平面向量的数乘运算
7.1.4平面向量的数乘

3a与a的方向相反 3a 3 a
一、向量的数乘运算的定义:
实数与向量a的积是一个确定的向量,记为 a,
其方向和长度规定如下: (1) a a ; (2) 当 0, a与a 的方向相同;当 0, a的方向与a的方向相反;当 0, a 0.
因为O分别为AC,BD的中点,所以 1 1 1 1 AO AC (a+b)= a+ b, 2 2 2 2 1 1 1 1 OD BD (b − a)= a+ b, 2 2 2 2
AO、 OD 可以用向量a,b线性表示.
运用知识
强化练习
计算: (1)3(a − 2 b) − 2(2 a+b); (2)3 a − 2(3 a − 4 b)+3(a − b).
例1:计算下列各式
(1)(3) 4a (2)3(a b ) 2(a b ) a
(3)(2a 3b c ) (3a 2b c )
ad????b试用ab表示向量解ac????abbd????b?a因为o分别为acbd的中点所以1122????????aoac1212abab1122????????odbd12?12b?aab1212ab和12?12ab都叫做向量ab的线性组合或者说aood????????可以用向量ab线性表示
向量的减法
一、定义(利用向量的加法定义)。 二、几何意义(起点相同,由减向量的终点 指向被减向量的终点)。
向量的数乘
一、①λ
a 的定义及运算律 b=λa 向量a与b共线
②向量共线定理 (a≠0)
二、定理的应用: 1. 证明 向量共线 2. 证明 三点共线: AB=λBC A,B,C三点共线
平面向量的数乘运算

平面向量的数乘运算平面向量的数乘运算是向量的一个基本运算。
在实际生活和工作中,平面向量数乘运算经常用来求出向量的长度和方向,计算两个向量之间的关系,解决各种几何问题等等。
下面我们就来详细了解平面向量的数乘运算。
1.定义对于一个数k和一个平面上的向量A,我们定义向量kA为长度为|k|倍的向量,且与A的方向相同(若k>0)或相反(若k<0)。
即kA=k*|A|*u,其中|A|为向量A的长度,u为A的单位向量,k为实数。
2.性质平面向量的数乘运算有以下基本性质:(1)交换律:kA = Ak;(2)结合律:k(lA) = (kl)A;(3)分配律:(k+l)A = kA + lA;(4)数乘0得零向量:0A = 0;(5)数乘-1得反向量:(-1)A = -A。
其中,(1)和(2)很容易证明,(3)可以利用向量的加法证明,(4)和(5)也很显然。
3.向量的长度我们知道,向量的长度表示为|A|,表示从向量的起点到终点的距离。
对于向量A来说,它的数乘kA的长度为|kA|=|k||A|,即kA的长度等于k乘以A的长度。
因此,我们可以利用向量的数乘运算来求出一个向量的长度,或者利用向量的长度来计算它的数乘。
4.向量的方向向量的方向是向量自身的属性,一般用单位向量来表示。
对于一个向量A来说,它的单位向量为u=A/|A|,即除以向量的长度之后所得到的向量。
对于向量kA来说,它与A的方向相同(若k>0)或相反(若k<0),因此kA的单位向量为u=A/|A|。
因此,我们可以利用向量的数乘运算来求出一个向量的方向,或者利用向量的方向来计算它的数乘。
5.应用平面向量的数乘运算在实际生活和工作中有很多应用,比如:(1)计算两个向量之间的关系。
如果向量A和向量B之间的夹角为θ,则有A·B=|A||B|cosθ,其中·表示向量的点积。
如果将向量A数乘k,向量B数乘l,则有(kA)·(lB)=kl(A·B),即两个向量的数乘之后再点乘等于原向量点乘之后再数乘。
平面向量数乘的定义及运算法则

平面向量数乘的定义及运算法则一、平面向量数乘的定义a平面向量数乘是指将一个实数与一个向量相乘的运算。
给定一个向量,记实数为k,则该数乘运算表示为k。
二、数乘运算的几何意义a1.若k>0,则k的几何意义是将向量的长度放大k倍,并且与的方向相同。
a2.若k<0,则k的几何意义是将向量的长度放大|k|倍,并且与的方向相反。
a3.若k=0,则k的几何意义是零向量,即长度为零的向量。
三、数乘运算的性质a1.结合律:对于任意实数k1、k2和向量,有k1(k2)=(k1k2)。
a2.分配律:对于任意实数k和向量、**b**,有k(+**b**)=k+k**b**。
a3.分配律:对于任意实数k1、k2和向量,有(k1+k2)=k1+k2。
a4.数乘1的性质:对于任意向量,有1=。
a5.数乘0的性质:对于任意向量,有0=**0**。
四、实例分析现在我们通过一个实例来理解平面向量数乘的定义及运算法则。
例1:已知向量**a**=(2,3),计算3**a**和-2**a**。
解:根据定义,我们有:a-3=3(2,3)=(6,9)a--2=-2(2,3)=(-4,-6)a所以,3=(6,9),-2=(-4,-6)。
a根据几何意义,3的长度是向量长度的3倍,并且与方向相同;-2的长度是向量长度的2倍,并且与方向相反。
五、总结平面向量数乘的定义及运算法则为:-数乘运算是将一个实数与一个向量相乘的运算。
-数乘运算的几何意义是改变向量的长度和方向。
-数乘运算满足结合律、分配律,数乘1的性质和数乘0的性质。
-通过实例分析可以更好地理解平面向量数乘的概念和运算法则。
在向量的数乘运算中,需要注意实数与向量的顺序以及符号的正确性,以确保结果的准确性。
掌握平面向量数乘的定义及运算法则,能够在解决相关问题时得到正确的结果,并应用到更复杂的向量运算中。
平面向量的运算法则

平面向量的运算法则平面向量是二维的有方向和大小的量,通常用箭头表示。
在平面上,我们可以进行平面向量的加法、减法、数乘、点乘和叉乘等运算,下面将详细介绍这些运算法则。
1.平面向量的加法:设有平面向量A和B,表示为⃗A和⃗B,其加法运算为:⃗A+⃗B=⃗C,其中C是由A和B的箭头所形成的三角形的对角线的向量。
加法满足以下性质:-交换律:⃗A+⃗B=⃗B+⃗A-结合律:(⃗A+⃗B)+⃗C=⃗A+(⃗B+⃗C)2.平面向量的减法:设有平面向量A和B,表示为⃗A和⃗B,其减法运算为:⃗A-⃗⃗B=⃗C,其中C是由A的箭头指向B的箭头所形成的三角形的对角线的向量。
3.平面向量的数乘:设有平面向量A和实数k,表示为⃗A和k,其数乘运算为:k⃗A=⃗B,其中B的大小等于A的大小乘以k,方向与A相同(若k>0),或相反(若k<0)。
数乘满足以下性质:- 结合律:k(l⃗A) = (kl)⃗A-分配律:(k+l)⃗A=k⃗A+l⃗A4.平面向量的点乘(数量积):设有平面向量A和B,表示为⃗A和⃗B,其点乘运算为:⃗A · ⃗B = ABcosθ,其中A和B的夹角θ的余弦值等于点乘结果与两个向量大小的乘积的商。
点乘满足以下性质:-交换律:⃗A·⃗B=⃗B·⃗A-结合律:(⃗A+⃗B)·⃗C=⃗A·⃗C+⃗B·⃗C-数乘结合律:(k⃗A)·⃗B=k(⃗A·⃗B)特殊情况下:-若⃗A与⃗B垂直,即⃗A·⃗B=0,则称⃗A与⃗B是正交的或垂直的。
-若⃗A和⃗B非零,且⃗A·⃗B>0,则夹角θ为锐角。
-若⃗A和⃗B非零,且⃗A·⃗B=0,则夹角θ为直角。
-若⃗A和⃗B非零,且⃗A·⃗B<0,则夹角θ为钝角。
5.平面向量的叉乘(向量积):设有平面向量A和B,表示为⃗A和⃗B,其叉乘运算为⃗A × ⃗B = nABsinθ⃗n,其中n为垂直于A和B所在平面的单位向量,θ为A和B 的夹角。
平面向量的数乘和运算律

平面向量的数乘和运算律一、平面向量的数乘和运算律1、向量的加法求两个向量和的运算,叫做向量的加法。
注:向量的和仍是一个向量;对于零向量与任一向量$\boldsymbol a$,有$\boldsymbol 0+\boldsymbol a=\boldsymbol a+\boldsymbol 0=\boldsymbol a$,即任意向量与零向量的和为其本身。
①常用结论$\boldsymbol 0+\boldsymbol a=\boldsymbol a+\boldsymbol 0=\boldsymbol a$,$|\boldsymbol a+\boldsymbol b|\leqslant |\boldsymbol a|+|\boldsymbol b|$。
当$\boldsymbol a$与$\boldsymbol b$同向时,$|\boldsymbol a+\boldsymbolb|=|\boldsymbol a|+|\boldsymbol b|$。
当$\boldsymbol a$与$\boldsymbol b$反向或$\boldsymbol a$,$\boldsymbol b$中至少有一个为$\boldsymbol 0$时,$|\boldsymbol a+\boldsymbol b|=$$|\boldsymbol a|-|\boldsymbol b|$(或$|\boldsymbol b|-|\boldsymbol a|$)。
②向量加法的运算律交换律:$\boldsymbol a+\boldsymbol b=\boldsymbol b+\boldsymbol a$。
结合律:$(\boldsymbol a+\boldsymbol b)+\boldsymbol c=\boldsymbola+(\boldsymbol b+\boldsymbol c)$。
2、向量的减法求两个向量差的运算,叫做向量的减法。
注:减去一个向量,相当于加上这个向量的相反向量,两个向量的差仍是向量。
平面向量的运算法则

平面向量的运算法则在数学中,平面向量是具有大小和方向的量,常用箭头表示。
平面向量有许多运算法则,包括相加、相减、数量乘法等。
1. 平面向量的表示方法平面向量通常用坐标表示,形式为 (x, y) 或 i*x + j*y,x、y分别表示向量在x轴和y轴上的分量,i和j是单位向量。
2. 平面向量的相加设有两个平面向量 A 和 B,A 的坐标表示为 (x1, y1),B 的坐标表示为 (x2, y2)。
则 A + B 的坐标表示为 (x1 + x2, y1 + y2)。
3. 平面向量的相减设有两个平面向量 A 和 B,A 的坐标表示为 (x1, y1),B 的坐标表示为 (x2, y2)。
则 A - B 的坐标表示为 (x1 - x2, y1 - y2)。
4. 平面向量的数量乘法设有一个平面向量 A,A 的坐标表示为 (x, y),k 为实数。
则 kA 的坐标表示为 (k*x, k*y)。
5. 平面向量的数量除法设有一个平面向量 A,A 的坐标表示为 (x, y),k 为非零实数。
则A/k 的坐标表示为 (x/k, y/k)。
6. 平面向量的数量积设有两个平面向量 A 和 B,A 的坐标表示为 (x1, y1),B 的坐标表示为 (x2, y2)。
两个向量的数量积为 A·B = x1*x2 + y1*y2,是一个数量。
7. 平面向量的向量积设有两个平面向量 A 和 B,A 的坐标表示为 (x1, y1),B 的坐标表示为 (x2, y2)。
两个向量的向量积为 A×B = x1*y2 - x2*y1,是一个向量。
8. 平面向量的模长一个平面向量 A 的模长表示为 |A|,计算公式为|A| = √(x^2 + y^2),其中 x 和 y 分别为向量 A 在 x 轴和 y 轴上的分量。
9. 平面向量的数量积与夹角设有两个非零平面向量 A 和 B,它们之间的夹角θ 满足以下公式:cosθ = (A·B) / (|A|*|B|)。
教案平面向量的数乘运算
平面向量的数乘运算教学目标:1. 理解平面向量的数乘运算概念。
2. 掌握平面向量的数乘运算规则。
3. 能够运用数乘运算解决实际问题。
教学内容:一、平面向量的数乘运算概念1. 引入实数与向量的乘积,即数乘运算。
2. 讲解数乘运算的定义及性质。
二、平面向量的数乘运算规则1. 讲解数乘运算的分配律。
2. 讲解数乘运算的结合律。
3. 讲解数乘运算的单位向量。
三、数乘运算在坐标系中的应用1. 讲解二维坐标系中向量的数乘运算。
2. 讲解三维坐标系中向量的数乘运算。
四、数乘运算与向量长度的关系1. 讲解数乘运算与向量长度的关系。
2. 讲解数乘运算在求向量长度中的应用。
五、数乘运算在向量运算中的应用1. 讲解数乘运算在向量加法中的应用。
2. 讲解数乘运算在向量减法中的应用。
教学方法:1. 采用讲授法,讲解数乘运算的概念、规则及应用。
2. 利用多媒体演示,直观展示数乘运算在坐标系中的应用。
3. 引导学生通过练习,巩固数乘运算的知识。
教学评估:1. 课堂练习:布置有关数乘运算的题目,检查学生掌握情况。
2. 课后作业:布置有关数乘运算的综合题目,要求学生在规定时间内完成。
3. 单元测试:进行有关数乘运算的测试,了解学生对知识的掌握程度。
教学资源:1. 教学PPT:展示数乘运算的概念、规则及应用。
2. 练习题库:提供丰富的数乘运算题目,供学生练习。
3. 坐标系软件:辅助展示数乘运算在坐标系中的应用。
教学建议:1. 在讲解数乘运算概念时,注意与实数的乘法进行对比,帮助学生理解。
2. 在讲解数乘运算规则时,举例说明,让学生更好地掌握。
3. 在数乘运算的应用部分,注重引导学生思考,提高解决问题的能力。
4. 针对不同程度的学生,合理安排课堂练习和课后作业,提高教学效果。
5. 及时进行教学评估,针对学生的薄弱环节进行有针对性的讲解和辅导。
平面向量的数乘运算教学内容:六、数乘运算与向量坐标的关系2. 举例说明数乘运算在坐标系中的应用。
平面向量的加法减法与数乘运算课件
数乘的运算性 质
结合律
$\lambda(\mu\mathbf{a})=(\lambda\mu)\mathbf{a}$。
分配律
$\lambda(\mathbf{a}+\mathbf{b})=\lambda\mathbf{a}+\lambd a\mathbf{b}$。
反交换律
$\lambda\mathbf{a}\cdot\mathbf{b}=\lambda(\mathbf{a}\cdot \mathbf{b})$。
2023
PART 04
平面向量的加法减法与数 乘运算的应用
REPORTING
在物理学中的应用
力的合成
电磁学中的向量表示
在物理中,向量加法可以应用于力的 合成,例如两个力的向量和可以表示 为它们的加法运算。
在电磁学中,向量加法可以用于表示 电磁场中的向量,例如电场强度和磁 场强度。
速度和加速度
速度和加速度是物理学中重要的向量 概念,通过向量加法可以计算出物体 在不同方向上的速度和加速度。
详细描述
2. 这类题目需要学生灵活运用所学知识,进行深入思考 和细致计算。
2023
REPORTING
THANKS
感谢观看
求解向量与轴的夹角
通过数乘运算可以求得向量与 轴之间的夹角。
投影问题
通过数乘运算可以求得一个向 量在另一个向量上的投影。来自 2023PART 03
平面向量的加法减法与数 乘运算的几何意 义
REPORTING
平面向量的几何意 义
01
02
03
04
向量表示为有向线段
向量的起点为线段的起点,终 点为线段的终点
向量的长度和方向
平面向量数乘运算的坐标表示
平面向量数乘运算的坐标表示我很乐意帮你撰写这篇关于平面向量数乘运算的坐标表示的文章。
在文章中,我将从简单的概念和基本原理开始,逐步深入探讨这个主题,帮助你更好地理解这一数学运算的重要性和应用。
1. 什么是平面向量?在开始探讨平面向量数乘运算的坐标表示之前,让我们先来回顾一下什么是平面向量。
平面向量是具有大小和方向的量,通常用箭头表示在平面上。
平面向量通常表示为 (x, y),其中 x 和 y 分别代表向量在 x 轴和 y 轴上的分量。
2. 数乘运算的定义数乘运算是指一个向量与一个标量相乘的操作。
在数乘运算中,向量的大小会根据标量的大小进行缩放,方向保持不变。
数乘运算的结果是一个新的向量。
3. 坐标表示平面向量数乘运算的坐标表示非常重要。
通过坐标表示,我们可以清晰地看到向量与标量相乘后的变化。
假设有向量a = (a1, a2),标量k,那么a与k的数乘结果可以表示为ka = (ka1, ka2)。
4. 数乘运算的性质数乘运算具有一些重要的性质,比如分配律、结合律等。
这些性质对于理解和运用数乘运算非常重要。
5. 应用举例平面向量数乘运算的坐标表示在几何学、物理学等领域有着广泛的应用。
比如在物理学中,力的合成就常常会用到平面向量的数乘运算,通过坐标表示可以清晰地看到力的变化和合成结果。
总结和回顾通过本文的介绍,我希望你能够更好地理解平面向量数乘运算的坐标表示。
数乘运算是向量运算中的重要部分,通过坐标表示可以更直观地看到向量的变化,这对于理解和运用向量运算有着重要的意义。
个人观点和理解在我的个人看来,平面向量数乘运算的坐标表示是向量运算中的基础而重要的一部分。
通过数乘运算,我们可以更清晰地看到向量的变化和作用,这有助于我们在实际问题中更好地运用向量概念。
希望你也能对这一主题有深刻的理解和灵活的运用。
在知识文章格式的指导下,我将本文按照序号标注的格式进行撰写,以便更好地呈现文章内容。
文章总字数大于3000字,不用出现字数统计。
高中数学第六章平面向量及其应用-向量的数乘运算课件及答案
【对点练清】 1.若典例 3 中条件“―A→B =2e1-8e2”改为“―A→B =2e1+ke2”且 A,B,D
三点共线,如何求 k 的值?
解:因为 A,B,D 三点共线,所以―A→B 与―B→D 共线.设―A→B =λ―B→D (λ∈R), ∵―B→D =―C→D -―C→B =2e1-e2-(e1+3e2)=e1-4e2,
2e2=3e1+6e2, ―B→D =―B→C +―C→D =-5e1+6e2+7e1-2e2=2e1+4e2, ―A→C =―A→B +―B→C =e1+2e2-5e1+6e2=-4e1+8e2. (1)―A→D =3(e1+2e2)=3―A→B ,∴―A→B 与―A→D 共线. (2)―B→C 与―B→D 不共线.(3)―C→D 与―A→C 不共线.
【对点练清】
1.设向量
a
=3i+2j,b
=2i-j,求13a
-b
-a
-23b
+(2b
-a
).
解:原式=13a -b -a +23b +2b -a
=13-1-1a +-1+23+2b =-53a +53b
=-53(3i+2j)+53(2i-j)=-53i-5j.
2.已知 a 与 b ,且 5x+2y =a ,3x-y =b ,求 x,y .
知识点一 向量的数乘运算 (一)教材梳理填空 1.向量的数乘运算:
定义
一般地,实数 λ 与向量 a 的积是一个_向__量___,这种运算叫做 向量的数乘,记作 λa
长度
|λa |=|λ||a |
λ=0
方 向
λ>0
λ=0
λa 的方向与 a 的方向_相__同___ λa =_0__
λa 的方向与 a 的方向_相__反___
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量的数乘运算知识点一:向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==. 知识点二:向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向量a 、()0b b ≠共线.知识点三:平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)知识点四:分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y ,()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλλ++⎛⎫⎪++⎝⎭.(当时,就为中点公式。
)1=λ知识点五:平面向量的数量积:⑴()cos 0,0,0180a b a b a b θθ⋅=≠≠≤≤.零向量与任一向量的数量积为0.⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥⇔⋅=.②当a 与b 同向时,a b a b ⋅=;当a 与b 反向时,a b a b ⋅=-;22a a a a ⋅==或a a a =⋅.③ab a b ⋅≤.⑶运算律:①a b b a ⋅=⋅;②()()()a b a b a b λλλ⋅=⋅=⋅;③()a b c a c b c +⋅=⋅+⋅.⑷坐标运算:设两个非零向量()11,a x y =,()22,b x y =,则1212a b x x y y ⋅=+. 若(),a x y =,则222a x y =+,或2a x y =+ 设()11,a x y =,()22,b x y =,则12120a b x x y y ⊥⇔+=.设a 、b 都是非零向量,()11,a x y =,()22,b x y =,θ是a 与b 的夹角,则121cos x x a b a bx θ⋅==+.数学 平面向量数量积的坐标表示同步达纲【同步达纲练习】 一、选择题.1.下列各向量中,与a =(3,2)垂直的向量是( )A. b =(3,-2)B. b =(2,3)C. b =(-4,6)D. b =(-3,2)2.若a =(2,3), b =(-4,7),则a 在b 方向上的投影为( ) A.3 B.513C. 565D. 65 3.已知向量a =(3,-2), b =(m+1,1-m),若a ⊥b ,则m 的值为( ) A.51 B.- 51C.-1D.1 4.已知向量|a |=5,且a =(3,x-1),x ∈N,与向量a 垂直的单位向量是( )A.(54,-53) B.(-54,53) C.(- 53,54)或(53,-54) D.( 54,-53)或(-54,53)5.若a =(cos α,sin α), b =(cos β,sin β),则( )A. a ⊥bB. a ∥bC.( a +b )⊥(a -b )D.( a +b )∥(a -b )6.已知a =(1, 3), b =(3+1, 3-1),则a 与b 的夹角为( )A.4πB.3π C.2π D.43π 7.以A(2,5),B(5,2),C(10,7)为顶点的三角形的形状是( ) A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.已知a =(-2,-1), b =(λ,1).若a 与b 的夹角为钝角,则λ的取值范围是( )A.(-21,+∞) B.(2,+∞) C.(-21,+∞)D.(-∞,- 21)9.已知a =(x 1,y 1),b =(x 2,y 2),则在下列各结论中为a ·b =0的充要条件的是( ) ①a =0或b =0或a ⊥b ②a ⊥b ③x 1y 1+x 2y 2=0 ④x 1x 2+y 1y 2=0A.①③B.②③C.③④D.①④10.已知a 与b 的夹角的余弦为-6563,则a ,b 的坐标可以为( ) A.(4,3),(-12,5)B.(3,4),(5,12)C.(-3,4),(5,-12)D.(-3,4),(-5,12)二、填空题1.已知a =(4,3), b =(-1,2),则a 与b 的夹角为 .2.已知a =(3,-5), b =(-4,-2),则a ·b = .3.顺次连接A(3,-1),B(1,2),C(-1,1),D(3,-5)的四边形是 .4.以原点和点A(5,2)为顶点作等腰直角三角形OAB ,∠B=90°,则向量AB 为 .5.已知向量a =(1,2), b =(x,1),分别求出当a +2b 与2a -b 平行和垂直时实数x 的值 .6.已知a =(2,1),b =(-1,-1), c =a +k b ,d =a +b ,c 与d 的夹角是4,则实数k 的值 .三、解答题1.已知a =(1,-2), b =(4,3)求(1) a 2 (2) b 2 (3) a ·b (4)(3a +2b )·(a -3b ) (5) a 与b 的夹角 (6) a 在b 上的投影2.已知:点A(0,3),B(6,3),AD ⊥OB ,垂足为D ,求点D 的坐标.3.已知A(-2,3),正方形OABC ,求点C 、点B 的坐标.【素质优化训练】1.已知a =(-1,0), b =(1,1), c =λa +μb (λ、μ∈R),若c ⊥a ,且|c |=2,试求λ、μ的值及向量c 的坐标.2.若a =(cos α,sin α), b =(cos β,sin β),用|k a +b |=3|a -k b |(k ∈R ,k ≠0),试用k 表示a ·b .3.已知a =(-3,-2), b =(-4,k),若(5a -b )·(b -3a )=-55,求实数k 的值.4.求与向量a =(3,-1)和b =(1, 3)的夹角相等,且模为2的向量c 的坐标.5.已知矩形ABCD 的相对顶点A(0,-1),C(2,5),且顶点B 到两坐标轴的距离相等,求顶点D 的坐标.【生活实际运用】如图,四边形ABCD 是正方形,P 是对角线BD 上的一点,PECF 是矩形,用向量法证明(1)PA=EF (2)PA ⊥EF证明:建立如图所示坐标系,设正方形边长为1,|OP |=λ,则A(0,1),P(22λ,22λ),E(1,22λ),F(22λ,0) ∴PA =(-22λ,1-22λ), EF =(22λ-1,- 22λ)(1)|PA |2=(-22λ)2+(1-22λ)2=λ2-2λ+1|EF |2=(22 λ-1)2+(-22λ)2=λ2-2λ+1∴|PA |2=|EF |2,故PA=EF (2) PA ·EF =(-22λ)( 22λ-1)+(1-22λ)(- 22λ)=0 ∴PA ⊥EF ∴PA ⊥EF. 【知识探究学习】已知A(0,a),B(0,b),(0<a <b),在x 轴的正半轴上求点C ,使∠ACB 最大,并求出最大值.解,设C(x,0)(x >0) 则CA =(-x,a), CB =(-x,b) 则CA ·CB =x 2+ab. cos ∠=22222bx ax ab x +++令t=x 2+ab 故cos ∠ACB=11)(1)(1222+•-+--t b a tb a ab当t 1=ab21即t=2ab 时,cos ∠ACB 最大值为b a ab +2.当C 的坐标为(ab ,0)时,∠ACB 最大值为arccos ba ab+2. 【同步达纲练习】一、1.C 2.C 3.B 4.D 5.C 6.A 7.B 8.A 9.D 10.C二、1.arccos 2552 2.-2 3.梯形 4.(-27,23)或(-23,-27) 5.21,27或-2 6. 23三、1.(1) a 2=5 (2) a 2=25 (3) a ·b =-2 (4)-121 (5)π-arccos 2552 (6)-522.D(2,1)3.C(3,2)或(-3,-2),B(1,5)或(-5,1) 【素质优化训练】1.λ=μ=2,C(0,2)或λ=μ=-2,C(0,-2)2. a ·b =kk 412+ 3.k=-10或k=6 4. c =(213+,213-)5.D 的坐标为(2191-,2195-),(2191+,2195+),(2115-,2117+),(2115+,2117-)。