概率论的发展及应用
概率论的发展简介及在生活中的应用改

论文题目概率论的发展简介及在生活中的应用摘要概率论是一门研究不确定性和随机性等现象的一门数学,其发展过程从最初的研究赌博的随机性开始、最终形成了当代的概率理论这门重要的数学分支,研究概率论发展的历史,有助于更好的理解和学习概率论,并在实际的生活和诸多科技领域更好的应用这门数学科学。
对此本文通过收集相关的文献资料对概率论的发展历程进行了梳理,从概率论的起源到发展,再到成熟进行了全面的论述,最后从生活应用的角度来阐述概率论和现代生活紧密的联系,并从经济管理决策、中奖问题、优化选择以及抽签公平问题和食品质量设计方案中等角度进行了深入的剖析。
关键字:概率论;发展历程;应用Probability theory is a mathematical study of an uncertain and stochastic phenomenon, its development process begins, eventually forming probability of modern theory of this branch of mathematics from the randomness of gambling first, study the history of the development of probability theory, contribute to a better understanding and learning the theory of probability, application and better in real life and in many areas of science and technology of the mathematical sciences. In this paper, through the collection of relevant literature and summarizes the development history of probability theory, from the origin to the development of probability theory, and then to the mature are discussed in this paper, the application perspective of probability theory and modern life closely, and from the optimization selection and draw fairness and food quality design scheme of medium angle economic management decision, winning question, has carried on the thorough analysis.Keywords: Probability theory Development Application第一章引言.................................... 错误!未定义书签。
概率的起源和发展

概率的起源和发展引言概述:概率是数学中一个重要的概念,用于描述事件发生的可能性。
它的起源可以追溯到古代的赌博和游戏,而在数学上的发展则经历了漫长而复杂的过程。
本文将从概率的起源、古代概率理论、现代概率理论、概率在实际应用中的重要性以及未来概率的发展趋势等五个方面,详细阐述概率的起源和发展。
一、概率的起源1.1 古代赌博和游戏古代人类在娱乐活动中开始意识到事件的不确定性,并尝试用赌博和游戏来解释和预测未来事件的结果。
1.2 古代中国的卜筮古代中国的卜筮也是一种预测未来的方式,通过观察天象、卜卦等方法,人们试图揭示未来事件发生的概率。
1.3 古希腊的概率思想古希腊的哲学家开始思量事件发生的原因和规律,提出了一些关于概率的理论,如亚里士多德的偶然性理论。
二、古代概率理论2.1 法国数学家帕斯卡尔的概率理论帕斯卡尔在17世纪提出了著名的概率理论,他通过赌博问题和几何概率的研究,建立了现代概率理论的基础。
2.2 伯努利家族的贡献伯努利家族在18世纪对概率理论进行了深入研究,提出了伯努利试验和大数定律等重要概念,为概率理论的发展奠定了基础。
2.3 概率论的数学公理化20世纪初,概率论开始进行数学公理化的研究,由科尔莫哥洛夫和冯诺依曼等数学家提出了概率公理系统,使概率论成为一门严谨的数学学科。
三、现代概率理论3.1 随机变量和概率分布现代概率理论引入了随机变量和概率分布的概念,通过数学模型描述事件发生的概率,并进行概率计算和推理。
3.2 统计学和概率论的结合统计学的发展为概率论提供了实证分析的方法,通过采集和分析样本数据,判断总体的概率分布和参数。
3.3 蒙特卡洛方法的应用蒙特卡洛方法是一种基于随机摹拟的计算方法,广泛应用于金融、工程、物理等领域,通过大量的随机抽样计算出事件发生的概率。
四、概率在实际应用中的重要性4.1 金融风险管理概率理论在金融领域的应用尤其重要,通过建立风险模型和计算概率分布,匡助机构评估和管理金融风险。
推荐-概率论的发展简介及其在生活中的若干应用 精品

题目:概率论的发展简介及其在生活中的若干应用摘要概率作为数学的一个重要部分,在生活中的应用越来越广,同样也在发挥着越来越广泛的用处。
加强数学的应用性,让学生用数学知识和数学的思维方法去看待,分析,解决实际生活问题,在数学活动中获得生活经验。
这是当前课程改革的大势所趋。
加强应用概率的意识,不仅仅是学习的需要,更是工作生活必不可少的。
人类认识到随机现象的存在是很早的,但书上讲的都是理论知识,我们不仅仅要学好理论知识,应用理论来实践才是重中之重。
学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。
关键字:概率论实践解决问题AbstractProbability as an important part of mathematics, in the life of the used more and more widely, also plays a more and more extensive use. Strengthens mathematics applied, lets the student with mathematics knowledge and mathematical thinking method to treat, analysis, solve practical life in mathematics activities, gain life experience. This is the current trend of curriculum reform. Strengthen the consciousness of applied probability, not just learning, but also the need of work life indispensable. People realize how random phenomena exists is early on, but telling the theoretical knowledge, we should not only learn theory knowledge, the application of theory to practice is the most important. Learn probability, and applied probability knowledge solving realistic problem is already a life we necessary acplishment.Key words: probability practice to solve problems目录一前言 (1)二概率论的发展简史 (2)1早期的概率现象 (2)2对早期概率论的发展有过重要贡献的数学家 (4)3成熟中的概率论 (5)三概率在生活中的应用 (7)1.在经济管理决策中的应用 (8)2.在经济损失估计中的应用 (10)3.在求解最大经济利润问题中的应用 (10)4.在经济预测中的应用 (11)5.在经济保险问题中的应用 (12)6概率论中多元统计方法在起义经营管理中的应用 (13)7概率在中奖问题中的应用 (14)8概率在优化选择中的应用 (14)9概率与选购方案的综合应用 (15)10概率与设计方案的的综合应 (16)四 参考文献 (18)五 致谢 (19)一 前言概率论是一门与现实生活紧密相连的学科,不过大多数人对这门学科的理解还是很平凡的:投一枚硬币,0.5 的概率正面朝上,0.5 的概率反面朝上,这就是概率论嘛。
现代概率论的理论发展与应用

砉墨Ⅵ㈦一聪现代概率论的理论发展与应用杨文娟1朱兰芝2.(1.石家庄信息工程职业学院基础部河北石家庄0500162.石家庄职工大学河北石家庄050041)[籀蔓】介绍现代概率论的一些主要理论,并综述它们在各方面的应用情况。
[关键词]概率论布朗运动鞅随机积分中图分类号:021文献标识码:^文章编号:1671--7597(2008)0610102--01一、=J I曹在20世纪初期,作为概率论历史上一个重要发展阶段的拉酱拉斯的概率论被公理化的概率论所代替,此后,概率论的研究主要采用测度论方法,并取得丫一系列理论上的鼋犬突破,开创了现代概率论的新时期。
:、现代曩率论的主一理论研究(一)布朗运动的研究布朗运动(B r ow n m ot i on)是一类特殊的马尔可夫过程,具有连续时间参数和连续状态空间,是一个最基本、最简单同时又是最重要的随机过程。
布朗运动最初由英国生物学家布朗(R.Br ow n)于1827年根据观察花粉微粒在液面上作“无规则运动”的物理现象而提出的。
爱因斯坦(E i nst ei n)于1905年首次对这一现象的物理规律给出了一种数学描述,使这一课题有了显著的发展。
这方面的物理理论工作在S m ol uchow ski,Fokker,Pl anck,B ur ger,Fur t h O r n st ei n,U bl e nbeck等人的努力下迅速发展起来了。
但在数学方面却由于精确描述太用难而进展缓慢,直到1918年才由维纳(W i ene r)对这一现象在理论上作出了精确的数学描述,并进一步研究了布朗运动轨道的性质,提出了在布朗运动空间卜定义测度与积分。
这些工作使对布朗运动及其泛函的研究得到迅速而深入的发展,并逐步渗透到概率论及数学分析的各个领域中,使之成为现代概率论的重要部分。
(二)随机过程“鞅”的研究鞅(m a r t i nga]e)是另一类重要的随机过程。
鞅的背景来源_f公平赌博。
概率论的发展史

概率论的发展史摘要:概率论是一门研究随机现象的数学规律的学科。
它起源于十七世纪中叶,当时刺激数学家们首先思考概率论的问题,却是来自赌博者的问题。
费马、帕斯卡、惠更斯对这个问题进行了首先的研究与讨论,科尔莫戈罗夫等数学家对它进行了公理化。
后来,由于社会和工程技术问题的需要,促使概率论不断发展,隶莫弗、拉普拉斯、高斯等著名数学家对这方面内容进行了研究。
发展到今天,概率论和以它作为基础的数理统计学科一起,在自然科学,社会科学,工程技术,军事科学及生产生活实际等诸多领域中起着不可替代的作用。
关键词:概率论公理化随机现象赌博问题17世纪资本主义经济的发展和文艺复兴运动的兴起,给欧洲数学注入了新的活力,欧洲数学家们开始以前所未有的热情投入到数学科学的研究中去。
在这一个世纪里,他们不仅建立起了以解析几何和微积分为代表的变量数学,进一步研究现实世界中的必然现象及其规律,而且还开始了对偶然现象的研究,这就是所谓的概率论。
记得大数学家庞加莱说过:“若想预见数学的将来,正确的方法是研究它的历史和现状。
”一、概率论的起源概率论是一门研究随机现象的数学规律的学科。
十分有趣的是,这样一门重要的数学分支,竟然起源于对赌博问题的研究。
1653年的夏天,法国著名的数学家、物理学家帕斯卡(Blaise Pascal,1623——1662)前往浦埃托镇度假,旅途中,他遇到了“赌坛老手”梅累。
为了消除旅途的寂寞,梅累向帕斯卡提出了一个十分有趣的“分赌注”的问题。
问题是这样的——一次,梅累与其赌友赌掷骰子,每人押了32个金币,并事先约定:如果梅累先掷出三个6点,或其赌友先掷出三个4点,便算赢家。
遗憾的是,这场赌注不算小的赌博并未能顺利结束。
当梅累掷出两次6点,其赌友掷出一次4点时,梅累接到通知,要他马上陪同国王接见外宾。
君命难违,但就此收回各自的赌注又不甘心,他们只好按照已有的成绩分取这64个金币。
这下可把他难住了。
所以,当他碰到大名鼎鼎的帕斯卡,就迫不及待地向他请教了。
概率论的起源与发展

概率论的起源与发展
1概率论起源
概率论是一门研究不确定性理论的学科,旨在提供聪明的方法来分析不确定性。
概率论起源于17世纪,当时很多知识都是以威尔士随机数字模型的形式表达出来的,但概率论的发展是一个漫长的过程。
2主要发展史
(1)早期的概率论是由法国科学家斯特劳斯·马夫斯·贝尔(Stroëlle de Maupertuis)首先提出的。
他的著作《大自然的规律》中提出了概率理论的概念,用以解释大自然中存在的相互作用。
(2)1730年,拉斐尔·康登·富勒(Laplace)提出量化概率模型,概率论向形式化方向发展。
(3)18纪和19纪,科学家和数学家为概率论提供了更全面的理论基础,为概率论做出了贡献。
他们帮助概率论形成了一种独立学科。
(4)20世纪初,数学家保罗·莫菲斯和卡尔·柯本基克加深了概率的理论,并将它们应用到了实际问题。
1930年,普拉特·穆勒引入了统计方法,在大数定律中提出了可积性现象论证。
3现状
现在,概率论能够用于构建模型,分析复杂的系统及其运行情况,以及协助决策。
它在诸多领域都有广泛的应用,其中包括商业、
经济学、金融、社会科学等。
概率论也可以用于18大赌博游戏,例如赌徒的概率计算、黑板博弈以及弱势认知博弈。
概率论的产生、发展、现状

n
到包括 p q
m
n -m
项为止的各项之和。
2.概率论的发展—古典概率论的完善与分析概率论的产生
与 Jakob Bernoulli同时代研究概率论的数学家是 Abraham De Moivre 。他原籍法 国,后移居英国,1697 年成为皇家学会会员。他在 1711 年写就《抽签的测量》一文, 1718 年扩充为《机会的学说》是概率论 早期著作之一。书中首次定义了独立事件的乘 法定理,给出了二项分布公式,发现二项式 1 1 的中项与各项之和 2 之间的比例关
算术平均 X 是应取的估计,然后去找误差密度 f 以迎合这一点,即找这样的 f,使由上式决
1 2 f x e 2 h 才能成立,这就是正态分布 定的 就是 X 。Guass 证明这只有在 2 h
高斯的这项工作对后世的影响极大, 它使正态分布同时有了 “高斯分布” 的名称。 N0, h 。 后世之所以将最小二乘法的发明权归于他,也正是因为这项工作。除此之外还有 Laplace 的学生 Poisson 对分析概率论的进一步研究,其中包括 1837 年出版的《关于犯罪和民事判 决的研究》 。
n
2 n Abraham De Moivre 还最早使用了现在称为概率积分的公式
0
e x dx
2
2
1733 年又用阶乘的近似公式导出正态分布的频率曲线
y ce -hx
2
( c, h 为常数) 。关于 Jakob Bernoulli 的大数定律 Abraham De Moivre 对 p=1/2 的情 形证明了 n np / np1 - p 渐进地服从正态分布。 该结果后来由 Laplace 推广到一般 的 p(0<p<1) ,被称为 Moivre-Laplace 极限定理。 18 世纪的概率论还要提两项结果。一是英国数学家 J.Bayes 在《机会学说问题试解》 中建立了条件概率的 Bayes 定理: 当以知原因 c 产生结果 E 的概率是 PC E 时, 如果已给出 原因的先验概率(事前概率)p(c) ,则在知道结果 E 后原因 c 的条件概率(后验概率)是
概率论发展简史及应用

概率论发展简史及应用
概率论发展简史及应用是指对概率论的历史发展和应用进行系统性的介绍和探讨。
概率论是一门研究随机现象的数学学科,广泛应用于各个领域,如经济、金融、医学、工程等。
概率论的发展可以追溯到17世纪的法国数学家帕斯卡和费马,随后被欧拉、伯努利等人进一步发展。
19世纪初,拉普拉斯和高斯提出了概率论的公理化理论,并推动了概率论的数学化发展。
20世纪初,渐近理论和信息论等新的发展使概率论得到了广泛的应用。
近年来,随着大数据和机器学习等技术的兴起,概率论也得到了广泛的应用和发展。
本文将详细介绍概率论的发展历程和应用,以及概率论在各个领域中的具体应用案例。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论的发展及应用
zgq
摘要:概率论的发展,给人们的生活带来了十分重大的影响,本文简述了概率论的发展历史以及概率论在现实生活中的应用。
关键词:不确定性;发展;应用。
从掷硬币、掷骰子和玩扑克等简单的机会游戏,到复杂的社会现象;从婴儿的诞生,到世间万物的繁衍生息;从流星坠落,到大自然的千变万化……,我们无时无刻不面临着不确定性和随机性. 如同物理学中基本粒子的运动、生物学中遗传因子和染色体的游动、以及处于紧张社会中的人们的行为一样,自然界中的不定性是固有的。
这些与其说是基于决定论的法则,不如说是基于随机论法则的不定性现象,已经成为自然科学、生物科学和社会科学理论发展的必要基础。
从亚里士多德时代开始,哲学家们就已经认识到随机性在生活中的作用,他们把随机性看作为破坏生活规律、超越了人们理解能力范围的东西。
他们没有认识到有可能去研究随机性,或者是去测量不定性。
将不定性数量化,来尝试回答这些问题,是直到20世纪初叶才开始的。
还不能说这个努力已经十分成功了,但就是那些已得到的成果,已经给人类活动的一切领域带来了一场革命。
这场革命为研究新的设想,发展自然科学知识,繁荣人类生活,开拓了道路。
而且也改变了我们的思维方法,使我们能大胆探索自然的奥秘。
下面,来看一下这门将“不定性数量化”的科学——概率论与数理统计的发展及应用。
概率论发展简史
17世纪,正当研究必然事件的数理关系获得较大发展的时候,一个研究偶然关系的数量关系的数学分支开始出现,这就是概率论。
早在16世纪,赌博中的偶然现象就开始引起人们的注意,数学家卡丹诺首先察觉到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性,卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数,据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔利亚,也曾做过类似的实验。
在概率问题早期的研究中,逐步建立了事件、概率和随机变量等重要概念以及它们的基本性质。
后来由于许多社会问题和工程技术问题,如:人口统计、保险理论、天文观测、误差理论、产品检验和质量控制等。
这些问题的提法,均促进了概率论的发展,从17世纪到19世纪,贝努利、隶莫弗、拉普拉斯、高斯、马尔可夫等著名数学家都对概率论的发展做出了杰出的贡献。
在这段时间里,概率论的发展简直到了使人着迷的程度。
但是,随着概率论中各个领域获得大量成果,以及概率论在其他基础学科和工程技术上的应用,由拉普拉斯给出的概率定义的局限性很快便暴露了出来,甚至无法适用于一般的随机现象。
因此可以说,到20世纪初,概率论的一些基本概念,诸如概率等尚没有确切的定义,概率论作为一个数学分支,缺乏严格的理论基础。
谈及概率论的产生,我们必须得提及瑞士数学家族——贝努利家族的几位成员,特别是雅可布·贝努利(Jacob Bernoulli,1654-1705),概率论的第一本专著是1713年问世的雅可布·贝努利的《推测术》。
经过二十多年的艰难研究,贝努利在该书中,表述并证明了著名的“大数定律”。
所谓“大数定律”,简单地说就是,当实验次数很大时,事件出现的频率与概率有较大偏差的可能性很小。
这一定理第一次在单一的概率值与众多现象的统计度量之间建立了演绎关系,构成了从概率论通向更广泛应用领域的桥梁。
之后,法国数学家隶莫弗把概率论又作了巨大推进,他在1718年发表的《机遇原理》一书中提出了概率乘法法则,以及“正态分布”和“正态分布律”的概念,为概率论的“中心极限定理”建立奠定了基础。
值得一提的是,隶莫弗还于1730年出版的概率著作《分析杂录》中使用了概率积分,得出了n阶乘的级数表达式。
他还于1725年出版专门论著,把概率论首次应用于保险事业上。
1760年,法国数学家蒲丰(Comte de Buffon,1707-1788)的《偶然性的算术试验》出版,他把概率和几何结合起来,开始了几何概率的研究。
著名的投针实验便是他于1777年提出的,利用这一实验,他采取概率的方法尝试求求圆周率π的近似值。
19世纪,法国数学家拉普拉斯(Simon Laplace ,1749-1827)、德国数学家高斯(Gauss,1777-1855)、法国数学家泊松(S.D.Poisson,1781-1840)等为概率论建方完整的体系和更为广泛的应用做了进一步奠基性工作。
特别是拉普拉斯,他是严密的、系统的科学概率论的最卓越的创建者,在1812年出版的《概率的分析理论》中,拉普拉斯以强有力的分析工具处理了概率论的基本内容,实现了从组合技巧向分析方法的过渡,使以往零散的结果系统化,开辟了概率论发展的新时期。
拉普拉斯有一句名言,现在不少涉及概率论在中小学数学教学中的意义的论文都引用这句话,这句话是:“生活中最重要的问题,其中大多数只是概率问题”。
为概率论确定严密的理论基础的是数学家柯尔莫哥洛夫。
1933年,他发表了著名的《概率论的基本概念》,提出了公理化结构,这个结构明确定义了概率论发展史上的一个里程碑,为以后的概率论的迅速发展奠定了基础。
概率论的应用
概率论自问世之后,即充分显示了它巨大的应用价值。
当时,牛痘在欧洲大规模接种后,曾因副作用引起争议。
丹尼尔·贝努里(Daniel Bernoulli,1700—1782)根据大量的统计资料,作出了种牛痘能延长人类平均寿命三年的结论,消除了一些人的恐惧和怀疑;欧拉(Euler,1707-1783)将概率论应用于人口统计和保险,写出了《关于死亡率和人口增长率问题的研究》,《关于孤儿保险》等文章;泊松将概率应用于射击的各种问题的研究,提出了《打靶概率研究报告》等等。
也正因为概率论有其巨大的应用价值,使得它成为18和19两个世纪的热门学科之一,几乎所有的科学领域,包括神学等社会科学都企图借助于概率论去解决问题。
发展到今天,概率论和以它作为基础的数理统计学科一起,在自然科学,社会科学,工程技术,军事科学及生产生活实际等诸多领域中都起着不可替代的作用。
例如,天气预报的制作就有一种统计预报法,它是在大气动力学、热力学、气候学和预报员时间经验的基础上,应用概率论和数理统计方法,利用电子计算机,根据历史资料制作天气预报。
用这种方法制作的天气预报称为概率天气预报,即用概率值表示预报量出现可能性的大小,它所提供的不是某种天气现象的“有"或"无”,某种气象要素值“大”或“小”,而是天气现象出现的可能性有多大。
如对降水的预报,传统的天气预报一般预报有雨或无雨,而概率预报则给出可能出现降水的百分数,百分数越大,出现降水的可能性越大。
概率天气预报既反映了天气变化确定性的一面,又反映了天气变化的不确定性和不确定程度。
同样,概率论在经济中也扮演着重要的角色,不同于300年前的掷硬币,现在的概率论更多的被应用在数学建模和保险精算中,来确保金融行业的盈利水平。
概率论还被应用与企业生产管理中,丰田著名的质量管理体系的理论基础就是概率论。
除此之外,概率论还在我们生活中的其他方面发挥着重大的作用。
举几个与我们生活密切相关的例子。
大学英语四级考试是全面检验大学生英语水平的一种考试,具有一定难度,包括听力、语法结构、阅读理解、填空、写作等。
除写作15分外,
其余85道题是单项选择题,每道题有A、B、C、D四个选项,这种情况使个别学生产生碰运气和侥幸心理,那么靠运气能通过四级英语考试吗?答案是否定的。
假设不考虑写作15分,及格按60分算,则85道题必须答对51题以上,可以看成85重贝努利试验。
结果概率非常小,相当于1000亿个靠运气的考生中仅有0.874人能通过。
所以靠运气通过考试是不可能的。
因此,我们在生活和工作中,无论做什么事都要脚踏实地,对生活中的某些偶然事件要理性的分析、对待。
一位哲学家曾经说过:“概率是人生的真正指南”。
随着生产的发展和科学技术水平的提高,概率已渗透到我们生活的各个领域。
众所周知的保险、邮电系统发行有奖明信片的利润计算、招工考试录取分数线的预测甚至利用脚印长度估计犯人身高等无不充分利用概率知识。
如今“降水概率”已经赫然于电视和报端。
有人设想,不久的将来,新闻报道中每一条消息旁都会注明“真实概率”,电视节目的预告中,每个节目旁都会写上“可视度概率”。
另外,还有西瓜成熟概率、火车正点概率、药方疗效概率、广告可靠概率等等。
又由于概率是等可能性的表现,从某种意义上说是民主与平等的体现,因此,社会生活中的很多竞争机制都能用概率来解释其公平合理性。
总之,由于随机现象在现实世界中大量存在,概率必将越来越显示出它巨大的威力。
参考文献:
[1]尹庸斌概率趣谈[M]。
成都:四川科学技术出版社;
[2]吴传志应用概率统计[M]。
重庆:重庆大学出版社;
[3]王勇概率论与数理统计。
黑龙江:科学出版社。