湖北省十堰市八年级(上)期末数学试卷

合集下载

2018-2019学年湖北省十堰市八年级(上)期末数学试卷(含解析)印刷版

2018-2019学年湖北省十堰市八年级(上)期末数学试卷(含解析)印刷版

2018-2019学年湖北省十堰市八年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)下列各题均有四个备选答案,其中有且仅有个答案是正确的,请用2B铅笔在答题卡上将正确的答案代号涂黑.1.(3分)用形状,大小完全相同的图形不能镶嵌成平面图案的是()A.等腰三角形B.正方形C.正五边形D.正六边形2.(3分)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+13.(3分)化简+的结果是()A.m+n B.n﹣m C.m﹣n D.﹣m﹣n4.(3分)若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5B.6C.7D.85.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC 于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.606.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个7.(3分)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A =60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°8.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=79.(3分)若分式中的a,b的值同时扩大到原来的3倍,则分式的值()A.是原来的3倍B.是原来的C.是原来的D.是原来的10.(3分)如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC 与∠A1CD的平分线相交于点A2,依此类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为()A.19.2°B.8°C.6°D.3°二、填空题:(本题有6个小题,每小题3分,共18分)11.(3分)分解因式:3m2﹣12=.12.(3分)若x2+kxy+49y2是一个完全平方式,则k=.13.(3分)林林家距离学校a千米,骑自行车需要b分钟,若某一天林林从家中出发迟了c分钟,则她每分钟应骑千米才能不迟到.14.(3分)等腰三角形一腰上的高与另一腰的夹角为20°,则顶角的度数是.15.(3分)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数是.16.(3分)如图,在△ABP1中,BP1⊥AP1,AP1=2,∠A=30°,且P1Q1⊥AB,P2Q1⊥AP1,…,P n Q n ⊥AB,P n+1Q n⊥AP1,则P2018Q2018长为.三、解答题(本题有9个小题,共72分)17.(6分)分解因式:(1)﹣3x2+6xy﹣3y2;(2)(a+b)(a﹣b)+4(b﹣1).18.(6分)已知:a+b=1,ab=﹣2,且a>b,求a2+b2,a2﹣b2的值.19.(7分)化简:(1﹣)•20.(7分)如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.21.(8分)如图,等边△ABC中,E是AB上任意一点,以CE为边作等边△ECD,连接AD,试判断AD 与BC的位置关系,并证明你的结论.22.(8分)某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于2100元,则第二批衬衫每件至少要售多少元?23.(8分)在当今“互联网+”时代,有一种用“因式分解法”生成密码的方法:将一个多项式因式分解,如将多项式x3+2x2﹣x﹣2分解的结果为(x﹣1)(x+1)(x+2).当x=19时,x﹣1=18,x+1=20,x+2=21,此时可得到数字密码182021.(1)根据上述方法,当x=37,y=12时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码(写出两个即可)?(2)将多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用题目中所示的方法,当x=87时可以得到密码808890,求m,n的值.24.(10分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.25.(12分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE =AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=25°,则∠DCE=.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.2018-2019学年湖北省十堰市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)下列各题均有四个备选答案,其中有且仅有个答案是正确的,请用2B铅笔在答题卡上将正确的答案代号涂黑.1.(3分)用形状,大小完全相同的图形不能镶嵌成平面图案的是()A.等腰三角形B.正方形C.正五边形D.正六边形【分析】分别求出等腰三角形的内角和,各个正多边形的每个内角的度数,结合镶嵌的条件即可作出判断.【解答】解:A、正三角形的每个内角是60°,能整除360°,能密铺;B、正方形的每个内角是90°,4个能密铺;C、正五边形每个内角是:180°﹣360°÷5=108°,不能整除360°,不能密铺;D、正六边形每个内角为120度,能找出360度,能密铺.故选:C.2.(3分)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+1【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D.【解答】解:A、a2•a2=a4,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(﹣a2)2=a4,故此选项正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.3.(3分)化简+的结果是()A.m+n B.n﹣m C.m﹣n D.﹣m﹣n【分析】首先进行通分运算,进而分解因式化简求出答案.【解答】解:+=﹣==m+n.故选:A.4.(3分)若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5B.6C.7D.8【分析】先根据非负数的性质,求出a、b的值,进一步根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,从而确定c的可能值;【解答】解:∵|a﹣4|+=0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选:A.5.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC 于点D,若CD=4,AB=15,则△ABD的面积是()A.15B.30C.45D.60【分析】判断出AP是∠BAC的平分线,过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后根据三角形的面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选:B.6.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选:D.7.(3分)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A =60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°【分析】根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数.【解答】解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣60°﹣24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°﹣24°=48°,故选:A.8.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=7【分析】所求方程利用题中的新定义化简,求出解即可.【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.9.(3分)若分式中的a,b的值同时扩大到原来的3倍,则分式的值()A.是原来的3倍B.是原来的C.是原来的D.是原来的【分析】根据分式的基本性质即可求出答案.【解答】解:原式===×;故选:C.10.(3分)如图△ABC中,∠A=96°,延长BC到D,∠ABC与∠ACD的平分线相交于点A1,∠A1BC 与∠A1CD的平分线相交于点A2,依此类推,∠A4BC与∠A4CD的平分线相交于点A5,则∠A5的度数为()A.19.2°B.8°C.6°D.3°【分析】利用角平分线的定义和三角形内角与外角的性质计算.【解答】解:∵∠ABC与∠ACD的平分线相交于点A1,∴∠ABC=2∠A1BC,∠A1CD=∠ACD 根据三角形的外角的性质得,∠A1CD=(∠ABC+∠A)=(2∠A1BC+∠A)=∠A1BC+∠A,根据三角形的外角的性质得,∠A1CD=∠A1BC+∠A1,∴∠A1=∠A同理:∠A2=∠A1,∴∠A2=∠A1=×∠A=∠A同理:∠A3=∠A,∠A4=∠A,∠A5=∠A=×96°=3°,故选:D.二、填空题:(本题有6个小题,每小题3分,共18分)11.(3分)分解因式:3m2﹣12=3(m+2)(m﹣2).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3m2﹣12,=3(m2﹣4),=3(m+2)(m﹣2).故答案为:3(m+2)(m﹣2).12.(3分)若x2+kxy+49y2是一个完全平方式,则k=±14.【分析】这里首末两项是x和7y这两个数的平方,那么中间一项为加上或减去x和7y积的2倍.【解答】解:∵x2+kxy+49y2是一个完全平方式,∴±2×x×7y=kxy,∴k=±14.13.(3分)林林家距离学校a千米,骑自行车需要b分钟,若某一天林林从家中出发迟了c分钟,则她每分钟应骑千米才能不迟到.【分析】由速度=总路程÷时间即可列式.【解答】解:所用时间为:b﹣c.∴林林的骑车速度为.14.(3分)等腰三角形一腰上的高与另一腰的夹角为20°,则顶角的度数是110°或70°.【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【解答】解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为:110°或70°.15.(3分)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数是120°.【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM =2(∠AA′M+∠A″)即可得出答案.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH,∵∠DAB=120°,∴∠HAA′=60°,∴∠AA′M+∠A″=∠HAA′=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故答案为:120°.16.(3分)如图,在△ABP1中,BP1⊥AP1,AP1=2,∠A=30°,且P1Q1⊥AB,P2Q1⊥AP1,…,P n Q n ⊥AB,P n+1Q n⊥AP1,则P2018Q2018长为()2017.【分析】在Rt△AP1Q1中,由AP1=2,∠A=30°,求P1Q1,再由30°的直角三角形中,P2Q2=P2Q1•cos30°=P1Q1•cos30°•cos30°=()2P1Q1=P1Q1,得出一般规律,利用规律写出答案即可.【解答】解:在Rt△AP1Q1中,∵AP1=2,∠A=30°,∴P1Q1=AP1=1,由30°的直角三角形的性质可知,P2Q2=P1Q1=,P3Q3=P2Q2=()2,…,P n Q n=()n﹣1,∴P2018Q2018=()2017故答案为:()2017.三、解答题(本题有9个小题,共72分)17.(6分)分解因式:(1)﹣3x2+6xy﹣3y2;(2)(a+b)(a﹣b)+4(b﹣1).【分析】(1)直接提取公因式﹣3,进而利用完全平方公式分解因式得出答案;(2)直接去括号,再将后三项分组,利用公式法分解因式即可.【解答】解:(1)﹣3x2+6xy﹣3y2=﹣3(x﹣y)2;(2)(a+b)(a﹣b)+4(b﹣1)=(a+b﹣2)(a﹣b+2).18.(6分)已知:a+b=1,ab=﹣2,且a>b,求a2+b2,a2﹣b2的值.【分析】利用完全平方公式计算即可求出所求.【解答】解:把a+b=1两边平方得:(a+b)2=1,即a2+b2+2ab=1,将ab=﹣2代入得:a2+b2﹣4=1,即a2+b2=5;∴(a﹣b)2=a2+b2﹣2ab=5+4=9,∵a>b,即a﹣b>0,∴a﹣b=3,则a2﹣b2=(a+b)(a﹣b)=3.19.(7分)化简:(1﹣)•【分析】先将1﹣通分得到,同时将分子和分母分解因式得,,最后约分即可得出结论.【解答】解:原式=•=•=.20.(7分)如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC,求证:AD是∠BAC的平分线.【分析】先根据全等三角形的判定定理得出Rt△BDE≌Rt△CDF,进而得出DE=DF,由角平分线的判定可知AD是∠BAC的平分线.【解答】证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F,∴∠BED=∠CFD,∴△BDE与△CDF是直角三角形,,∴Rt△BDE≌Rt△CDF(HL),∴DE=DF,∴AD是∠BAC的平分线.21.(8分)如图,等边△ABC中,E是AB上任意一点,以CE为边作等边△ECD,连接AD,试判断AD 与BC的位置关系,并证明你的结论.【分析】结论:AD∥BC.证明△BCE≌△ACD(SAS),推出∠CAD=∠B=60°,可得∠DAC=∠ACB 解决问题.【解答】解:结论:AD∥BC.理由:∵△ABC,△CED都是等边三角形,∴CB=CA,CE=CD,∠BCA=∠B=∠ECD=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴∠CAD=∠B=60°,∴∠DAC=∠ACB,∴AD∥BC.22.(8分)某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于2100元,则第二批衬衫每件至少要售多少元?【分析】(1)设第二次购进衬衫x件,则第一次购进衬衫2x件,根据单价=总价÷数量结合第二次的进价每件比第一次降低了10元,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由单价=总价÷数量可得出第一次、第二次购进衬衫的单价,设第二批衬衫的售价为y元/件,根据总利润=每件利润×销售数量结合总利润不低于2100元,即可得出关于y的一元一次不等式,解之取其最大值即可得出结论.【解答】解:(1)设第二次购进衬衫x件,则第一次购进衬衫2x件,依题意,得:﹣=10,经检验,x=15,经检验,x=15是所列分式方程的解,且符合题意,∴2x=30.答:第一次购进衬衫30件,第二次购进衬衫15件.(2)由(1)可知,第一次购进衬衫的单价为150元/件,第二次购进衬衫的单价为140元/件,设第二批衬衫的售价为y元/件,依题意,得:(200﹣150)×30+(y﹣140)×15≥2100,解得:y≥180.答:第二批衬衫每件至少要售180元.23.(8分)在当今“互联网+”时代,有一种用“因式分解法”生成密码的方法:将一个多项式因式分解,如将多项式x3+2x2﹣x﹣2分解的结果为(x﹣1)(x+1)(x+2).当x=19时,x﹣1=18,x+1=20,x+2=21,此时可得到数字密码182021.(1)根据上述方法,当x=37,y=12时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码(写出两个即可)?(2)将多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用题目中所示的方法,当x=87时可以得到密码808890,求m,n的值.【分析】(1)由题干方法对其分解因式代数即可(2)正难则反思想的介入,x的最高次项系数为1,所以分解后一定是x减某个数或x加5某个数的三个代数式相乘【解答】解:(1)∵x3﹣xy2=x(x﹣y)(x+y)∴当x=37,y=12时,x﹣y=25,x+y=49∴可得到数字密码372549或374925(2)∵当x=87时,密码为808890,且x3的系数是1∴由(1)可知:x﹣7=80,x+1=88,x+3=90∴x3+(m﹣3n)x2﹣nx﹣21=(x﹣7)(x+1)(x+3)=x3﹣3x2﹣25x﹣21∴m﹣3n=﹣3,n=25 即m=72,n=25 答:m=72,n=25.24.(10分)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.【分析】(1)由△ABC是边长为6的等边三角形,可知∠ACB=60°,再由∠BQD=30°可知∠QPC =90°,设AP=x,则PC=6﹣x,QB=x,在Rt△QCP中,∠BQD=30°,PC=QC,即6﹣x=(6+x),求出x的值即可;(2)作QF⊥AB,交直线AB于点F,连接QE,PF,由点P、Q做匀速运动且速度相同,可知AP=BQ,再根据全等三角形的判定定理得出△APE≌△BQF,再由AE=BF,PE=QF且PE∥QF,可知四边形PEQF是平行四边形,进而可得出EB+AE=BE+BF=AB,DE=AB,由等边△ABC的边长为6可得出DE=3,故当点P、Q运动时,线段DE的长度不会改变.【解答】解:(1)∵△ABC是边长为6的等边三角形,∴∠ACB=60°,∵∠BQD=30°,∴∠QPC=90°,设AP=x,则PC=6﹣x,QB=x,∴QC=QB+BC=6+x,∵在Rt△QCP中,∠BQD=30°,∴PC=QC,即6﹣x=(6+x),解得x=2,∴AP=2;(2)当点P、Q同时运动且速度相同时,线段DE的长度不会改变.理由如下:作QF⊥AB,交直线AB于点F,连接QE,PF,又∵PE⊥AB于E,∴∠DFQ=∠AEP=90°,∵点P、Q速度相同,∴AP=BQ,∵△ABC是等边三角形,∴∠A=∠ABC=∠FBQ=60°,在△APE和△BQF中,∵∠AEP=∠BFQ=90°,∴∠APE=∠BQF,,∴△APE≌△BQF(AAS),∴AE=BF,PE=QF且PE∥QF,∴四边形PEQF是平行四边形,∴DE=EF,∵EB+AE=BE+BF=AB,∴DE=AB,又∵等边△ABC的边长为6,∴DE=3,∴点P、Q同时运动且速度相同时,线段DE的长度不会改变.25.(12分)在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE =AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=25°,则∠DCE=25°.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.【分析】(1)证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;(2)①证△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可②α+β=180°或α=β,根据三角形外角性质求出即可.【解答】(1)解:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=25°,∴∠DCE=25°,故答案为:25°;(2)解:当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中∵,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;(3)解:当D在线段BC上时,α+β=180°,当点D在线段BC延长线或反向延长线上时,α=β.。

湖北省十堰市八年级(上)期末数学试卷

湖北省十堰市八年级(上)期末数学试卷

湖北省十堰市八年级(上)期末数学试卷一、选择题:(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)下列长度的三条线段能构成三角形的是()A.3,4,8B.3,4,7C.5,6,10D.5,6,112.(3分)下列几何图形不一定是轴对称图形的是()A.角B.等边三角形C.等腰三角形D.直角三角形3.(3分)下列语句正确的是()A.三角形的三条高都在三角形内部B.三角形的三条中线交于一点C.三角形不一定具有稳定性D.三角形的角平分线可能在三角形的内部或外部4.(3分)如图,AD和BC相交于O点,OA=OC,用“SAS”证明△AOB≌△COD还需()A.AB=CD B.OB=OD C.∠A=∠C D.∠AOB=∠COD 5.(3分)下列各式运算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.a0=16.(3分)若分式有意义,则x满足的条件是()A.x=1B.x=3C.x≠1D.x≠37.(3分)下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)28.(3分)如图,△ABC中,BD,CD分别平分∠ABC,∠ACB,过点D作EF∥BC交AB,AC于点E,F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系为()A.EF>BE+CF B.EF=BE+CF C.EF<BE+CF D.不能确定9.(3分)若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.010.(3分)如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,连接EF交AD于G.下列结论:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④当∠BAC为60°时,AG=3DG,其中不正确的结论的个数为()A.1B.2C.3D.4二、填空题(每题3分,共18分.请直接将答案填写在答题卡中,不写过程)11.(3分)中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为米.12.(3分)如图,在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线,则∠ADC=.13.(3分)如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为.14.(3分)若y﹣x=﹣1,xy=2,则代数式﹣x3y+x2y2﹣xy3的值是.15.(3分)将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那么∠3的度数等于.16.(3分)如图,∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=11,AC=5,则BE=.三、解答题:(本题有9个小题,共72分)17.(8分)计算:(1)(x+y)(x2﹣xy+y2);(2)[(x﹣y)2+(x+y)(x﹣y)]÷2x.18.(8分)因式分解:(1)4ax2﹣9ay2;(2)6xy2﹣9x2y﹣y3.19.(6分)解分式方程:+1=.20.(7分)先化简,再求值:,其中x=﹣1.21.(7分)如图,点E,F在BC上,AB=DC,∠A=∠D,∠B=∠C.求证:BE=FC.22.(8分)如图,在平面直角坐标系中,A(2,4),B(3,1),C(﹣2,﹣1).(1)求△ABC的面积;(2)在图中作出△ABC关于x轴的对称图形△A1B1C1,并写出点A1,B1,C1的坐标.23.(8分)某施工队要铺设一条长为1500米的管道,为了减少施工对交通造成的影响,施工队实际的工作效率比原计划提高了20%,结果比原计划提前2天完成任务.求施工队原计划每天铺设管道多少米?24.(10分)如图1,△ABC和△ADE都是等边三角形.(1)求证:BD=CE;(2)如图2,若BD的中点为P,CE的中点为Q,请判断△APQ的形状,并说明理由.25.(10分)已知:点A(4,0),点B是y轴正半轴上一点,如图1,以AB为直角边作等腰直角三角形ABC.(1)当点B坐标为(0,1)时,求点C的坐标;(2)如图2,以OB为直角边作等腰直角△OBD,点D在第一象限,连接CD交y轴于点E.在点B运动的过程中,BE的长是否发生变化?若不变,求出BE的长;若变化,请说明理由.湖北省十堰市八年级(上)期末数学试卷参考答案一、选择题:(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.C;2.D;3.B;4.B;5.C;6.D;7.C;8.B;9.C;10.A;二、填空题(每题3分,共18分.请直接将答案填写在答题卡中,不写过程)11.1.5×10﹣6;12.95°;13.19cm;14.﹣1;15.12°;16.3;三、解答题:(本题有9个小题,共72分)17.;18.;19.;20.;21.;22.;23.;24.;25.;。

湖北省十堰市八年级上学期数学期末考试试卷

湖北省十堰市八年级上学期数学期末考试试卷

湖北省十堰市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2015八上·卢龙期末) 下列图形中,轴对称图形的个数是()A . 1B . 2C . 3D . 4【考点】2. (2分)(2019·荆门模拟) 已知2是关于x的方程x2﹣(5+m)x+5m=0的一个根,并且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为()A . 9B . 12C . 9或12D . 6或12或15【考点】3. (2分)根据数量关系: 减去10不大于10,用不等式表示为()A .B .C .D .【考点】4. (2分) (2020八上·台安月考) 用三角板作的边BC上的高,下列三角板的摆放位置正确的是()A .B .C .D .【考点】5. (2分)(2020·山西模拟) 为了证明数轴上的点可以表示无理数,老师给学生设计了如下材料:如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点由原点(记为点O)到达点A ,点A对应的数是多少?从图中可以看出OA的长是这个圆的周长π,所以点A对应的数是π,这样,无理数π可以用数轴上的点表示出来,上述材料体现的数学思想是()A . 方程思想B . 从特殊到一般C . 数形结合思想D . 分类思想【考点】6. (2分)已知一次函数y=kx+b(k≠0)的草图如右所示,则下列结论正确的是()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<0【考点】7. (2分) (2017七下·临川期末) 下列说法正确的是()A . 角平分线上的点到这个角两边的距离相等B . 角平分线就是角的对称轴C . 如果两个角相等,那么这两个角互为对顶角D . 有一条公共边的两个角互为补角【考点】8. (2分) (2019八下·永春期中) 在同一坐标系中(水平方向是x轴),函数y= 和y=kx+2的图象大致是()A .B .C .D .【考点】9. (2分) (2019八上·安顺期末) 如图,已知正方形ABCD的边长是为10cm,△ABE为等边三角形(点E在正方形内),若P是AC上的一个动点,PD+PE的最小值是多少()A . 6cmB . 8cmC . 10cmD . 5cm【考点】10. (2分)如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A . x<-2B . -2<x<-1C . -2<x<0D . -1<x<0【考点】二、填空题 (共10题;共11分)11. (1分) (2019八下·诸暨期末) 用反证法证明“若|a|<2,则a2<4”时,应假设________.【考点】12. (1分) (2017八上·康巴什期中) 如图,若△ABC≌△DEF,则∠E=________.【考点】13. (1分) (2019八上·泗辖期中) 若一次函数的图象过点(﹣5,4),且函数值随着自变量的增大而减小,请写出一个符合这个条件的一次函数表达式是________.【考点】14. (2分) (2018八上·江都月考) 如图,已知AC、BD相交于点O,且AO=BO,CO=DO,则根据________可推断△AOD≌△BOC。

湖北省十堰市八年级上学期期末考试数学考试卷(解析版)(初二)期末考试.doc

湖北省十堰市八年级上学期期末考试数学考试卷(解析版)(初二)期末考试.doc

湖北省十堰市八年级上学期期末考试数学考试卷(解析版)(初二)期末考试姓名:_____________ 年级:____________ 学号:______________题型 选择题填空题简答题xx 题 xx 题 xx 题 总分 得分一、xx 题(每空xx 分,共xx 分)【题文】下列长度的三条线段能构成三角形的是( )A. 3,4,8B. 3,4,7C. 5,6,10D. 5,6,11 【答案】C【解析】根据三角形任意两边的和大于第三边,可得选项A 因为3+4<8,不能组成三角形;选项B 因为3+4<8,不能组成三角形;选项C 因为5+6>10,能组成三角形; 选项D 因为5+6=11,不能组成三角形,故选C. 点睛:解决本题的关键是熟知三角形的三边关系. 【题文】下列几何图形不一定是轴对称图形的是( )A. 角B. 等边三角形C. 等腰三角形D. 直角三角形 【答案】D【解析】根据轴对称图形的定义可知选项A 、B 、C 都是轴对称图形,选项D 不一定是轴对称图形,故选D. 点睛:本题考查了轴对称图形,较为简单,掌握轴对称图形的定义是解决本题的关键. 【题文】下列语句正确的是( )A. 三角形的三条高都在三角形内部B. 三角形的三条中线交于一点C. 三角形不一定具有稳定性D. 三角形的角平分线可能在三角形的内部或外部 【答案】B【解析】选项A ,三角形的三条高不一定在三角形内部,选项A 错误;选项B ,三角形的三条中线交于一点,正确;选项C , 三角形具有稳定性,选项C 错误;选项D , 三角形的角平分线在在三角形的内部,选项D 错误,故选B.【题文】如图,AD 和BC 相交于O 点,OA=OC ,用“SAS”证明△AOB≌△COD 还需( )A. AB=CDB. OB=ODC. ∠A=∠CD. ∠AOB=∠COD 【答案】B评卷人得分【解析】分析:选项A,添加AB=DC,不能根据SAS证两三角形全等;选项B,根据条件OB=OD,∠AOB=∠DOC 和OA=OC,能根据SAS证两三角形全等;选项C,根据条件∠A=∠C,,OA=OC,∠AOB=∠DOC,根据ASA 能证两三角形全等;选项D,添加条件∠AOB=∠COD不能证两三角形全等,故选B.点睛:本题考查了对全等三角形的判定的应用,全等三角形的判定方法有SAS,ASA,AAS,SSS,熟知这些评定方法是解决问题的关键.【题文】下列各式运算正确的是()A. B.C. D.【答案】C【解析】选项A,不是同类项,不能够合并,错误;选项B,,选项错误;选项C,,正确;选项D,,选项错误,故选C.【题文】若分式有意义,则x满足的条件是()A. B. C. D.【答案】D【解析】根据分式有意义的条件分母不为0可得x-3≠0,即x≠0,故选D.点睛:本题考查了分式有意义的条件,属于基础题.【题文】下列因式分解结果正确的是()A. B.C. D.【答案】C【解析】选项A,结果不是整式的积的形式,因而不是因式分解,故选项错误;选项B,,故选项错误;选项C,属于因式分解的形式,正确;选项D,,故选项错误;故选C.点睛:本题主要考查了因式分解的定义,因式分解就是把多项式变形成整式的积的形式,因式分解是整式的变形,是一个恒等变形.【题文】如图,△ABC中,BD,CD分别平分∠ABC,∠ACB,过点D作EF∥BC交AB,AC于点E,F,当∠A 的位置及大小变化时,线段EF和BE+CF的大小关系为()A. EF>BE+CFB. EF=BE+CFC. EF<BE+CFD. 不能确定【答案】B【解析】由BD平分∠ABC得,∠EBD=∠DBC,再由 EF∥BC,可得∠EDB=∠DBC,即可得∠EBD=∠EDB,所以ED=BE;同理可得,DF=FC,所以EF=ED+DF=BE+FC,故选B.点睛:本题考查了平行线性质,等腰三角形的判定,角平分线定义的应用,关键是推出ED=BE 和DF=FC.【题文】若,则的值为()A. 4B. 3C. 1D. 0【答案】C【解析】把a+b=1代入得,=(a-b)(a+b)+2b=a-b+2b=a+b=1,故选C.点睛:本题考查了因式分解和整体代入,难度不大,属于基础题.【题文】如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,连接EF交AD于G.下列结论:①AD垂直平分EF;②EF垂直平分AD;③AD平分∠EDF;④当∠BAC为60°时,AG=3DG,其中不正确的结论的个数为()A. 1B. 2C. 3D. 4【答案】A【解析】根据角平分线的性质定理可得DE=DF,利用HL定理可证得Rt△ADE≌Rt△ADF,即可得∠ADE=∠ADF ,所以AD平分∠EDF,③正确;根据等腰三角形的三线合一可得AD垂直平分EF,①正确,②错误;由∠BAC=60°可得∠EAD=30°,根据在直角三角形中,30°的锐角所对的直角边是斜边的一半可得2DG=DE,2DE=AD,所以AD=4DG,即可得AG=3DG,所以④正确,故选A.点睛:本题考查了角平分线的性质定理、全等三角形的判定与性质、等腰三角形的性质及直角三角形的性质,属于中等难度的题目,正确判定Rt△ADE≌Rt△ADF是解决问题的关键.【题文】中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为______________米.【答案】1.5×10-6【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,所以0.0000015=1.5×10﹣6.点睛:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【题文】如图,在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线,则∠ADC=__________.【答案】95°【解析】已知AD平分∠CAB,∠BAC=40°,可得∠DAB=∠BAC=20°,再由∠B=75°,根据三角形外角的性质可得∠ADC=∠DAB+∠B =20°+75°=95°.点睛:本题考查了角平分线定义的应用及三角形外角的性质,属于基础题.【题文】如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为______________.【答案】19cm【解析】由DE是AC的垂直平分线,可得DA=DC,CE=AE=3cm,所以AC=6cm,又因△ABD的周长为13cm,可得AB+BD+AD=13cm,即AB+BD+DC=13cm,所以AB+BC+AC=13+6=19cm,即可得△ABC的周长为19cm.点睛:解决本题的关键是利用线段的垂直平分线性质得到相应线段相等,属于基础题.【题文】若,,则代数式的值是______________.【答案】-1【解析】=,把,代入得,原式=-1.点睛:本题考查了因式分解的综合运用及整体代入思想,正确进行因式分解是解决问题的关键.【题文】将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那么∠ 3的度数等于______________.【答案】12°【解析】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是108°,则∠3=360°-60°-90°-108°-∠1-∠2=12°.点睛:本题考查的是多边形的内角,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.【题文】如图,∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F,AB=11,AC=5,则BE=______________.【答案】3【解析】如图,连接CD,BD,已知AD是∠BAC的平分线,DE⊥AB,DF⊥AC,根据角平分线的性质可得DF=DE ,∠F=∠DEB=90°,∠ADF=∠ADE,即可得AE=AF,又因DG是BC的垂直平分线,所以CD=BD,在Rt△CDF 和Rt△BDE中,CD=BD,DF=DE,利用HL定理可判定Rt△CDF≌Rt△BDE,由全等三角形的性质可得BE=CF ,所以AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,又因AB=11,AC=5,所以BE=3.点睛:此题考查了线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质.此题难度适中,正确作出辅助线,利用数形结合思想是解决问题的关键.【题文】计算:(1);(2).【答案】(1)(2)【解析】试题分析:(1)利用多项式乘以多项式的运算法则计算后合并同类项即可;(2)先根据完全平方公式和平方差公式计算中括号里面的式子,合并同类项后再利用多项式除以单项式的法则计算即可.试题解析:(1)解:原式=(2)解:原式=点睛:本题主要考查了整式的混合运算,掌握整式的运算法则是解题的关键.【题文】因式分解:(1);(2).【答案】(1)(2)【解析】试题分析:(1)先提公因式a后再利用平方差公式分解即可;(2)先提公因式后再利用完全平方公式分解即可.试题解析:(1)解:原式=(2)解:原式=点睛:本题主要考查了因式分解,熟练掌握因式分解的方法是解决问题的关键.【题文】解分式方程:.【答案】【解析】试题分析:方程两边同时乘以最简公分母2(x+3),化分式方程为整式方程,解整式方程后检验即可.试题解析:方程两边同乘以得:解这个整式方程得:检验:当时,∴是原方程的解点睛:注意解分式方程一定要验根.【题文】先化简,再求值:,其中.【答案】,3【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.试题解析:原式=当时,原式点睛:分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算,熟知分式混合运算的法则是解答此题的关键.【题文】如图,点E,F在BC上,AB=DC,∠A=∠D,∠B=∠C.求证:BE=FC.【答案】证明见解析【解析】试题分析:根据已知条件,利用ASA证明△ABF≌△DCE,根据全等三角形的性质可得BF=CE,再由BF-EF=CE-EF,即可得BE=CF.试题解析:在△ABF与△DCE中,∴△ABF≌△DCE(ASA)∴BF=CE∴BF-EF=CE-EF,∴BE=CF点睛:全等三角形的判定和性质是中考中比较常见的知识点,一般难度不大,需熟练掌握.【题文】如图,在平面直角坐标系中,A(2,4), B(3,1),C(-2,-1).(1)求△ABC的面积;(2)在图中作出△ABC关于x轴的对称图形△A1B1C1,并写出点A1,B1,C1的坐标.【答案】(1)(2)【解析】试题分析:(1)利用△ABC所在矩形的面积减去3个直角三角形的面积即可;(2)根据关于x轴对称点的坐标的特征直接写出点A1,B1,C1的坐标即可.试题解析:(1)点睛:本题考查了轴对称变换,根据题意正确找到点的坐标是解题的关键.【题文】某施工队要铺设一条长为1500米的管道,为了减少施工对交通造成的影响,施工队实际的工作效率比原计划提高了20%,结果比原计划提前2天完成任务.求施工队原计划每天铺设管道多少米?【答案】125【解析】试题分析:设施工队原计划每天铺设管道x米,根据本题的等量关系“原计划用时=实际用时+2”,列出方程,解方程即可.试题解析:设施工队原计划每天铺设管道x米根据题意列方程得:解这个方程得:经检验:是原方程的解且符合题意答:施工队原计划每天铺设管道125米点睛:本题考查了分式方程的应用,正确审题,找对等量关系列方程是解决问题的关键.【题文】如图1,△ABC和△ADE都是等边三角形.(1)求证:BD=CE;(2)如图2,若BD的中点为P,CE的中点为Q,请判断△APQ的形状,并说明理由.【答案】(1)证明见解析(2)△APQ是等边三角形【解析】试题分析:(1)已知△ABC和△ADE都是等边三角形,根据等边三角形的性质可得AB=AC,AD=AE ,∠BAC =∠DAE=60°.再证得∠BAD =∠CAE,根据SAS定理即可证明△ABD≌△ACE,根据全等三角形的性质即可得BD=CE;(2)△APQ是等边三角形,根据已知易证△ABP≌△ACQ,根据全等三角形的性质可得AP=AQ ,∠BAP=∠CAQ ,再由∠BAP+∠CAP =∠CAQ+∠CAP可得∠PAQ=∠BAC=60°,即可判定△APQ是等边三角形.(1)证明:∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC =∠DAE=60°.∴∠BAC-∠DAC =∠DAE-∠DAC,即∠BAD =∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS)∴BD=CE(2)解:△APQ是等边三角形,理由如下∵P是BD中点,Q是CE中点,BD=CE,∴BP=CQ .∵△ABD≌△ACE∴∠ABP=∠ACQ .在△ABP与△ACQ中∵∴△ABP≌△ACQ(SAS),∴AP=AQ,∠BAP=∠CAQ ,∴∠BAP+∠CAP =∠CAQ+∠CAP,∴∠PAQ=∠BAC=60°∴△APQ是等边三角形点睛:此题主要考查学生了等边三角形的性质及判定,全等三角形的判定与性质,稍微有点难度,属于中档题.【题文】已知:点A(4,0),点B是y轴正半轴上一点,如图1,以AB为直角边作等腰直角三角形ABC.(1)当点B坐标为(0,1)时,求点C的坐标;(2)如图2,以OB为直角边作等腰直角△OBD,点D在第一象限,连接CD交y轴于点E.在点B运动的过程中,BE的长是否发生变化?若不变,求出BE的长;若变化,请说明理由.【答案】(1)C(-1,-3)(2)在B点运动过程中,BE长保持不变,值为2【解析】试题分析:(1)过C作CM⊥y轴于M,根据已知条件易证△BCM≌△ABO (AAS) ,根据全等三角形的性质可得CM=BO=1,BM=AO=4,所以OM=3,即可得C(-1,-3);(2)在B点运动过程中,BE长保持不变,值为2,过C作CM⊥y轴于M,由(1)可知:△BCM≌△ABO,根据全等三角形的性质可得CM=BO, BM=OA=4;在判定△BCM≌△ABO (AAS) ,即可得BE=EM,从而求得BE的长.试题解析:(1)解:过C作CM⊥y轴于M.∵ CM⊥y轴,∴∠BMC=∠AOB=90°,∴∠ABO+∠BAO=90°∵∠ABC=90°,∴∠CBM+∠ABO=90°,∴∠CBM=∠BAO在△BCM与△ABO中∵∴△BCM≌△ABO (AAS) ,∴CM=BO=1,BM=AO=4,∴OM=3,∴C(-1,-3)(2)在B点运动过程中,BE长保持不变,值为2,理由如下:过C作CM⊥y轴于M,由(1)可知:△BCM≌△ABO,∴CM=BO,BM=OA=4.∵△BDO是等腰直角三角形,∴BO=BD, ∠DBO=90°,∴CM=BD, ∠DBE=∠CME=90°,在△DBE与△CME中,∵∴△DBE≌△CME(AAS)∴BE=EM∴BE=点睛:本题考查了全等三角形的判定和性质、等腰直角三角形的判定和性质,题目的综合性比较强,难度中等.。

湖北省十堰市八年级上学期数学期末试卷

湖北省十堰市八年级上学期数学期末试卷

湖北省十堰市八年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016九上·思茅期中) 下列图形中,不是轴对称图形的是()A .B .C .D .【考点】2. (2分)(2017·盘锦模拟) 随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.0000007(平方毫米),这个数用科学记数法表示为()A . 7×10﹣6B . 0.7×10﹣6C . 7×10﹣7D . 70×10﹣8【考点】3. (2分)下列运算正确的是()A . a﹣2a=aB . (﹣a2)3=﹣a6C . a6÷a2=a3D . (x+y)2=x2+y2【考点】4. (2分) (2017七下·邵东期中) 把多项式2x2﹣8分解因式,结果正确的是()A . 2(x2﹣8)B . 2(x﹣2)2C . 2(x+2)(x﹣2)D . 2x(x﹣)【考点】5. (2分) (2019八上·民勤月考) 如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A . 1cmB . 2cmC . 3cmD . 4cm【考点】6. (2分)计算28a4b2÷7a3b的结果是()A . 4ab2B . 4a4bC . 4a4b2D . 4ab【考点】7. (2分)有两边相等的三角形的两边长为3cm,5cm,则它的周长为()A . 8cmB . 11cmC . 13cmD . 11cm或13cm【考点】8. (2分)下列各组条件中,不能判断△ABC≌△DEF的是()A . ∠A=∠D,AB=DE,∠B=∠EB . AB=DE,∠A=∠D,BC=EFC . AB=DE,BC=EF,AC=DFD . ∠B=∠E=90°,AB=DE,AC=DF【考点】9. (2分) (2020八下·江阴期中) 如果把分式中的m和n都扩大3倍,那么分式的值()A . 不变B . 扩大3倍C . 缩小3倍D . 扩大9倍【考点】10. (2分)下列运算正确的是()A . a2+a2=a4B . (ab)2=a2bC . (a2)3=a6D . a a2=a2【考点】二、填空题 (共8题;共9分)11. (1分) (2018八上·大庆期末) 当x=________时,分式的值等于零.【考点】12. (1分) (2019七下·江阴月考) 已知2x+3y-3=0,则 =________.【考点】13. (1分)如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF 相等,则∠ABC+∠DFE=________度.【考点】14. (1分)(2018·荆州) 为了比较 +1与的大小,可以构造如图所示的图形进行推算,其中∠C=90°,BC=3,D在BC上且BD=AC=1.通过计算可得 +1________ .(填“>”或“<”或“=”)【考点】15. (1分) (2019八下·江阴期中) 如图,在□ABCD中,∠A=75° ,将□ABCD绕顶点B顺时针旋转到□A1BC1D1 ,当C1D1首次经过顶点C时,旋转角∠ABA1=________.【考点】16. (1分)(2016·淄博) 某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是________.【考点】17. (1分) (2018八下·越秀期中) 如图所示,在梯形ABCD中,AD∥BC,∠B=70°,∠C=40°,过点D作DE∥AB交BC于点E,若AD=3,BC=10,则CD的长是________。

湖北省十堰市八年级上学期数学期末考试试卷

湖北省十堰市八年级上学期数学期末考试试卷

湖北省十堰市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·电白期末) 下列各组长度的三条线段能组成三角形的是()A . 5cm,3cm,9cmB . 5cm,3cm,8cmC . 5cm,3cm,7cmD . 6cm,4cm,2cm2. (2分)下列分式中,属于最简分式的是()A .B .C .D .3. (2分)下面四个“艺术字”中,轴对称图形的个数是()A . 1个B . 2个C . 3个D . 4个4. (2分) (2017八下·万盛开学考) 计算(2a)3•2a2的结果是()A . 16a5B . 4a6C . 8a5D . 8a65. (2分)下列式子是分式方程的是()A .B .C .D .6. (2分)(2019·辽阳) 将三角尺按如图所示放置在一张矩形纸片上,,,,则的度数为()A . 130°B . 120°C . 110°D . 100°7. (2分)分式,,的最简公分母是()A . (a+b)(a﹣1)B . (a﹣1)2(a+1)C . (a﹣1)2(a2﹣1)D . (a+1)(a﹣1)+28. (2分) (2019七下·涡阳期末) 下列多项式能用完全平方公式进行因式分解的是()A . a2-1B . a2-2a-1C . a2-a+1D . a2-2a+19. (2分) (2016八上·达县期中) 如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于点E,垂足为D,CE平分∠ACB.若BE=2,则AE的长为()A .B . 1C .D . 210. (2分)如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为()A . 30°B . 60°C . 90°D . 45°二、填空题 (共8题;共9分)11. (1分)分解因式:________12. (1分) (2017八上·官渡期末) 计算:()﹣1+(π﹣3)0=________.13. (1分) (2020七下·东台月考) 若0.0000103=1.03×10n ,则n=________.14. (2分)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格占为顶点的三角形,这样的三角形共有________个,请在下面所给的格纸中一一画出________。

湖北省十堰市八年级数学上学期期末考试试题

湖北省十堰市八年级数学上学期期末考试试题

上学期期末调研考试 八年级数学试题注意事项:1 .本卷共有4页,共有25小题,满分120分,考试时限120分钟.2 .答题前,考生先将自己的姓名、准考证号填写在试卷和答题卡指定的位置,并认真核对条形 码上的准考证号和姓名,在答题卡规定的位置贴好条形码.3 .考生必须保持答题卡的整洁,考试结束后,请将本试卷和答题卡一并上交.、选择题:(本题有10个小题,每小题3分,共30分)F 面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应 的格子内. 1.下列长度的三条线段能构成三角形的是( )4.如图,AD 和 BC 相交于0点,OA =OC 用“ SAS 证明△CODS 需( )A. AB=CDB . OB=ODACC.Z A=Z CD. / AOB / CODA/\5.下列各式运算正确的是()O\2 3 5A. a a aB. 236a a aB 第4题图D2 \36C. (a ) aD. a 0 =16.右分式有意义,则 x-3 x 满足的条件是()A. x =1B . x = 3 C.x = 1D. X 37.下列因式分解结果正确的是( )A.3 , 4, 8B.3 , 4, 72. 下列几何图形不一定是轴对称图形的是( A 角B .等边三角形 3. 下列语句正确的是()A.三角形的三条高都在三角形内部 C.三角形不一定具有稳定性C.5 , 6, 10D.5 , 6, 11)C.等腰三角形D .直角三角形B.三角形的三条中线交于一点D.三角形的角平分线可能在三角形的内部或外部2A x 3x 2 =x(x 3) 22B. 4x -9 =(4x 3)(4x -3)、填空题(每题3分,共18分•请直接将答案填写在答题卡中,不写过程)11.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项•已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为_________________ 米.12. 如图,在△ ABC中,/ BA(=40°,Z B=75°,AD>^ ABC勺角平分线,则/ ADC ___________ .13. 如图,在△ ABC中,DE是AC的垂直平分线,AE=3cm,A ABD的周长为13cm,则△ ABC的周长为 ______________ .1 114. 若y「X = -1,xy = 2,则代数式-一x3y • x2y2-一xy3的值是_____________________ .2 215•将等边三角形、正方形、正五边形按如图所示的位置摆放,如果/ 1=40°,/ 2=50°,那么/ 3的度数等于 _______________ .16.如图,/ BAC勺平分线与BC的垂直平分线相交于点D DEL AB DF丄AC垂足分别为E F,AB=11, AC=5,贝H BE= __________2c. x -5x 6 =(x-2)(x -3) 2 2D. a -2a 仁(a 1)8.如图,△ ABC中, BD CD分别平分/ ABC / ACB过点D作EF// BC交AB AC于点E, F,当/ AA . EF> BE^CF B.EF=BE H CFC . EF< BE^CF D.不能确定9.若a b =1,则a2 -b2 2b的值为()A. 4B. 3C.1D. 010.如图,人。

湖北省十堰市2020-2021学年八年级上学期期末数学试题(含答案解析)

湖北省十堰市2020-2021学年八年级上学期期末数学试题(含答案解析)

湖北省十堰市2020-2021学年八年级上学期期末数学试题 学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各组数可能是一个三角形的边长的是( )A .4,4,9B .2,6,8C .3,4,5D .1,2,3 2.下列运算正确的是( )A .a •a 5=a 5B .(﹣a 3)2 =a 6C .a 8÷a 2 =a 4D .a 3 +a 3 =a 6 3.下列等式中,从左到右的变形中是因式分解的是( )A .()2296131x x x -+=-B .()24141x x x x -+=-+C .()2333m m n m mn -=-D .()32x y x y y +=++4.如果把分式232x x y -中的x ,y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .扩大2倍 5.如图所示,AB =AC ,要说明△ADC≌≌AEB ,需添加的条件不能是( )A .≌B =≌CB .AD =AEC .DC =BED .≌ADC =≌AEB6.如图,在≌ABC 中,≌C =70º,沿图中虚线截去≌C ,则≌1+≌2=()A .360ºB .250ºC .180ºD .140º 7.如图是台球桌面示意图,阴影部分表示四个入球孔,小明按图中方向击球(球可以多次反弹),则球最后落入的球袋是( )A .1号袋B .2号袋C .3号袋D .4号袋 8.已知甲做360个零件与乙做480个零件所用的时间相同,两人每天共做140个零件,设甲每天做x 个零件,根据题意,可列方程为( )A .360480=140x x - B .360480=140x x - C .360480+=140x xD .360480140=x x - 9.如图,在ABC ∆中,906810BAC AB AC BC AD ∠=︒===,,,,是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法≌ABE ∆的面积BCE =∆的面积;≌AFG AGF ∠=∠;≌2FAG ACF ∠=∠;≌=2.4AD 正确的是( )A .≌≌≌≌B .≌≌≌C .≌≌≌D .≌≌10.如图,在Rt ABC 中,ACB 90∠=,分别以AB 、AC 为腰向外作等腰直角三角形ABD 和ACE ,连结DE ,CA 的延长线交DE 于点F ,则与线段AF 相等的是( )A .2AC 3B .2AB 5C .1BC 2D .1AB 2二、填空题11.若一个n 边形的内角和与外角和为720°,则n =________.12.因式分解:a 3﹣2a 2b+ab 2=_____.13.如图,在22⨯的方格纸中,12∠+∠等于_____.14.分式293x x -+的值为0,那么x 的值为_____. 15.如图,把≌ABC 沿EF 对折,折叠后的图形如图所示.若≌A =60°,≌1=96°,则≌2的度数为_____.16.如图,在矩形ABCD 中,AB =3a ,BC =4a ,若点E 是边AD 上一点,点F 是矩形内一点,≌BCF =30°,则EF +12CF 的最小值是_____.三、解答题17.如图,已知DO =BO ,≌A =≌C ,求证:AO =CO .18.先化简,再求值.21(1)11aa a +÷--,其中a =﹣519.将一副三角尺叠放在一起:(1)如图≌,若≌1=4≌2,请计算出≌CAE 的度数;(2)如图≌,若≌ACE =2≌BCD ,请求出≌ACD 的度数.20.如图,在平面直角坐标系中,≌ABC 的顶点A (1,2),B (3,1),C (﹣2,﹣1)均在正方形网格的格点上.(1)画出≌ABC关于y轴对称的图形≌A1B1C1;(2)若点C2(a,b)与点C关于x轴对称,求a﹣b的值.21.阅读理解题:已知二次三项式x2﹣4x+m有一个因式是x+3,求另一个因式及m 的值.解:设另一个因式为x+n,依题意得x2﹣4x+m=(x+3)(x+n).即x2﹣4x+m=x2+(n+3)x+3n,比较系数得:343nm n+=-⎧⎨=⎩,解得217mn=-⎧⎨=-⎩.≌另一个因式为x﹣7,m的值为﹣21仿照上述方法解答下列问题:(1)已知二次三项式2x2+3x﹣k有一个因式是2x﹣1,求另一个因式及k的值;(2)已知2x2﹣13x+p有一个因式x﹣4,则p=.22.如图,≌B=≌C=90°,E是BC的中点,DE平分≌ADC,求证:(1) AB+CD=AD;(2)AE≌DE.23.某单位在疫情期间用8000元购进A、B两种口罩共3400个,已知购买A种口罩的费用是购买B种口罩费用的3倍,且A种口罩的单价是B种口罩单价的1.25倍;(1)求A,B两种口罩的单价各是多少元?(2)若计划用不超过15000元的资金再次购进A、B两种口罩共7000个,已知A、B两种口罩的进价不变,求A种口罩最多能购进多少个?24.如图,等边≌ABC中,BM是∠ABC内部的一条射线,且30ABM∠<︒,点A关于BM的对称点为D,连接AD,BD,CD,其中AD、CD的延长线分别交射线BM于点E,P.(1)依题意补全图形;(2)若ABM∠=α,求∠BDC的大小(用含α的式子表示);(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.25.如图1已知点A,B分别在坐标轴上,点C(3,﹣3),CA≌BA于点A,且BA=CA,CA,CB分别交坐标轴于D,E.(1)填空:点B的坐标是;(2)如图2,连接DE,过点C作CH≌CA于C,交x轴于点H,求证:≌ADB=≌CDE;(3)如图3,点F(6,0),点P在第一象限,连PF,过P作PM≌PF交y轴于点M,在PM上截取PN=PF,连PO,过P作≌OPG=45°交BN于G.求证:点G是BN中点.参考答案:1.C【解析】【分析】根据三角形三条边的关系求解即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A. 4+4<9,故不可能是一个三角形的边长;B. 2+6=8,故不可能是一个三角形的边长;C. 3+4>5,故可能是一个三角形的边长;D. 1+2=3,故不可能是一个三角形的边长;故选C.【点睛】题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.2.B【解析】【分析】分别利用同底数幂的乘法、积的乘方、同底数幂的除法、和并同类项法则分别判断得出即可.【详解】解:a•a5=a6,故选项A不合题意;(﹣a3)2 =a6,正确,故选项B符合题意;a8÷a2 =a6,故选项C不合题意;a3 +a3 =2a3,故选项D不合题意.故选:B.【点睛】本题考查了同底数幂的除法、同底数幂的乘法、积的乘方和并同类项,解题的关键是掌握相关运算的法则.3.A【解析】根据因式分解的定义逐个判断即可.【详解】解:A 、等式从左到右变形属于因式分解,故本选项符合题意;B 、等式从左到右变形不属于因式分解,故本选项不符合题意;C 、等式从左到右变形不属于因式分解,故本选项不符合题意;D 、等式从左到右变形不属于因式分解,故本选项不符合题意;故选:A .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4.B【解析】【分析】依题意,分别用3x 和3y 去代换原分式中的x 和y ,利用分式的基本性质化简即可.【详解】解:分别用3x 和3y 去代换原分式中的x 和y ,得233323x x y ⨯⨯-⨯=()32332x x y ⨯-=232x x y-, 可见新分式与原分式相等.故选:B .【点睛】本题考查分式的基本性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.5.C【解析】【分析】△ADC 和△AEB 中,已知的条件有AB=AC ,≌A=≌A ;要判定两三角形全等只需条件一组对应角相等,或AD=AE 即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.A、当≌B=≌C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故C错误;D、当≌ADC=≌AEB时,符合AAS的判定条件,故D正确;故选C.6.B【解析】【分析】【分析】根据三角形内角和定理得出≌A+≌B=110°,进而利用四边形内角和定理得出答案.【详解】≌≌ABC中,≌C=70°,≌≌A+≌B=180°-≌C =110°,≌≌1+≌2=360°-110°=250°,故选B.【点睛】本题主要考查了多边形内角和定理,根据题意得出≌A+≌B的度数是解题关键.【详解】请在此输入详解!7.B【解析】【分析】利用轴对称画图可得答案.【详解】解:如图所示,,球最后落入的球袋是2号袋,故选:B.此题主要考查了生活中的轴对称现象,关键是正确画出图形.8.A【解析】【分析】设甲每天做x个零件,根据甲做360个零件与乙做480个零件所用的时间相同,列出方程即可.【详解】设甲每天做x个零件,根据题意得:360480=;x x140故选A.【点睛】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.9.B【解析】【分析】根据等底等高的三角形的面积相等即可判断≌;根据三角形内角和定理求出≌ABC=≌CAD,根据三角形的外角性质即可推出≌;根据三角形内角和定理求出≌FAG=≌ACD,根据角平分线定义即可判断≌;根据三角形的面积公式即可得到AD=4.8判断≌.【详解】解:≌BE是中线,≌AE=CE,≌≌ABE的面积=≌BCE的面积(等底等高的三角形的面积相等),故≌正确;≌CF是角平分线,≌≌ACF=≌BCF,≌AD为高,≌≌ADC=90°,≌≌BAC=90°,≌≌ABC+≌ACB=90°,≌ACB+≌CAD=90°,≌≌ABC=≌CAD ,≌≌AFG=≌ABC+≌BCF ,≌AGF=≌CAD+≌ACF ,≌≌AFG=≌AGF ,故≌正确;≌AD 为高,≌≌ADB=90°,≌≌BAC=90°,≌≌ABC+≌ACB=90°,≌ABC+≌BAD=90°,≌≌ACB=≌BAD ,≌CF 是≌ACB 的平分线,≌≌ACB=2≌ACF ,≌≌BAD=2≌ACF ,即≌FAG=2≌ACF ,故≌正确;≌≌BAC=90°,AD 是高,≌S △ABC =12AB•AC=12AD•BC , ≌AB=6,AC=8,BC=10, ≌AD=6810⨯=4.8,故≌错误, 故选:B【点睛】本题考查了三角形内角和定理,三角形的外角性质,三角形的角平分线、中线、高,等腰三角形的判定等知识点,能综合运用定理进行推理是解此题的关键,题目比较好,属于中考题型.10.C【解析】【分析】如图,作DH CF ⊥交CF 的延长线于H ,连接.EH 想办法证明BCA ≌()AHD AAS ,四边形ADHE 是平行四边形,即可解决问题.【详解】解:如图,作DH CF ⊥交CF 的延长线于H ,连接EH .90ACB BAD DHA ∠∠∠===,90BAC DAH ∠∠∴+=,90DAH ADH ∠∠+=,BAC ADH ∠∠∴=,D AB A =,BCA ∴≌()AHD AAS ,AC DH ∴=,BC AH =,90DHA EAH ∠∠==,AC AE =,//DH AE ∴,AH AE =,∴四边形ADHE 是平行四边形,AF FH ∴=,1122AF AH BC ∴==, 故选C .【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.11.4【解析】【分析】任意多边形的外角和是360度,即这个多边形的内角和是360度.n 边形的内角和是(n -2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:根据题意,得(n -2)•180+360=720,解得n =4.故答案为:4.【点睛】本题考查了多边形的内角和和外角和,属于基础题型,熟练掌握多边形的基本知识是解题的关键.12.a (a ﹣b )2.【解析】【详解】【分析】先提公因式a ,然后再利用完全平方公式进行分解即可.【详解】原式=a (a 2﹣2ab+b 2)=a (a ﹣b )2,故答案为a (a ﹣b )2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.90°##90度【解析】【分析】标注字母,然后利用“边角边”求证ABC 和DEA △全等,根据全等三角形对应角相等可得23∠∠=,再根据直角三角形两锐角互余求解.【详解】解:如图,在ABC 和DEA △中,AB DE B AED BC EA =⎧⎪∠=∠⎨⎪=⎩,≌()ABC DEA SAS △≌△,≌23∠∠=,在Rt ABC 中,1390︒∠+∠=,≌1290︒∠+∠=,故答案为:90°.【点睛】本题考查全等三角形的判定定理及性质,直角三角形两锐角互余.解本题的关键是证明()ABC DEA SAS △≌△.14.3【解析】【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】解:由题意可得:x 2﹣9=0且x +3≠0,解得x =3.故答案为3.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:分母不为零这个条件不能少.15.24°.【解析】【分析】首先根据三角形内角和定理可得≌AEF +≌AFE =120°,再根据邻补角的性质可得≌FEB +≌EFC =360°﹣120°=240°,再根据由折叠可得:≌B ′EF +≌EFC ′=≌FEB +≌EFC =240°,然后计算出≌1+≌2的度数,进而得到答案.【详解】解:≌≌A=60°,≌≌AEF+≌AFE=180°﹣60°=120°.≌≌FEB+≌EFC=360°﹣120°=240°.≌由折叠可得:≌B′EF+≌EFC′=≌FEB+≌EFC=240°.≌≌1+≌2=240°﹣120°=120°.≌≌1=96°,≌≌2=120°﹣96°=24°.故答案为:24°.【点睛】考核知识点:折叠性质.理解折叠性质是关键.16.3a【解析】【分析】作辅助线,先根据直角三角形30度角的性质可知12CF=FH,得GH的长是EF+12CF的最小值,从而得结论.【详解】解:过F作GH≌CD,交AD于G,BC于H,如图:≌四边形ABCD是矩形,≌≌D=≌BCD=90°,AD≌BC,≌GH≌AD,≌CHF=90°,≌≌BCF=30°,≌FH=12 CF,≌点E是边AD上一点,≌EF +12CF =EF +FH , 即EF +12CF 的最小值是GH , ≌≌GHC =≌BCD =≌D =90°,≌四边形DGHC 是矩形,≌GH =CD =AB =3a ,即EF +12CF 的最小值是3a ; 故答案为:3a .【点睛】本题考查了矩形的判定和性质,平行线的性质,直角三角形30度角的性质等知识,解题关键是确定EF +12CF 的最小值是GH . 17.见解析【解析】【分析】根据题目中的已知条件利用“AAS”证明≌ADO ≌≌CBO ,然后全等三角形对应边相等得出AO =CO .【详解】证明:在≌ADO 和≌CBO 中,A C AOD COB DO BO ∠=∠⎧⎪∠=∠⎨⎪=⎩,≌≌ADO ≌≌CBO (AAS ),≌AO =CO .【点睛】本题主要考查了全等三角形的判定和性质,熟练掌握三角形全等的条件是解决本题的关键.18.1a a +,54【解析】【分析】先根据分式的加减运算以及乘除运算法则进行化简,然后将a 的值代入原式即可求出答案.【详解】解:(1+211a -)÷1a a - =(1+211a -)•1a a - =1a a-+()1(1)1a a a a -+- =1a a -+1(1)a a + =211(1)a a a -++ =1a a +, 当a =-5时,原式=551--+=54. 【点睛】 本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则. 19.(1)≌CAE =18°;(2)≌ACD =120°.【解析】【分析】(1)由题意根据≌BAC =90°列出关于≌1、≌2的方程求解即可得到≌2的度数,再根据同角的余角相等求出≌CAE =≌2,从而得解;(2)根据≌ACB 和≌DCE 的度数列出等式求出≌ACE ﹣≌BCD =30°,再结合已知条件求出≌BCD ,然后由≌ACD =≌ACB+≌BCD 并代入数据计算即可得解.【详解】解:(1)≌≌BAC =90°,≌≌1+≌2=90°,≌≌1=4≌2,≌4≌2+≌2=90°,≌≌2=18°,又≌≌DAE =90°,≌≌1+≌CAE =≌2+≌1=90°,≌≌CAE=≌2=18°;(2)≌≌ACE+≌BCE=90°,≌BCD+≌BCE=60°,≌≌ACE﹣≌BCD=30°,又≌ACE=2≌BCD,≌2≌BCD﹣≌BCD=30°,≌BCD=30°,≌≌ACD=≌ACB+≌BCD=90°+30°=120°.【点睛】本题考查三角形的外角性质,三角形的内角和定理,准确识图理清图中各角度之间的关系是解题的关键.20.(1)见解析(2)-3【解析】【分析】(1)分别作出A,B,C的对应点A1,B1,C1,然后连接即可.(2)根据关于x轴对称的特点,求出a,b即可.(1)解:如图所示:(2)解:≌点C2(a,b)与点C关于x轴对称,C(﹣2,﹣1),≌a=﹣2,b=1,≌a﹣b=﹣3.【点睛】本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点.21.(1)另一个因式为x+2,k的值为2(2)20【解析】【分析】(1)利用已知结合因式分解是把一个多项式转化成几个整式积的形式,假设出另一个因式,进而得出方程组,可得答案;(2)利用已知结合因式分解是把一个多项式转化成几个整式积的形式,假设出另一个因式,进而得出方程组,可得答案.(1)解:(1)设另一个因式为x+m,则2x2+3x—k=(2x—1)(x+m),即2x2+3x—k=2x2+(2m—1)x—m,比较系数得:213 mk m-=⎧⎨-=-⎩,解得22mk=⎧⎨=⎩,≌另一个因式为x+2,k的值为2;(2)解:设另一个因式为(2x+m),由题意,得:2x2﹣13x+p=(x﹣4)(2x+m),则2x2﹣13x+p=2x2+(m﹣8)x﹣4m,≌8134mp m-=-⎧⎨=-⎩,解得520mp=-⎧⎨=⎩,故答案为:20.【点睛】本题考查了十字相乘法分解因式,解二元一次方程组,正确假设出另一个因式是解题关键22.(1)见解析(2)见解析【分析】(1)延长DE交AB的延长线城于点F.通过证明≌CDE与≌BEF全等,说明CD与BF的关系,再利用等腰三角形的性质得结论;(2)利用等腰三角形的三线合一得结论.(1)证明:延长DE交AB的延长线城于点F.≌≌ABC=≌C=90°,≌DC≌AB.≌≌CDF=≌F.≌点E是BC中点,≌CE=BE,在△CDE和△BFE中,CDE FDEC BEFCE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,≌≌CDE≌≌BFE(AAS).≌CD=BF.≌DE平分≌ADC,≌≌ADE=≌CDE.≌≌ADE=≌F.≌AD=AF=AB+BF=AB+CD;(2)证明:由(1)知≌CDE≌≌BFE,≌DE=FE.由(1)知AD=AF.【点睛】本题考查了三角形全等的判定和性质,掌握全等三角形的判定方法、性质及等腰三角形的性质是解决本题的关键.23.(1)A种口罩单价为2.5元,B种口罩单价为2元(2)A种口罩最多能购进2000个【解析】【分析】(1)设B种口罩的单价为x元,则A种口罩单价为1.25x元.由题意:某单位在疫情期间用8000元购进A、B两种口罩共3400个,已知购买A种口罩的费用是购买B种口罩费用的3倍,列出分式方程,解方程即可;(2)设购进A种口罩m个,由题意:计划用不超过15000元的资金再次购进A、B两种口罩共7000个,已知A、B两种口罩的进价不变,列出一元一次不等式,解不等式即可.(1)解:设B种口罩的单价为x元,则A种口罩单价为1.25x元,≌购买A种口罩的费用是购买B种口罩费用的3倍,≌A种口罩的费用是8000×34=6000元,A种口罩的费用是8000×14=2000元,依题意得,600020003400 1.25x x+=,解得:x=2,经检验,x=2是方程的解,且符合题意.则1.25x=2.5,答:A种口罩单价为2.5元,B种口罩单价为2元;(2)解:设购进A种口罩m个,则购进B种口罩(7000﹣m)个,依题意,得:2.5m+2(7000﹣m)≤15000,解得:m≤2000.答:A种口罩最多能购进2000个.【点睛】本题考查了分式方程的应用,以及一元一次不等式的应用,根据数量关系列出方程和不等式是解答本题的关键.24.(1)见解析;(2) 60°+α;(3)见解析.【解析】【分析】(1)正确画图;(2)根据对称得:BM是AD的垂直平分线,则BA=BD,根据等腰三角形的性质和等边三角形可得结论;(3)在射线PD上截取PF使PF=PB,连接BF,如图,先证明≌BPF是等边三角形,再证明≌BFC≌≌BPD,则CF=PD=2PE.根据线段的和可得结论.【详解】(1)如图所示:(2≌点A与点D关于BM对称,≌BM是AD的垂直平分线,≌BA=BD.≌≌ABM=α,≌≌ABD=2≌ABM=2α.≌等边△ABC,≌BA=CB=BD,≌ABC=60°,≌≌DBC=≌ABC-≌ABD =60°-2α,≌≌BDC=≌DCB=12(180°-≌DBC)=60°+α.(3)结论:PB=PC+2PE.证明如下:在射线PD上截取PF使PF=PB,连接BF.≌BA=BD,≌ABD=2α,≌≌BDA=≌BAD=90°-α.≌≌BDC=60°+α,≌≌PDE=180-(≌BDA+≌BDC)=30°.≌≌DEP=90°,≌PD=2PE.≌≌BPF=≌DPE=90°-≌PDE=60°,PF=PB,≌≌BPF是等边三角形,≌≌BPF=≌BFP=60°.≌≌BDC=≌DCB∠≌≌BDP=≌BCF.在△BFC和△BPD中,≌BFP BPFBCF BDPBF BP∠=∠⎧⎪∠=∠⎨⎪=⎩,≌≌BFC≌≌BPD,≌CF=PD=2PE,≌PB=PC+BF=PC+2PE.【点睛】本题是三角形综合题,主要考查了对称的性质,三角形的内角和定理,等边三角形的性质和判定,三角形全等的性质和判定,第三问作出辅助线构建等边三角形是解答本题的关键.25.(1)(0,6)(2)见解析(3)见解析【解析】【分析】(1)作CM⊥x轴于M,求出CM= CN= 2,证明≌BAO≌≌ACM,推出AO= CM= 2,OB=AM=4,即可得出答案;(2)在BD上截取BF= AE,连AF,证≌BAF≌≌CAE,证≌AFD≌≌CED,即可得出答案;(3)作EO⊥OP交PG的延长线于E,连接EB、EN、PB,只要证明四边形ENPB是平行四边形就可以了.(1)解:过点C作CG⊥x轴于G,如图所示:≌C(3,﹣3),≌CG=3,OG=3,≌≌BOA=≌CGA=90°,≌≌ABO+≌BAO=≌BAO+≌CAG=90°,≌≌ABO=≌CAG,又≌AB=AC,≌≌ABO≌≌CAG(AAS),≌AO=CG=3,OB=AG=AO+OG=6,≌点B的坐标是(0,6).(2)证明:如图,过点C作CG⊥x轴于G,CF⊥y轴于F,则CF≌AO.同(1)得:≌ABO≌≌CAG(AAS),≌AO=CG=3,≌CF=3,≌AO=CF,≌CF≌AO≌≌DAO=≌DCF,≌AOD=≌CFD,≌≌AOD≌≌CFD(ASA),≌CA⊥BA,CH⊥CA,≌≌BAD=≌ACH=90°,又≌≌ABO=≌CAG,AB=AC,≌≌BAD≌≌ACH(ASA),≌AD=CH,≌ADB=≌AHC≌CD=CH,≌BA=CA,≌≌ABC是等腰直角三角形,≌≌ACB=45°,≌≌HCE=90°﹣≌ACB=45°,≌≌DCE=≌HCE=45°,又≌CE=CE,≌≌DCE≌≌HCE(SAS),≌≌CDE=≌CHE,≌≌ADB=≌CDE.(3)证明:过点O作OK⊥OP交PG延长线于K,连接BK、NF,过点P作PL⊥NF于L.则≌OPK是等腰直角三角形,≌≌OKP=≌OPK=45°,OK=OP,≌PN=PF,≌≌PNF是等腰直角三角形,≌≌PFN=≌PNF=45°,≌PL⊥NF,则≌OPF=≌OPL+45°,≌GPN=≌OPL=45°﹣≌MPO,≌≌KOB+≌BOP=≌FOP+≌BOP=90°,≌≌KOB=≌FOP,又≌OB=OF=6,≌≌OKB≌≌OPF(SAS),≌KB=PF=PN,≌OKB=45°+≌GKB=≌OPF=≌OPL+45°,≌≌GKB=≌OPL=≌GPN,又≌≌KGB=≌PGN,≌≌KBG≌≌PNG(SAS),≌BG=NG,即点G为BN的中点.【点睛】本题是三角形综合题目,考查了全等三角形的判定和性质、坐标与图形性质、等腰直角三角形的判定与性质、平行线的判定与性质、直角三角形的性质等知识,本题综合性强,有一定难度,证明三角形全等是解题的关键,属于中考常考题型.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

14. 等腰三角形一腰上的高与另一腰的夹角为 20°,则顶角的度数是______.
15. 如图,四边形 ABCD 中,∠BAD=120°,∠B=∠D=90°,在 BC、
CD 上分别找一点 M、N,使△AMN 周长最小时,则
∠AMN+∠ANM 的度数是______.
16. 如图,在△ABP1 中,BP1⊥AP1,AP1=2,∠A=30°,且 P1Q1⊥AB,P2Q1⊥AP1,…, PnQn⊥AB,Pn+1Qn⊥AP1,则 P2018Q2018 长为______.
22. 某服装店用 4500 元购进一批衬衫,很快售完,服装店老板又用 2100 元购进第二批 该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了 10 元. (1)这两次各购进这种衬衫多少件? (2)若第一批衬衫的售价是 200 元/件,老板想让这两批衬衫售完后的总利润不低 于 2100 元,则第二批衬衫每件至少要售多少元?
三、计算题(本大题共 2 小题,共 13.0 分) 17. 已知:a+b=1,ab=-2,且 a>b,求 a2+b2,a2-b2 的值.
18. 化简:(1-2x−1)•x2−xx2−6x+9
四、解答题(本大题共 7 小题,共 59.0 分) 19. 分解因式:
(1)-3x2+6xy-3y2; (2)(a+b)(a-b)+4(b-1).
A. 2 个
B. 3 个
C. 4 个
D. 5 个
7. 如图,△ABC 中,BD 平分∠ABC,BC 的中垂线交 BC 于点 E,交 BD 于点 F,连接 CF.若∠A=60°,
∠ABD=24°,则∠ACF 的度数为( )
A. 48∘ B. 36∘ C. 30∘ D. 24∘
8. 对于实数 a、b,定义一种新运算“⊗”为:a⊗b=1a−b2,这里等式右边是实数运算.例
如:1⊗3=11−32=−18.则方程 x⊗(-2)=2x−4-1 的解是( )
A. x=4
B. x=5
C. x=6
D. x=7
9. 若分式 a+ba3 中的 a,b 的值同时扩大到原来的 3 倍,则分式的值( )
A. 是原来的 3 倍 B. 是原来的 127 C. 是原来的 19 D. 是原来的 13
25. 在△ABC 中,AB=AC,D 是直线 BC 上一点,以 AD 为一条边在 AD 的右侧作
△ADE,使 AE=AD,∠DAE=∠BAC,连接 CE. (1)如图,当点 D 在 BC 延长线上移动时,若∠BAC=25°,则∠DCE=______. (2)设∠BAC=α,∠DCE=β. ①当点 D 在 BC 延长线上移动时,α 与 β 之间有什么数量关系?请说明理由; ②当点 D 在直线 BC 上(不与 B,C 两点重合)移动时,α 与 β 之间有什么数量关 系?请直接写出你的结论.
第 3 页,共 15 页
23. 在当今“互联网+”时代,有一种用“因式分解法”生成密码的方法:将一个多项式因式
分解,如将多项式 x3+2x2-x-2 分解的结果为(x-1)(x+1)(x+2).当 x=19 时, x-1=18,x+1=20,x+2=21,此时可得到数字密码 182021. (1)根据上述方法,当 x=37,y=12 时,对于多项式 x3-xy2 分解因式后可以形成哪 些数字密码(写出两个即可)? (2)将多项式 x3+(m-3n)x2-nx-21 因式分解后,利用题目中所示的方法,当 x=87 时可以得到密码 808890,求 m,n 的值.
八年级(上)期末数学试卷
题号 得分




总分
一、选择题(本大题共 10 小题,共 30.0 分)
1. 用形状,大小完全相同的图形不能镶嵌成平面图案的是( )
A. 等腰三角形 B. 正方形
C. 正五边形
D. 正六边形
2. 下列计算,正确的是( )
A. a2⋅a2=2a2
B. a2+a2=a4
C. (−a2)2=a4
24. 如图,△ABC 是边长为 6 的等边三角形,P 是 AC 边上
一动点,由 A 向 C 运动(与 A、C 不重合),Q 是 CB 延长线上一点,与点 P 同时以相同的速度由 B 向 CB 延 长线方向运动(Q 不与 B 重合),过 P 作 PE⊥AB 于 E, 连接 PQ 交 AB 于 D. (1)当∠BQD=30°时,求 AP 的长; (2)当运动过程中线段 ED 的长是否发生变化?如果不变,求出线段 ED 的长;如 果变化请说明理由.
D. 3∘
二、填空题(本大题共 6 小题,共 18.0 分)
11. 分解因式:3m2-12=______.
12. 若 x2+kxy+49y2 是一个完全平方式,则 k=______.
13. 林林家距离学校 a 千米,骑自行车需要 b 分钟,若某一天林林从家中出发迟了 c 分
钟,则她每分钟应骑______千米才能不迟到.
10. 如图△ABC 中,∠A=96°,延长 BC 到 D,∠ABC 与∠ACD
的平分线相交于点 A1,∠A1BC 与∠A1CD 的平分线相交
于点 A2,依此类推,∠A4BC 与∠A4CD 的平)
第 1 页,共 15 页
A. 19.2∘
B. 8∘
C. 6∘
M,N 为圆心,大于 12MN 的长为半径画弧,两弧交于点
P,作射线 AP 交边 BC 于点 D,若 CD=4,AB=15,则△ABD
的面积是( )
A. 15
B. 30
C. 45
D. 60
6. 如图,在△ABC 中,∠A=36°,AB=AC,BD 是△ABC 的角平分线.若
在边 AB 上截取 BE=BC,连接 DE,则图中等腰三角形共有( )
D. (a+1)2=a2+1
3. 化简 m2m−n+n2n−m 的结果是( )
A. m+n
B. n−m
C. m−n
D. −m−n
4. 若 a、b、c 为△ABC 的三边长,且满足|a-4|+b−2=0,则 c 的值可以为( )
A. 5
B. 6
C. 7
D. 8
5. 如图,在 Rt△ABC 中,∠C=90°,以顶点 A 为圆心,适当 长为半径画弧,分别交 AC,AB 于点 M,N,再分别以点
第 2 页,共 15 页
20. 如图,BE=CF,DE⊥AB 的延长线于点 E,DF⊥AC 于 点 F,且 DB=DC, 求证:AD 是∠BAC 的平分线.
21. 如图,等边△ABC 中,E 是 AB 上任意一点,以 CE 为边作等 边△ECD,连接 AD,试判断 AD 与 BC 的位置关系,并证明 你的结论.
相关文档
最新文档