热力学第一定律

合集下载

热力学第一定律总结

热力学第一定律总结

298 K时,H2(g)的∆cHmө = -285.83 kJ·mol-1, H2S(g)和 SO2(g)的∆fHmө分别为-20.63 kJ·mol-1和-296.83 kJ·mol-1。 求下列反应在498 K时的∆rUmө。已知水在373 K时的摩 尔蒸发焓∆vapHm (H2O, 373 K) = 40.668 kJ·mol-1. 2H2S (g) + 3O2 (g) = 2SO2 (g) + 2H2O(g)
其中,T2的值由理想气体绝热方程式(pVγ=C)求得。
3、Q的计算 、 的计算
• Q = ∆U – W • 如恒容,Q = ∆U • 如恒压,Q = ∆H
1. 绝热密闭体系里,以下过程的ΔU不等于零的是: A) 非理想气体混合 B) 白磷自燃 C) 乙醚挥发 D) 以上均为0 2.“爆竹声中一岁除,春风送暖入屠苏”。我国 春节有放鞭炮的习俗。在爆竹爆炸的过程中,以 下热力学量的符号表示正确的是(忽略点火时火柴 传递给引线的少量热量) ( ) A) Q<0,W<0,ΔU<0 B) Q<0,W=0,ΔU<0 C) Q=0,W<0,ΔU<0 D) Q=0,W=0,ΔU=0
nN2CV, m(N2)(T-T1) + nCuCV,误二: ∆U =∆UN2 + ∆UCu = 0
nN2CV, m(N2)*(T-T1) + nCuCV, m(Cu)*(T-T2) = 0
正确解法:
∆U =∆UN2 + ∆UCu = ∆UN2 + ∆HCu = 0 nN2CV, m(N2)*(T-T1) + nCuCp, m(Cu)*(T-T2) = 0
• 求火焰最高温度: Qp = 0, ΔH = 0 求火焰最高温度: • 求爆炸最高温度、最高压力:QV = 0, W = 0 求爆炸最高温度、最高压力: =0

热力学第一定律

热力学第一定律

热力学第一定律功:δW =δW e +δW f(1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。

(2)非膨胀功δW f =xdy非膨胀功为广义力乘以广义位移。

如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。

热 Q :体系吸热为正,放热为负。

热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。

热容 C =δQ/dT(1)等压热容:C p =δQ p /dT = (∂H/∂T )p (2)等容热容:C v =δQ v /dT = (∂U/∂T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差:(1)任意体系 C p —C v =[p +(∂U/∂V )T ](∂V/∂T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程:pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=11-γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1nR-δ(T 1—T 2) 热机效率:η=212T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=121T T T -焦汤系数: μJ -T =H p T ⎪⎪⎭⎫⎝⎛∂∂=-()pT C p H ∂∂ 实际气体的ΔH 和ΔU :ΔU =dT T U V ⎪⎭⎫ ⎝⎛∂∂+dV V U T ⎪⎭⎫ ⎝⎛∂∂ ΔH =dT T H P ⎪⎭⎫ ⎝⎛∂∂+dp p H T⎪⎪⎭⎫ ⎝⎛∂∂ 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑BB γRT化学反应热效应与温度的关系:()()()dT B C T H T H 21T T m p B1m r 2m r ⎰∑∆∆,+=γ热力学第二定律Clausius 不等式:0TQS BAB A ≥∆∑→δ—熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:F =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:(1)组成恒定、不作非膨胀功的封闭体系的热力学基本方程:dU =TdS -pdV dH =TdS +Vdp dF =-SdT -pdV dG =-SdT +Vdp (2)Maxwell 关系:T V S ⎪⎭⎫⎝⎛∂∂=V T p ⎪⎭⎫ ⎝⎛∂∂Tp S ⎪⎪⎭⎫ ⎝⎛∂∂=-p T V ⎪⎭⎫ ⎝⎛∂∂ (3)热容与T 、S 、p 、V 的关系:C V =T VT S ⎪⎭⎫⎝⎛∂∂ C p =T p T S ⎪⎭⎫ ⎝⎛∂∂Gibbs 自由能与温度的关系:Gibbs -Helmholtz 公式 ()pT /G ⎥⎦⎤⎢⎣⎡∂∆∂T =-2T H ∆ 单组分体系的两相平衡: (1)Clapeyron 方程式:dT dp=mX m X V T H ∆∆ 式中x 代表vap ,fus ,sub 。

热力学第一定律

热力学第一定律

假定控制容积形状、大小、空间位置均不随时间改变。
——因而统计系统的总能时,不考虑系统整体的外观能量,但要计及 流体的流动动能,重力位能以及热力学能。
假定系统除与外界有物质流交换,在没有质量流穿越的边界
上还可以有传热和作功的相互作用。
假定进、出口截面上存在局部平衡。 假定流动为一元流动
——仅在沿流动的方向上才有参数的变化。
热能工程教研室
§2-2 热力学能和总能
一、热力学能
物质内部拥有的能量称为热力学能,其组成是: 内动能(分子平移,旋转,振动)
内位能(分子间作用力)
化学能(维持一定的分子结构) 原子能(原子核内部)
如果无化学反应,无核反应, 热力学能 U = 内动能 + 内位能 1kg物质的热力学能称比热力学能 u,单位是J / kg 。 热力学能是热力状态的单值函数,它与路径无关,是状态参数。 u = f(T,v); u = f(T,p); u = f(p,v) (2 - 1)
进入系统的能量 - 离开系统的能量 =系统中贮存能量的增加 它适用于任何过程和任何工质的热力系统。 闭口系的能量方程 Q - W = U = U2 – U1 Q = U + W ( 输入) (贮增)(输出) 对于一个微元过程,第一定律的解析式的微分形式: Q = dU + W 对于1kg工质,有 q = u + w q = du + w (2-9)
– p1 u

(2-19)
由式(2-18)并考虑q -△u = w,则
wt = w -△(p u)= w -(p2 u
热能工程教研室
2
1
(2-20)
技术功在示功图上的表示
对可逆过程:wt =

热力学第一定律总结

热力学第一定律总结

热一定律总结一、 通用公式ΔU = Q + W绝热: Q = 0,ΔU = W 恒容(W ’=0):W = 0,ΔU = Q V恒压(W ’=0):W =-p ΔV =-Δ(pV ),ΔU = Q -Δ(pV ) ΔH = Q p 恒容+绝热(W ’=0) :ΔU = 0 恒压+绝热(W ’=0) :ΔH = 0焓的定义式:H = U + pV ΔH = ΔU + Δ(pV )典型例题:思考题第3题,第4题。

二、 理想气体的单纯pVT 变化恒温:ΔU = ΔH = 0变温: 或或如恒容,ΔU = Q ,否则不一定相等。

如恒压,ΔH = Q ,否则不一定相等。

C p , m – C V , m = R双原子理想气体:C p , m = 7R /2, C V , m = 5R /2 单原子理想气体:C p , m = 5R /2, C V , m = 3R /2典型例题:思考题第2,3,4题书、三、 凝聚态物质的ΔU 和ΔH 只和温度有关或ΔU = n C V,T 2 T 1∫ΔH = nC p, T 2 T 1∫ΔU = nC V, ΔH = nC p, ΔU ≈ ΔH = n C p, m d T T 2 T1∫ ΔU ≈ ΔH = nC p,典型例题:书四、可逆相变(一定温度T 和对应的p 下的相变,是恒压过程)ΔU ≈ ΔH –ΔnRT(Δn :气体摩尔数的变化量。

如凝聚态物质之间相变,如熔化、凝固、转晶等,则Δn = 0,ΔU ≈ ΔH 。

kPa 及其对应温度下的相变可以查表。

其它温度下的相变要设计状态函数不管是理想气体或凝聚态物质,ΔH 1和ΔH 3均仅为温度的函数,可以直接用C p,m 计算。

或典型例题:作业题第3题 五、化学反应焓的计算H 1 +Δ H m (βα αβΔ αβ可逆相变K:ΔH = Q p = n Δ α βΔH = nC p,ΔH = nC p, T 2 T1∫其他温度:状态函数法ΔU 和ΔH 的关系:ΔU = ΔH –ΔnRT (Δn :气体摩尔数的变化量。

热力学第一定律

热力学第一定律
过程。
23
本章学习要求
• 掌握能量、热力系统储存能、热力学能、热量和功量 的概念,理解热量和功量是过程量而非状态参数。 • 理解热力学第一定律的实质能量守恒定律。 • 掌握稳定流动能量方程,能熟练运用稳定流动能量方 程对简单的工程问题进行能量交换的分析和计算。 • 掌握膨胀功、轴功、流动功和技术功的概念、计算及 它们之间的关系。 • 理解焓的定义式及其物理意义。 • 了解常用热工设备主要交换的能量及稳定流动能量方 程的简化形式。
2. 宏观位能: Ep ,单位为 J 或 kJ
Ep mgz
5
热力系总储存能:E ,单位为 J 或 kJ
E U Ek Ep
比储存能:e ,单位为 J/kg 或 kJ /kg
1 2 e u ek ep u cf gz 2
6
内动能-温度 热力学能 (内能U、u) 外储存能 内位能-比体积
∴流动功是一种特殊的功,其数值取决于
控制体进、出口界面上工质的热力状态。
14
根据热力学第一定律, 有 :
1 2 1 2 u1 cf 1 gz1 p1v1 q u2 cf 2 gz2 p2v2 ws 0 2 2
令 upv h,由于u、p、v都是状态参数,所以h也是 状态参数,称为比焓。
对一切热力系统和热力过程,有:
进入系统的能量-离开系统的能量 = 系统储存能量的变化
8
二、闭口热力系的能量方程
如图: Q=△U+W 对微元过程: Q QdUW 或 qduw 即: 热力系获得热量= 增加的热力学能+膨胀做功 对于可逆过程 : qdupdv 或
ΔU
W
qu pdv

热力学第一定律

热力学第一定律
Q0 W U 2731J
3. 摩尔恒压热容与摩尔恒容热容的关系
C p,m CV ,m
H m T

p
U m T
V

(Um pVm ) T

p
U m T
V
Um Um p Vm
T p T V
C p,m Cv,m
Um Vm
p
T
Vm T
p
2.4.8
C p,m
CV ,m


Um V
T

p


Vm T
p
对理想气体

(0
p)
(R / p)T T
p

R
C p,m CV ,m R
状态函数法举例
§2.2 热力学第一定律
热力学第一定律的本质是能量守恒原理,即隔离系统 无论经历何种变化,其能量守恒。
热Q
U U2 U1 Q W dU U2 U1 Q W 途径函数
(2.2.1a) (2.2.1b)
符号规定: 若系统从环境吸热+,若系统向环境放热-
第二章 热力学第一定律
热力学是自然科学中建立最早的学科之一 1. 第一定律:能量守恒,解决过程的能量衡算问题 (功、热、热力学能等) 2. 第二定律:过程进行的方向判据 3. 第三定律:解决物质熵的计算
经典热力学 1 . 研究含有大量质点的宏观系统 2. 只考虑平衡问题
§2.1 基本概念和术语
1. 系统与环境 系统:作为研究对象的那部分物质 环境:系统以外与之相联系的那部分物质(与系统密切 相关、有相互作用或影响所能及的部分)

热力学第一定律

热力学第一定律

R=8.314 J/mol.K.
• 由理想气体的模型, 无论分子间的距离大或小,其分 子间均无作用势能,故理想气体的内能与体系的体积 无关,因而与体系的压力也无关.
• 对于理想气体体系,其内能不含分子间作用势能这一 项,所以, 内能与体系的体积无关, 只与体系的温度有 关. 在体系的物质的量已确定的条件下,理想气体体 系的内能只是温度的函数,即:
第四节
可逆过程和不可逆过程
• 热力学函数中的过程量(Q,W)的数值与体系经 历的途径密切相关。 • 体系从一始态到一末态,理论上可以通过无 数条途径,所有这些途径,按其性质可分为 两大类:

可逆过程和不可逆过程
• 当体系的状态发生变化时,环境的状态也多少有所 变化,若将体系的状态还原为始态,环境的状态可 能还原,也可能未还原,正是根据环境是否能完全 还原,将过程分为可逆过程和不可逆过程。
CV,m=5/2R
• 多原子分子理想气体: 分子具有3个平动自由度和3个 转动自由度, 每个分子对内能的贡献为3kT, 多原子分 子理想气体的摩尔等容热容为(不考虑振动): •
CV,m=3R
• 2. 理想气体等压热容与等容热容之差 Cp,m﹣CV,m=(H/T)p﹣ (U/T)V =((U+pV)/T)p﹣ (U/T)V
A

E=U
B
因为宇宙的总能量是不变的,故体系能量的变化必 来自于周围环境。
若体系的能量增加,则环境的能量减少; 若体系的能量减少;则环境的能量增加。
体系与环境之间的能量交换形式只有热与功两种,故有:
U =Q+W
其物理意义是:
(体系对外做功为负)
上式即为热力学第一定律的数学表达式。
自然界的能量是恒定的,若体系的内能 发生了变化 (U),其值必定等于体系与环 境之间能量交换量(Q、W)的总和。

热力学第一定律

热力学第一定律

热力学第一定律科技名词定义中文名称:热力学第一定律英文名称:first law of thermodynamics其他名称:能量守恒和转换定律定义:热力系内物质的能量可以传递,其形式可以转换,在转换和传递过程中各种形式能源的总量保持不变。

概述热力学第一定律热力学第一定律:△U=Q+W。

系统在过程中能量的变化关系英文翻译:the first law of thermodynamics简单解释在热力学中,系统发生变化时,设与环境之间交换的热为Q(吸热为正,放热为负),与环境交换的功为W(对外做功为负,外界对物体做功为正),可得热力学能(亦称内能)的变化为ΔU = Q+ W或ΔU=Q-W物理中普遍使用第一种,而化学中通常是说系统对外做功,故会用后一种。

定义自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。

英文翻译:The first explicit statement of the first law of thermodynamics, byRudolf Clausiusin 1850, referred to cyclic thermodynamic processes "In all cases in which work is produced by the agency of heat, a quantity of heat is consumed which is proportional to the work done; and conversely, by the expenditure of an equal quantity of work an equal quantity of heat is produced."基本内容能量是永恒的,不会被制造出来,也不会被消灭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分子力做正功,分子势能减少,
分子力做负功,分子势能增加。 在平衡位置时(r=r0),分子势能最小. 分子势能的大小跟物体的体积有关系.
物体的内能
物体中所有分子做热运动的动能和分子势能 的总和,叫做物体的内能。 由于分子热运动的平均动能和温度有关系, 分子势能和体积有关系,所以物体的内能和物体 的温度和体积都有关系:温度升高时,分子的平 均动能增加,因而物体内能增加。 体积变化时,分子势能发生变化,因而物体 的内能发生变化.此外,还跟物体的质量和物态有 关。
5. 一粒质量为100g的铅弹的,以200m/s的水平 速度射入静止在光滑水平面、质量为 1.9kg 的 物体而未穿出,求: , (1) 铅弹损失的动能 (2) 若整个系统损失的动能全部转变为热,且有 50% 被铅弹吸收 , 那么铅弹温度升高多少度 ? (铅弹比热容为126J/kg ·℃ )
解: (1) 由动量守恒定律 mv=(M+m)V V=0.1×200/2=10m/s ΔEK子=1/2 mv 2- 1/2 mV2=1995J (2)系统损失的总能量 ΔEK = 1/2 mv 2- 1/2 (M+m)V2=1900J 由能量守恒定律 50% × ΔEK = cm Δt Δt = 0.5 ×1900/(126 ×0.1)=75.4 ℃
1 知识与能力
知道热力学第一定律的内容及表达式。 能用热力学第一定律分析和计算简单问题。
2 过程与方法
会用热力第一定律的观点解释常见的物理 现象。
3 情感态度与价值观
通过热力学第一定律来研究生活 中的现象 培养热爱生活的情趣
教学重难点
重点
热力学第一定律的基本内容
难点
热力学第一定律在简单计算中的应用
做功和热传递.
注意:做功和热传递对改变
物体的内能是等效的.但是在本质上有 区别: 做功是其它形式的能与内能相互转 化的过程;
热传递是物体间内能转移的过程。
改变内能的两种方式 做功 热传递
对内
(外界对物 体做功)
对外
(物体对外 界做功)
吸热
(物体从外 界吸热)
放热
(物体对外 界放热)
内能增加
内能减少
本节导航
热力学第一定律
热力学第一定律
实际问题
要使水的温度升高,我们有几种方法?
第一种方法:对水直接加热 第二种方法:对水做功
改变物体内能的方 式:一外界对物体做功; 二进行热传递。
知识回顾
改变物体内能的两种方式
1.做功可以改变物体的内能. 2.热传递也做功可以改变物体的内能. 能够改变物体内能的物理过程有两种:
外界对物体做功W >0;
物体对外界做功W < 0
物体从外界吸热 Q>0;
物体向外界放热Q < 0.
热力学第 一定律 各量的正 负号含义 应用
能量守 恒定律 用动机不 可能制成
总结
课堂小结
热力学第一定律
物体内能的增加等于从外界吸收的热量与 外界对物体所做的功的总和。它的物理表
达式可以表示为
ΔU=Q+W
6. 横截面积为 2dm2的圆筒内装有0.6kg的水, 太阳光垂直照射了2分钟,水温升高了1℃ , 设大气顶层的太阳能只有45%到达地面,试 估算出太阳的辐射功率为多少?(保留一位 有效数字,日地平均距离为1.5×1011m.) 解:水温升高吸热 Q=cm Δt=4200×0.6×1=2.52×103 J 地面单位面积单位时间接收的能量 E1=Q/St= 2.52×103 /(0.02×120)=1.05×103 J/m2s 太阳照射到地面单位面积的功率 P1= E1 /0.45=2.33×103 W/m2 太阳发出的总功率 P=4πr2P1= 4π×2.25×1022 ×2.33×103
知识总结
在一般情况下,如果物体跟外界同时发 生做功和热传递的过程,那么,外界对物体 所做的功W加上物体从外界吸收的热量Q, 等于物体内能的增加△U,即△U = W + Q 上式所表示的功、热量跟内能改变之间 的定量关系,在物理学中叫做热力学第一定 律.
符号规则:
内能增加, 内能减少, △U>0; △U< 0
导入新课
在学习新课 程之前,让我们 先自己复习一下, 前面有关分子能 量的问题。
物体的内能
1.分子的动能 物体内所有分子的动能的平均值叫做分子的平均动能. 温度升高,分子热运动的平均动能越大. 温度越低,分子热运动的平均动能越小.
温度是物体分子热运动的平均动能的标志.
2.分子势能---由分子间的相互作用和相对位置决 定的能量叫分子 势能.
定义分析
1、一个物体没有与外 界发生热传递,外界对它做 多少功,它的内能就增加多 少。U2-U1=W
2、一个物体,外界没有 对它做功,它也没有对外界做 功,它从外界吸收多少热量, 它的内能就增加多少。 U2-U1=Q
3、一个物体既与外界有热 传递,又有做功。 U2-U1=Q+W
因此,热力学第一定律可以总结为 ΔU=Q+W
内能增加
内能减少
知识归纳
内能与热量的区别
内能是一个状态量,一个物体在不同的状态下 有不同的内能。 热量是一个过程量,它表示由于热传递而引起 的变化过程中转移的能量,即内能的改变量。 如果没有热传递,就没有热量可言,但此时仍有内能。
名词解释
热力学第一定律
物体内能的增加等于从外界吸 收的热量与外界对物体所做的 功的总和。
课堂练习
1. 外界对一定质量的气体做了 200J 的功, 同时气体又向外界放出了80J的热量,则气体的内能Fra bibliotek增加J
(填“增加”
或“减少”) 120 了
根据热力学第一定律,外界对它做功为 200J,所以他的内能应增加200J,但是它 又向外界释放80J的热量,所以内能增量为 120J.
2.
AC
3. 关于物体内能的变化,下列说法中正确的是 (C )
A.物体吸收热量,内能一定增大 B.物体对外做功,内能一定减少 C.物体吸收热量,同时对外做功,内能可能不变 D.物体放出热量,同时碎娃做功,内能可能不变
4. 一个气泡从恒温水槽的底部缓慢向上浮起, (若不计气泡内空气分子势能的变化)则( B ) A.气泡对外做功,内能不变,同时放热 B.气泡对外做功,内能不变,同时吸热 C.气泡内能减少,同时放热 D,内能不变,不吸热也不放热
1.物体的平均动能仅与温度有关。 2. 微观上与分子之间的距离有关宏 观上与物体的体积有关。 3.物体的内能是物体内部分子无规则 运动的动能和分子势能的总和, 与物体的温度和体积有关。 4. 任何物体都具有分子势能。
下面让我们来开始 今天的新内容。
第二章 能量的守恒与耗散
2.热力学第一定律
教学目标
相关文档
最新文档