应变恒定,不同时间时,聚合物材料所表现出来 的黏弹现象。
23℃时几种高聚物蠕变性能
P 192 图7-4
PVC,PTFE,易蠕变
16
第7章 聚合物的黏弹性
提高材料抗蠕变性能的途径: a. 玻璃化温度高于室温,且分子链含有苯环等刚性链 b. 交联可以防止分子间的相对滑移,提高抗蠕变性.
17
第7章 聚合物的黏弹性
思考题: 1.交联聚合物的蠕变曲线? 2. 雨衣(增塑PVC)在墙上为什么越 来越长? PVC的Tg=80℃,加入增塑剂后,玻 璃化温度大大下降,成为软PVC,做 雨衣时处于高弹态,很容易产生蠕变。

2+3
Creep
1
2
Retraction
1
0
3
t
8
第7章 聚合物的黏弹性
(t) 普弹形变
从分子运动的角度解释: 材料受到外力的作用,链内的键长和 键角立刻发生变化,产生的形变很小, 我们称它普弹形变.
(t)
t

0
E1
0 应力
t1 t2 t
E1 普弹形变模量
图1 理想弹性体(瞬时蠕变)普弹形变
第7章 聚合物的黏弹性 Polymer Viscoelasticity
本章的主要内容 内部尺度--弹性和黏性
黏 弹 性 外观表现--4个力学松弛现象 力学模型描述 时温等效原理--实用意义,WLF方程
1
第7章 聚合物的黏弹性
一、黏弹性的基本概念 1.理想弹性固体:受到外力作用,形变立刻响应,且符合胡 克定律。 =E= /D, E杨氏模量, D柔性模量.
推迟时间
2
高弹模量
’ 分子链从一个松弛的平衡态构象变到
一个紧张的平衡态构象所需的时间
t1
t2
t
链段运动,可逐渐恢复
第7章 聚合物的黏弹性
黏性形变、塑性形变-永久变形 未化学交联的线性高聚物,发生分 (t) 子间的相对滑移,称为黏性流动.
(t)
t (t)=
0 (t<t1)
0 t (t1 t t 2 ) 3
2
第7章 聚合物的黏弹性
Strain
Polymer 聚合物
1
0
E1
Ideal elastic material 虎克弹性体
Ideal viscous material 牛顿流体
0 3 t 0
Time 高聚物常称为黏弹性材料,这是聚合物材料的又一重要 特征。
3
第7章 聚合物的黏弹性
动态力学行为
• 在交变周期性应力或应变作用下,材料的形变或应力随时间的变化 • 应变与应力响应不同步,造成变形能量损耗
ˆ sin t t
虎克(理想)弹性体
t
0
ˆ

2
3
4
t
ˆ sin t t
t
0
ˆ
2
牛顿(理想)粘流体
ˆ sin t t 2
•分子链间质心位移不能恢复
13
第7章 聚合物的黏弹性Fra bibliotek不同聚合物的蠕变曲线:
①线性聚合物 玻璃态T<Tg 链段松弛时间大,内摩擦阻力大,形 变量很小,普弹性, =1 高弹态Tf>T>Tg 普弹性+高弹性, =1+2
粘流态T>Tf 普弹性+高弹性+黏性变形
=1+2+3 存在永久形变
1、蠕变Creep
在一定的温度和恒定应力(拉力,扭力或压力等)作用下, 材料的形变随时间的增长而逐渐增加的现象。 若除掉外力,形变随时间而减小--称为蠕变回复。 物理意义:蠕变大小反映了材料尺寸的稳定性和长期负载能力。
6
第7章 聚合物的黏弹性
7
第7章 聚合物的黏弹性
蠕变:一定温度、较小的恒定外力下,材料的形变随时间增加而逐渐增大
' '
0 如果E 定义为同相的应力和应变的比值, E cos 0 0 '' E 为相差90角的应力和应变的振幅的比值E" sin 0
32
第7章 聚合物的黏弹性
应力的表达式
( t ) 0 E 'sin t 0 E ' 'cost
t
Newtonian fluid
Hookean solid
第7章 聚合物的黏弹性
Hysteresis 滞后
• 在交变力作用下,形变落后于应力变化的现象
黏弹体
ˆ sin t t
t
0
ˆ

2
3
ˆ sint t
外力变的角频率 形变落后于应力的 相位差:损耗角
聚合物:力学行为强烈依赖于温度和外力作用时间。 在外力作用下,高分子材料的性质介于弹性材料和粘性材料之 间。高分子材料产生形变时应力同时依赖于应变和应变速率。 3.聚合物的粘弹性,是指聚合物的力学性能强烈依赖于时间和 温度,同时具有黏性液体和弹性固体的行为。 4. 高聚物黏弹性的原因:分子间存在内摩擦作用,分子运动需 要时间,不能瞬时与外力达不到平衡
0 E E 'iE ' ' (cos isin ) 0
E”
实数模量是储能模量
虚数模量为能量的损耗.
E" tan E'

图13
E’
33
第7章 聚合物的黏弹性
④内耗的影响因素 a.结构因素: a.结构因素 b.温度 c.tan与关系
相关文档
最新文档