浙江省绍兴市第一中学2019届高三上学期期末考试数学试题(含解析)

合集下载

绍兴市柯桥区高2020届2019学年第一学期高三数学期末试题及答案

绍兴市柯桥区高2020届2019学年第一学期高三数学期末试题及答案

11. 3 + i ; 12. 15 、 2 ;
2
15 3
13. 1 、 5 ; 29
14. 3 10 、 2 5 10
15. 3 ;
16. 8 + 16 3 、 −16 3
3
3
17. 3
三、解答题:本大题共 5 小题,共 74 分。解答应写出文字说明、证明或演算步骤。
18.解:(1) f (3 ) = sin(3 − ) − 2 3 sin2 3
2019 学年第一学期期末教学质量检测 高三数学试题
注意事项:
1.本科考试分为试题卷和答题卷,考生须在答题卷上答题。 2.答题前,请在答题卷的规定处用黑色字迹的签字笔或钢笔填写学校、班级、姓名和准考 证号。 3.选择题的答案须用 2B 铅笔将答题纸上对应题目的答案标号涂黑。 4.试卷分为选择题和非选择题两部分,共 4 页。全卷满分 150 分,考试时间 120 分钟。
2
2
3
………………10 分
所以 f (x) 的最小正周期为T = ,
………………12 分
由 2k − 2x + 2k + 得, k − 5 x k + ,
2
3
2
12
12
所以函数 f (x) 的递增区间是[k − 5 , k + ](k z) .
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分。在每小题给出的四个选项中,只有一 项是符合题目要求的。
1. 已知全集U = {x x −1} ,集合 A = {x x 0}, B = {x −1 x 1},则 ( U A) B =
A.{x −1 x 0}

浙江省绍兴市2019-2020学年高一上学期期末考试数学试题 Word版含解析

浙江省绍兴市2019-2020学年高一上学期期末考试数学试题 Word版含解析

2019学年绍兴市高一上期末试卷试题一、选择题1.已知集合{}1,2,3A =,{}2,4B =,则A B =( )A. {}2B. {}2,3C. {}1,2,3D.{}1,2,3,4【答案】D 【解析】 【分析】直接利用并集运算得到答案.【详解】{}1,2,3A =,{}2,4B =,则{}1,2,3,4A B =故选:D【点睛】本题考查了并集运算,属于简单题. 2.下列说法正确的是( ) A. 若MN ,则22log log M N =B. 若22M N =,则MNC. 2222log log M N =,则MND. 若22M N =,则1122M N --= 【答案】B 【解析】 【分析】依次判断每个选项:当0M N =≤时不成立,A 错误;B 正确;M N 也成立,C 错误;当MN 不成立,D 错误;得到答案.【详解】A. 若MN ,则22log log M N =,当0M N =≤时不成立,错误;B. 若22M N =,则MN ,正确;C. 2222log log M N =,则MN ,MN 也成立,错误; D. 若22M N =,则1122MN--=,当MN 不成立,错误;故选:B【点睛】本题考查了对数指数和幂运算,意在考查学生对于基本函数运算的理解. 3.值域为[)0,+∞的函数是( ) A. 12y x =B. 3xy =C. 2log y x =D.y =【答案】A 【解析】 【分析】依次计算值域:A 值域为[)0,+∞;B 值域为()0,∞+;C 值域为R ;D 值域为()0,∞+;得到答案.【详解】A. 12y x =,值域为[)0,+∞,满足;B. 3xy =值域为()0,∞+;C.2log y x =值域为R ;D. y =值域为()0,∞+; 故选:A【点睛】本题考查了函数的值域,意在考查学生的计算能力. 4.下列关系式中正确的是( ) A. sin11cos10sin78︒<︒<︒ B. sin78sin11cos10︒<︒<︒ C. sin11sin78cos10︒<︒<︒ D. cos10sin78sin11︒<︒<︒【答案】C 【解析】 【分析】化简得到cos10sin80︒=︒,利用函数sin y x =的单调性得到答案.【详解】cos10sin80︒=︒,sin y x =在锐角范围内单调递增,故sin11sin78sin80︒<︒<︒ 故选:C【点睛】本题考查了三角函数值的大小比较,意在考查学生对于函数单调性的应用.5.若2sin 3α=,0,2πα⎛⎫∈ ⎪⎝⎭,则tan α=( )A.5 B. 25-C.25D. 25±【答案】C 【解析】 【分析】 计算得到5cos α3,根据sin tan cos ααα=得到答案.【详解】2sin 3α=,0,2πα⎛⎫∈ ⎪⎝⎭,则5cos α,sin 25tan cos ααα==故选:C【点睛】本题考查了同角三角函数关系,意在考查学生的计算能力. 6.若()324log218xf x =+,则()3f =( )A. 22B. 312log 218+C. 30D. 332log 218+【答案】A 【解析】 【分析】取23x =,则2log 3x =,代入计算得到答案. 【详解】()324log218xf x =+,取23x =,则2log 3x =,()2334log 3log 21841822f =⋅+=+= 故选:A【点睛】本题考查了函数值的计算,意在考查学生的计算能力和转化能力. 7.函数()cos xf x x=的图象为( ) A. B.C. D.【答案】B 【解析】 【分析】确定函数为偶函数,排除CD ,当0x →时,()0f x >,排除A ,得到答案. 【详解】()cos xf x x =,()()cos cos x x f x f x x x--===-,偶函数,排除CD ; 当0x →时,()0f x >,排除A ; 故选:B【点睛】本题考查了函数图像的识别,取特殊值排除可以快速得到答案,是解题的关键. 8.存在函数()f x 满足:对任意的x ∈R 都有( ) A. ()sin sin 2f x x = B. ()sin 1f x x =+ C. ()2cos cos 1f x x =+D. ()cos 2cos 1fx x =+【答案】C 【解析】 【分析】取特殊值得到矛盾排除ABD ,存在()21f x x =+,验证满足条件得到答案.【详解】A. ()sin sin 2f x x =,取4x π=和34x π=得到21f =⎝⎭,21f =-⎝⎭,矛盾; B. ()sin 1f x x =+,取0x =和x π=得到()01f =,()01f π=+,矛盾; C. 存在函数()21f x x =+,则对任意的x ∈R ,()2cos cos 1f x x =+;D. ()cos 2cos 1fx x =+,取0x =和x π=得到()13f =,()11f =-,矛盾;故选:C【点睛】本题考查了函数的存在性问题,取特殊值排除可以快速得到答案,是解题的关键.9.如图,正方形ABCD 的边长为2,O 为边AD 中点,射线OP 绕着点O 按逆时针方向从射线OA 旋转至射线OD ,在旋转的过程中,记AOP ∠为x ,射线OP 扫过的正方形ABCD 内部的区域(阴影部分)的面积为()f x ,则下列说法错误的是( )A. 142f π⎛⎫=⎪⎝⎭ B. ()f x 在,2ππ⎛⎫⎪⎝⎭上为增函数 C. ()()4f x fx π+-=D. ()f x 图象的对称轴是2x π=【答案】D 【解析】 【分析】计算得到142f π⎛⎫= ⎪⎝⎭,A 正确;根据单调性得到B 正确,D 错误;根据对称性得到C 正确;得到答案. 【详解】当4x π=时,111122S =⨯⨯=,即142f π⎛⎫= ⎪⎝⎭,A 正确; 根据图像知:[]0,x π∈时,()f x 单调递增,故B 正确,D 错误; 正方形的面积为4,根据对称性得到()()4f x f x π+-=,C 正确;故选:D【点睛】本题考查了函数的应用,函数的单调性,对称性,意在考查学生对于函数性质的应用能力.10.设()()22212,0lg ,0x a x a x f x x x ⎧+++-≤=⎨->⎩,若函数()y f x =与函数()3y a x =-的图像有且只有3个公共点,则实数a 的取值范围是( ) A. ()[),10,-∞-⋃+∞ B. (]1,0- C. (][),10,-∞-+∞D. []0,1 【答案】A 【解析】 【分析】讨论0,0,0a a a =><三种情况,画出图像根据()lg 3x a x -=-的解的情况,得到方程()2410x a x a ++++=的解的情况,计算得到答案.【详解】当0a =时,易知()241,0lg ,0x x x f x x x ⎧++≤=⎨->⎩和0y =有三个交点,满足;当0a >时,()lg 3x a x -=-有一个解,如图所示;故()()222123x a x a a x +++-=-,即()2410x a x a ++++=在(],0-∞上有两个解.满足:()()()244101040a a a a ⎧∆=+-+>⎪+>⎨⎪-+<⎩解得1a >-,故0a >;当0a <时,()lg 3x a x -=-有两个解,如图所示;故()()222123x a x a a x +++-=-,即()2410x a x a ++++=在()0,∞+上有一个解.()()()22441280a a a ∆=+-+=++>恒成立.故10a +<,故1a <- ,或1a =-,验证不成立,舍去,故1a <- 综上所述:()[),10,a ∈-∞-⋃+∞ 故选:A【点睛】本题考查了根据函数零点求参数范围,分类讨论是常有的方法,需要熟练掌握. 二、填空题11.若2log 3a =2a =______. 3【解析】 【分析】利用对数指数运算法则计算得到答案. 【详解】log 3a =log 3223a ==3【点睛】本题考查了数值的计算,意在考查学生的计算能力. 12.已知4sin 5α,0,2πα⎛⎫∈ ⎪⎝⎭,则sin 2πα⎛⎫+= ⎪⎝⎭______.【答案】35【解析】 【分析】计算得到3cos 5α=,化简得到sin cos 2παα⎛⎫+= ⎪⎝⎭得到答案.【详解】4sin 5α,0,2πα⎛⎫∈ ⎪⎝⎭,则3cos 5α=,3sin cos 25παα⎛⎫+== ⎪⎝⎭故答案为:35【点睛】本题考查了三角函数化简,意在考查学生的计算能力. 13.已知扇形的圆心角为3π,半径为3,则该扇形的面积是______. 【答案】32π 【解析】 【分析】直接利用扇形的面积公式得到答案. 【详解】211392232S r ππα==⨯⨯= 故答案为:32π 【点睛】本题考查了扇形的面积,意在考查学生的计算能力.14.已知0a >,且1a ≠,函数()()221log 11x a x f x x x ⎧+≤⎪=⎨->⎪⎩,若()02f f ⎡⎤=⎣⎦,则a =______.【解析】 【分析】直接代入数据计算得到答案.【详解】()()221log 11xa x f x x x ⎧+≤⎪=⎨->⎪⎩,()()03log 22a f f f ⎡⎤===⎣⎦,故a =【点睛】本题考查了分段函数的计算,意在考查学生的计算能力. 15.设函数()sin 44f x x π⎛⎫=+⎪⎝⎭,90,16x π⎡⎤∈⎢⎥⎣⎦,若关于x 的方程()f x a =恰好有三个根()123123,,x x x x x x <<,则12323x x x ++=______.【答案】78π 【解析】 【分析】 根据90,16x π⎡⎤∈⎢⎥⎣⎦,得到54,442t x πππ⎡⎤=+∈⎢⎥⎣⎦,如图所示,根据对称性得到 128x x π+=,2358x x π+=,代入计算得到答案. 【详解】90,16x π⎡⎤∈⎢⎥⎣⎦,则54,442t x πππ⎡⎤=+∈⎢⎥⎣⎦,如图所示:则12t t π+=,233t t π+= 即121244,448x x x x ππππ+++=∴+=;23235443,448x x x x ππππ+++=∴+=()()123122372328x x x x x x x π++=+++=故答案为:78π【点睛】本题考查了函数零点问题,三角形函数对称性,意在考查学生的综合应用能力. 16.设关于x三个方程210x ax --=,220x x a --=,10a xe -=的实根分别为1x ,2x ,3x ,4x ,5x ,若13524x x x x x <<<<,则实数a 的取值范围是______.【答案】33⎛- ⎝⎭【解析】 【分析】画出函数1y x x =-,222x xy =-和ln y x =-的图像,计算交点3313,2A ⎛⎫ ⎪ ⎪⎝⎭,3313,2B ⎛⎫++ ⎪ ⎪⎝⎭,()1,0C ,根据图像得到答案. 【详解】210x ax --=,则1a x x =-;220x x a --=,则222x x a =-;10a xe -=,则ln a x =-.画出函数1y x x =-,222x xy =-和ln y x =-的图像,如图所示:当2122x x x x -=-时,即()()21220x x x ---=,故12313,1,13x x x =-==+计算知:3313,A ⎛⎫-- ⎪ ⎪⎝⎭,3313,B ⎛⎫++ ⎪ ⎪⎝⎭ ,()1,0C 根据图像知:要满足13524x x x x x <<<<,则330,2a ⎛⎫-∈ ⎪ ⎪⎝⎭故答案为:330,2⎛⎫- ⎪ ⎪⎝⎭【点睛】本题考查了方程解的大小关系求参数,画出函数图像是解题的关键. 三、解答题17.已知集合(){}2|220A x x a x a =-++=,{}22,5,512B a a =+-.(1)若3A ∈,求实数a 的值; (2)若{}5B C A =,求实数a 的值.【答案】(1)3a =(2)6a =-【解析】【分析】(1)化简得到()(){}|20A x x x a =--=和3A ∈,代入计算得到答案.(2)根据题意得到2512a a a +-=,计算得到2a =或6a =-,再验证互异性得到答案. 【详解】(1)因为3A ∈,()(){}|20A x x x a =--=,所以3a =.(2)因为{}5B C A =,所以A 中有两个元素,即{}2,A a =,所以2512a a a +-=, 解得2a =或6a =-,由元素的互异性排除2a =可得6a =-.【点睛】本题考查了根据元素与集合的关系,集合的运算结果求参数,意在考查学生对于集合性质的综合应用.18.已知函数()()()cos 20f x x ϕπϕ=+-<<的图象经过点1,62π⎛⎫⎪⎝⎭. (1)求ϕ的值以及函数()f x 的单调递增区间;(2)若()35f θ=,求cos 23πθ⎛⎫+ ⎪⎝⎭的值. 【答案】(1)23πϕ=-, ()54,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)35【解析】【分析】 (1)代入计算得到23πϕ=-,再计算单调性得到答案. (2)()23cos 235f πθθ⎛⎫=-= ⎪⎝⎭,化简得到2cos 2cos 233ππθθ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭得到答案. 【详解】(1)函数图象过点1,62π⎛⎫⎪⎝⎭,所以1cos 632f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭. 又因为0πϕ-<<,2333πππϕ-<+<,所以33ππϕ+=-,即23πϕ=-,所以()2cos 23f x x π⎛⎫=- ⎪⎝⎭. 由222223k x k πππππ+≤-≤+,k Z ∈,整理得5463k x k ππππ+≤≤+,k Z ∈, 所以()f x 的单调递增区间为()54,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)因为()23cos 235f πθθ⎛⎫=-= ⎪⎝⎭, 所以223cos 2cos 2cos 23335πππθθπθ⎛⎫⎛⎫⎛⎫+=-+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【点睛】本题考查了三角函数的解析式,单调性和三角恒等变换,意在考查学生对于三角函数知识 的综合应用.19.已知集合1,02x A y y x ⎧⎫⎪⎪⎛⎫==≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,(){}2lg B x y ax x ==-. (1)若A B ⊆,求实数a 的取值范围;(2)若A B =∅,求实数a 的取值范围.【答案】(1)()1,+∞(2)(],0-∞【解析】【分析】(1)计算得到(]0,1A =,(){}0B x x a =-<,讨论0a =,0a <和0a >三种情况计算得到答案.(2)根据(1)中讨论计算得到答案.【详解】(1)(]1,00,12x A y y x ⎧⎫⎪⎪⎛⎫==≥=⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,(){}(){}2lg 0B x y ax x x x a ==-=-<. ① 0,a B =∴=∅;② ()0,,0a B a <∴=;③ ()0,0,a B a >∴=.∵ A B ⊆,∴ ()1,a ∈+∞.(2)根据(1)中讨论知:∵ A B =∅,∴ (],0a ∈-∞.【点睛】本题考查了根据集合的包含关系和运行结果求参数,意在考查学生对于集合性质的综合应用.20.已知函数()()21ax f x a R x+=∈. (1)求()f x 的单调减区间;(2)设0a >,函数()22sin cos 1a x g x x =+,若对任意123,34x ππ⎡⎤∈⎢⎥⎣⎦,都存在实数2x ,使得()()12g x f x =成立,求a 的取值范围.【答案】(1)当0a ≤时,单调减区间为(),0-∞,()0,∞+.当0a >时,单调减区间为( ,.(2)36a ≥ 【解析】【分析】(1)讨论0a ≤和0a >两种情况,分别计算得到答案.(2)计算得到()13,35g x a a ⎡⎤∈⎢⎥⎣⎦,根据()g x 的值域是()f x 的值域的子集计算得到答案. 【详解】(1)()211ax f x ax x x+==+, 当0a ≤时,()1f x ax x=+的单调减区间(),0-∞,()0,∞+.当0a >时,()1f x ax x =+是对勾函数,单调减区间⎛⎫ ⎪ ⎪⎝⎭,0,a ⎛⎫ ⎪ ⎪⎝⎭.(2)23,34x ππ⎡⎤∈⎢⎥⎣⎦,0a >,2111cos ,cos ,2242x x ⎡⎤⎡⎤∈--∴∈⎢⎥⎢⎥⎣⎦⎣⎦ ()222sin 2cos 1cos 1a x a a x x g x ==-+++故()13,35g x a a ⎡⎤∈⎢⎥⎣⎦, ()1f x ax x =+是对勾函数,值域((),2,a -∞-+∞. ()22sin cos 1a x g x x =+,对任意123,34x ππ⎡⎤∈⎢⎥⎣⎦,都存在实数2x ,使得()()12g x f x =成立.所以()g x 的值域是()f x的值域的子集,所以1,363a a ≤∴≥. 【点睛】本题考查了函数的单调性和根据函数值域求参数,意在考查学生对于函数知识的综合应用.21.已知函数()()2,f x x ax a b a b R =+-+∈. (1)若2b =,()lg y f x =⎡⎤⎣⎦在71,2x ⎡⎤∈⎢⎥⎣⎦上有意义且不单调,求a 的取值范围; (2)若集合(){}0A x f x =≤,(){}11B x f f x ⎡⎤=+≤⎣⎦,且A B =≠∅,求a 的取值范围.【答案】(1)22a --<<-(2)0a ≤≤【解析】【分析】(1)根据题意得到二次函数()f x 的对称轴在71,2⎛⎫ ⎪⎝⎭之间,且()f x 在71,2⎡⎤⎢⎥⎣⎦上恒为正, ,计算得到答案. (2)设(),m n m n ≤为方程()1f x =的两个根,计算(){}|11B x m f x n =-≤≤-,得到()min2424a a a f x --=≥--,计算得到答案. 【详解】(1)当2b =时,()22f x x ax a =+-+,二次函数()f x 的对称轴在71,2⎛⎫ ⎪⎝⎭之间,且()f x 在71,2⎡⎤⎢⎥⎣⎦上恒为正, ∴ 271222024a a a f a ⎧<-<⎪⎪⎨⎛⎫⎪-=--+> ⎪⎪⎝⎭⎩,解得22a --<<-; (2)因为B ≠∅,设(),m n m n ≤为方程()1f x =的两个根,∴ (){}(){}|11|1B x f f x x m f x n =+≤=≤+≤⎡⎤⎣⎦(){}|11x m f x n =-≤≤-, 由A B =≠∅,得10n -=且()min 1f x m ≥-,由()()11f n f ==得0b =,所以()2f x x ax a =+-, 因为(){}0A f x =≤≠∅,∴240a a ∆=+≥,解得0a ≥或4a ≤-,又(),m n m n ≤为方程()1f x =的两个根,所以1m a =--,∴()min 2424a a a f x --=≥--,解得a -≤≤综上所述0a ≤≤【点睛】本题考查了函数的定义域和值域,单调性,根据集合相等求参数,意在考查学生的综合应用能力.。

2019年绍兴市高三数学上期末模拟试卷(及答案)

2019年绍兴市高三数学上期末模拟试卷(及答案)

2019年绍兴市高三数学上期末模拟试卷(及答案)一、选择题1.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .42.若正实数x ,y 满足141x y +=,且234yx a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-3.数列{}n a 满足()11nn n a a n ++=-⋅,则数列{}n a 的前20项的和为( ) A .100B .-100C .-110D .1104.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( )A .63B .61C .62D .575.正项等比数列中,的等比中项为,令,则( ) A .6B .16C .32D .646.设等比数列{}n a 的前n 项和为n S ,若633S S =, 则96S S =( ) A .2B .73C .83D .37.已知实数x 、y 满足约束条件00134x y x ya a⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .18.若变量x ,y 满足约束条件1358x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,,,则2yz x =-的取值范围是( )A .113⎡⎤-⎢⎥⎣⎦,B .11115⎡⎤--⎢⎥⎣⎦,C .111153⎡⎤-⎢⎥⎣⎦, D .3153⎡⎤-⎢⎥⎣⎦,9.若a 、b 、c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( ) A . 3-1 B . 3+1 C .23+2D .23-210.“0x >”是“12x x+≥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.设n S 为等差数列{}n a 的前n 项和,1(1)()n n n S nS n N *++∈<.若871a a <-,则( ) A .n S 的最大值为8S B .n S 的最小值为8S C .n S 的最大值为7S D .n S 的最小值为7S12.设2z x y =+,其中,x y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最小值是12-,则z 的最大值为( ) A .9-B .12C .12-D .9二、填空题13.数列{}n a 满足14a =,12nn n a a +=+,*n N ∈,则数列{}n a 的通项公式n a =______.14.已知数列{}n a 的首项12a =,且满足()*12n n n a a n N +=∈,则20a =________.15.已知是数列的前项和,若,则_____.16.设,x y 满足约束条件0{2321x y x y x y -≥+≤-≤,则4z x y =+的最大值为 .17.若ABC ∆的三个内角45A =︒,75B =︒,60C =︒,且面积623S =+形的外接圆半径是______18.已知a b c R ∈、、,c 为实常数,则不等式的性质“a b a c b c >⇐+>+”可以用一个函数在R 上的单调性来解析,这个函数的解析式是()f x =_________19.等差数列{}n a 前9项的和等于前4项的和.若141,0k a a a =+=,则k = . 20.在数列{}n a 中,11a =,且{}n a 是公比为13的等比数列.设13521T n n a a a a L -=++++,则lim n n T →∞=__________.(*n ∈N ) 三、解答题21.在()f x 中,角,,A B C 的对边分别为,,a b c ,满足(2)cos cos b c A a C -=.(1)求角A 的大小(2)若3a =,求ABC △的周长最大值. 22.在△ABC 中,已知AC =4,BC =3,cosB =-14. (1)求sin A 的值; (2)求·BA BC u u u v u u u v的值.23.在ABC V 中内角,,A B C 所对的边分别为,,a b c .已知2,a b ==,面积S =. (1)求sin A 的值;(2)若点D 在BC 上(不含端点),求sin BDBAD∠的最小值.24.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭. (1)求角B 的大小;(2)设a =2,c =3,求b 和()sin 2A B -的值. 25.已知函数221()cos sin ,(0,)2f x x x x p =-+?. (1)求()f x 的单调递增区间;(2)设ABC V 为锐角三角形,角A 所对边a =,角B 所对边5b =,若()0f A =,求ABC V 的面积.26.已知数列{}n a 的前n 项和为n S ,且4133n n S a =-. (1)求{}n a 的通项公式;(2)若1n b n =+,求数列{}n n a b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】∵点M (a ,b )与点N (0,−1)在直线3x −4y +5=0的两侧,∴()()34530450a b -+⨯++<,即3450a b -+<,故①错误; 当0a >时,54a b +>,a +b 即无最小值,也无最大值,故②错误; 设原点到直线3x −4y +5=0的距离为d ,则22513(4)==+-d ,则22a b +>1,故③正确;当0a >且a ≠1时,11b a +-表示点M (a ,b )与P (1,−1)连线的斜率. ∵当0a =,b =54时,51194114b a ++==---,又直线3x −4y +5=0的斜率为34, 故11b a +-的取值范围为93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故④正确.∴正确命题的个数是2个. 故选B.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.2.B解析:B 【解析】 【分析】 根据1444y y x x x y ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合基本不等式可求得44yx +≥,从而得到关于a 的不等式,解不等式求得结果. 【详解】 由题意知:1442444y y x yx x x y y x⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭ 0x Q >,0y > 40x y ∴>,04yx>442244x y x yy x y x∴+≥⋅=(当且仅当44x y y x =,即4x y =时取等号) 44yx ∴+≥ 234a a ∴-<,解得:()1,4a ∈- 本题正确选项:B 【点睛】本题考查利用基本不等式求解和的最小值问题,关键是配凑出符合基本不等式的形式,从而求得最值.3.B解析:B 【解析】 【分析】数列{a n }满足1(1)nn n a a n ++=-⋅,可得a 2k ﹣1+a 2k =﹣(2k ﹣1).即可得出.【详解】∵数列{a n }满足1(1)nn n a a n ++=-⋅,∴a 2k ﹣1+a 2k =﹣(2k ﹣1).则数列{a n }的前20项的和=﹣(1+3+……+19)()101192⨯+=-=-100.故选:B . 【点睛】本题考查了数列递推关系、数列分组求和方法,考查了推理能力与计算能力,属于中档题.4.D解析:D 【解析】解:由数列的递推关系可得:()11121,12n n a a a ++=++= , 据此可得:数列{}1n a + 是首项为2 ,公比为2 的等比数列,则:1122,21n n n n a a -+=⨯⇒=- ,分组求和有:()5521255712S ⨯-=-=- .本题选择D 选项.5.D解析:D 【解析】因为,即,又,所以.本题选择D选项.6.B解析:B【解析】【分析】首先由等比数列前n项和公式列方程,并解得3q,然后再次利用等比数列前n项和公式,则求得答案.【详解】设公比为q,则616363313(1)1113(1)11a qS qqqa qS qq---===+=---,∴32 q=,∴93962611271123 S qS q--===--.故选:B.【点睛】本题考查等比数列前n项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时也可以利用连续等长片断的和序列仍然成等比数列,进行求解.7.D解析:D【解析】【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可.【详解】目标函数()12123112111x yx y yzx x x++++++===+⨯+++,设11ykx+=+,则k的几何意义是区域内的点与定点(1,1)D--连线的斜率,若目标函数231x yzx++=+的最小值为32,即12z k=+的最小值是32,由3122k+=,得14k=,即k的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.8.A解析:A 【解析】 【分析】画出满足条件的平面区域,求出角点的坐标,结合2yz x =-的几何意义求出其范围,即可得到答案. 【详解】由题意,画出满足条件的平面区域,如图所示: 由358y x x y =⎧⎨+=⎩,解得11A (,),由1x y x =-⎧⎨=⎩,解得(11)B --,, 而2yz x =-的几何意义表示过平面区域内的点与0(2)C ,的直线斜率, 结合图象,可得1AC k =-,13BC k =, 所以2y z x =-的取值范围为113⎡⎤-⎢⎥⎣⎦,, 故选:A.【点睛】本题主要考查了简单的线性规划问题,其中解答中作出约束条件所表示的平面区域,结合图象确定出目标函数的最优解是解答的关键,着重考查了数形结合思想,以及计算能力,属于基础题.9.D解析:D【解析】由a(a+b+c)+bc=4-3,得(a+c)·(a+b)=4-3∵a、b、c>0.∴(a+c)·(a+b)≤22b c2a++⎛⎫⎪⎝⎭(当且仅当a+c=b+a,即b=c时取“=”),∴2a+b+c423-=31)=3-2.故选:D点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误10.C解析:C【解析】先考虑充分性,当x>0时,1122x xx x+≥⋅=,当且仅当x=1时取等.所以充分条件成立.再考虑必要性,当12xx+≥时,如果x>0时,22210(1)0x x x-+≥∴-≥成立,当x=1时取等.当x<0时,不等式不成立. 所以x>0.故选C.11.C解析:C 【解析】 【分析】由已知条件推导出(n 2﹣n )d <2n 2d ,从而得到d >0,所以a 7<0,a 8>0,由此求出数列{S n }中最小值是S 7. 【详解】∵(n +1)S n <nS n +1, ∴S n <nS n +1﹣nS n =na n +1 即na 1()12n n d-+<na 1+n 2d ,整理得(n 2﹣n )d <2n 2d ∵n 2﹣n ﹣2n 2=﹣n 2﹣n <0 ∴d >0 ∵87a a -<1<0 ∴a 7<0,a 8>0 数列的前7项为负, 故数列{S n }中最小值是S 7 故选C . 【点睛】本题考查等差数列中前n 项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.12.B解析:B 【解析】 【分析】作出不等式对应的可行域,当目标函数过点A 时,z 取最小值,即min 12z =-,可求得k 的值,当目标函数过点B 时,z 取最大值,即可求出答案. 【详解】作出不等式对应的可行域,如下图阴影部分,目标函数可化为2y x z =-+,联立20x y y k +=⎧⎨=⎩,可得()2,A k k -,当目标函数过点A 时,z 取最小值,则()2212k k ⨯-+=-,解得4k =,联立0x y y k-=⎧⎨=⎩,可得(),B k k ,即()4,4B ,当目标函数过点B 时,z 取最大值,max 24412z =⨯+=.故选:B.【点睛】本题考查线性规划,考查学生的计算求解能力,利用数形结合方法是解决本题的关键,属于基础题.二、填空题13.【解析】【分析】由题意得出利用累加法可求出【详解】数列满足因此故答案为:【点睛】本题考查利用累加法求数列的通项解题时要注意累加法对数列递推公式的要求考查计算能力属于中等题 解析:22n +【解析】 【分析】由题意得出12nn n a a +-=,利用累加法可求出n a .【详解】数列{}n a 满足14a =,12n n n a a +=+,*n N ∈,12nn n a a +∴-=,因此,()()()211213214222n n n n a a a a a a a a --=+-+-++-=++++L L ()121242212n n --=+=+-.故答案为:22n +. 【点睛】本题考查利用累加法求数列的通项,解题时要注意累加法对数列递推公式的要求,考查计算能力,属于中等题.14.512【解析】【分析】利用已知将n 换为n+1再写一个式子与已知作比得到数列的各个偶数项成等比公比为2再求得最后利用等比数列的通项公式即可得出【详解】∵anan+1=2n ()∴an+1an+2=2n+解析:512 【解析】 【分析】利用已知将n 换为n +1,再写一个式子,与已知作比,得到数列{}n a 的各个偶数项成等比,公比为2,再求得2=1a ,最后利用等比数列的通项公式即可得出. 【详解】∵a n a n +1=2n ,(*n N ∈) ∴a n +1a n +2=2n +2.(*n N ∈)∴22n na a +=,(*n N ∈),∴数列{}n a 的各个奇数项513...a a a ,,成等比,公比为2, 数列{}n a 的各个偶数项246...a a a ,,成等比,公比为2, 又∵a n a n +1=2n ,(*n N ∈),∴a 1a 2=2,又12a =,∴2=1a , 可得:当n 为偶数时,1222n n a a -=⋅∴a 20=1•29=512. 故答案为:512. 【点睛】本题考查了等比数列的通项公式、数列递推关系,考查了推理能力与计算能力,属于中档题.15.4950【解析】【分析】由an+Sn =2nan+1+Sn+1=2n+1两式相减可得2an+1﹣an =2n 即可计算【详解】解:∵an+Sn=2nan+1+Sn+1=2n+1两式相减可得2an+1﹣an 解析:【解析】 【分析】由a n +S n =2n ,a n +1+S n +1=2n +1,两式相减可得2a n +1﹣a n =2n .即可计算. 【详解】解:∵a n +S n =2n ,a n +1+S n +1=2n +1, 两式相减可得2a n +1﹣a n =2n .则(2a 2﹣a 1)(2a 3﹣a 2)…(2a 100﹣a 99)=21•22•23…299=24950.【点睛】本题考查了数列的递推式,属于中档题.16.【解析】试题分析:约束条件的可行域如图△ABC 所示当目标函数过点A(11)时z 取最大值最大值为1+4×1=5【考点】线性规划及其最优解解析:【解析】 .试题分析:约束条件的可行域如图△ABC 所示.当目标函数过点A(1,1)时,z 取最大值,最大值为1+4×1=5.【考点】线性规划及其最优解.17.【解析】【分析】设三角形外接圆半径R 由三角形面积公式解方程即可得解【详解】由题:设三角形外接圆半径为R ()根据正弦定理和三角形面积公式:即解得:故答案为:【点睛】此题考查三角形面积公式和正弦定理的应 解析:2【解析】 【分析】设三角形外接圆半径R ,由三角形面积公式21sin 2sin sin sin 2S ab C R A B C ==解方程即可得解. 【详解】由题:232162sin sin 75sin(4530)222B +=︒=︒+︒=+=设三角形外接圆半径为R (0R >),根据正弦定理和三角形面积公式:211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅= 即223623226R ++=, 解得:22R = 故答案为:2【点睛】此题考查三角形面积公式和正弦定理的应用,利用正弦定理对面积公式进行转化求出相关量,需要对相关公式十分熟练.18.【解析】【分析】构造函数通过讨论其单调性即解析不等式的性质【详解】函数是定义在上的单调增函数若则即即故答案为:【点睛】此题考查利用函数单调性解析不等式的性质利用常见函数的单调性结合不等式的特征即可求 解析:x c -【解析】 【分析】构造函数()f x x c =-,通过讨论其单调性即解析不等式的性质. 【详解】函数()f x x c =-,是定义在R 上的单调增函数, 若a c b c +>+,则()()f a c f b c +>+,即a c c b c c +->+-, 即a b >. 故答案为:x c - 【点睛】此题考查利用函数单调性解析不等式的性质,利用常见函数的单调性结合不等式的特征即可求解.19.10【解析】【分析】根据等差数列的前n 项和公式可得结合等差数列的性质即可求得k 的值【详解】因为且所以由等差数列性质可知因为所以则根据等差数列性质可知可得【点睛】本题考查了等差数列的前n 项和公式等差数解析:10 【解析】 【分析】根据等差数列的前n 项和公式可得70a =,结合等差数列的性质即可求得k 的值. 【详解】因为91239S a a a a =+++⋅⋅⋅ 41234S a a a a =+++,且94S S =所以567890a a a a a ++++= 由等差数列性质可知70a = 因为40k a a += 所以4770k a a a a +=+=则根据等差数列性质可知477k +=+ 可得10k = 【点睛】本题考查了等差数列的前n 项和公式,等差数列性质的应用,属于基础题.20.【解析】【分析】构造新数列计算前n 项和计算极限即可【详解】构造新数列该数列首项为1公比为则而故【点睛】本道题考查了极限计算方法和等比数列前n 项和属于中等难度的题目解析:9lim 8n n T →∞=【解析】 【分析】构造新数列{}21n a -,计算前n 项和,计算极限,即可。

绍兴市柯桥区2019学年第一学期高三数学期末试题_PDF压缩

绍兴市柯桥区2019学年第一学期高三数学期末试题_PDF压缩

y
y
y
y
1
1
1
1
O
1x
A
O
1x
B
O
1x
C
O
1x
D
7. 已知多项式 x6 = a0 + a1(1− x) + a2 (1− x)2 + + a6 (1− x)6 ,则 a4 =
A. −15
B. −20
C.15
D. 20
8. 斜三棱柱 ABC − A1B1C1 中,底面 ABC 是正三角形,侧面 ABB1A1 是矩形,且 2AA1 = 3AB ,
的前 n 项和为Tn ,满足 b1 = −1, bn+1 = TnTn+1(n N*) .
(Ⅰ)求数列 {an } 、 {bn } 的通项公式;
(Ⅱ)记 cn =
an Tn
, n N * ,证明: c1 + c2 +
+ cn
2 n(2n +1) . 4
21.(本题满分 15 分)已知抛物线 C : x2 = 2 py( p 0) ,直线 y = x 截抛物线 C 所得弦长为 2 .
.
3
14. 在 ABC 中, BC = 4 , B = 135 ,点 D 在线段 AC 上,满足 BD ⊥ BC ,且 BD = 2 ,
则 cos A =
, AD =
.
15.
已知双曲线
C
:
x2 a2

y2 b2
= 1(a,b 0) 的右焦点 F (c, 0)关于直线 y =
b x 的对称点在直线 a
(t
R)
,若对于任意
n
N*

绍兴市第一中学2019届高三数学上学期期末考试试题含答案

绍兴市第一中学2019届高三数学上学期期末考试试题含答案

浙江省绍兴市第一中学2019届高三数学上学期期末考试试题(含)一、选择题(每小题4分,共40分)1.设全集,集合,则集合()A. B.C. D.【答案】D先根据补集的定义求出集合A的补集,然后和集合B进行交集运算,可求【详解】因为A={x|x≥3},所以 ={x|x<3},所以()∩B═{x|0≤x<3}.故选:D.本题的考点是集合的补集和交集运算,比较基础.2.已知角的终边与单位圆交于点,则( )A. B. C. D.【答案】B根据三角函数的定义可直接求得结果。

【详解】由题意得:本题正确选项:本题考查三角函数的定义,要注意区分与的具体表示形式,基础题。

3.若复数在复平面内对应的点关于y轴对称,且,则复数A. B. 1 C. D.【答案】C:由z1=2﹣i,复数z1,z2在复平面内对应的点关于y轴对称,求出z2,然后代入,利用复数代数形式的乘除运算化简即可.详解:∵z1=2﹣i,复数z1,z2在复平面内对应的点关于y轴对称,∴z2=﹣2﹣i.∴==,故选:C:复数的运算,难点是乘除法法则,设,则,.4.设,则“”是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C根据充要条件的定义进行判断即可。

【详解】由得,,所以是充分条件;由可得,所以是必要条件,故“”是“”的充要条件。

答案选C。

本题考查充分必要条件的定义,不等式的性质,属于基础题。

5.设为数列的前项和,,,若,则=( )A. B. C. D.【答案】C根据,可列出,利用可求得数列为等比数列。

求解出的通项公式,进而解得的取值。

【详解】由可得:当时,两式作差得:,即又,满足是以为首项,为公比的等比数列,又本题正确选项:解题关键在于利用数列的前项和求得数列的通项公式。

在利用时,要注意对数列首项是否满足所求通项公式的验证。

6.某射手射击所得环数的分布列如下:已知的数学期望,则的值为( )A. B. C. D.【答案】B根据概率之和等于和数学期望的公式,可列出关于和的二元一次方程组,解方程组求得的取值。

高三数学一轮复习知识点讲解5-3三角函数的图象与性质

高三数学一轮复习知识点讲解5-3三角函数的图象与性质

高三数学一轮复习知识点讲解专题5.3 三角函数的图象与性质【考纲解读与核心素养】1. 理解正弦函数、余弦函数、正切函数的图象与性质,了解三角函数的周期性.2.本节涉及所有的数学核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析等. 3.高考预测:(1) “五点法”作图; (2)三角函数的性质;(3)往往将三角恒等变换与三角函数图象、性质结合考查. 4.备考重点:(1)掌握正弦、余弦、正切函数的图象;(2)掌握三角函数的周期性、单调性、对称性以及最值.【知识清单】知识点1.正弦、余弦、正切函数的图象与性质正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质 性质sin y x =cos y x =tan y x =图象定义域R R,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭值域[]1,1- []1,1-R知识点2.“五点法”做函数()sin y A x h ωϕ=++的图象 “五点法”作图:先列表,令30,,,,222x ππωϕππ+=,求出对应的五个x 的值和五个y 值,再根据求出的对应的五个点的坐标描出五个点,再把五个点利用平滑的曲线连接起来,即得到()sin y A x h ωϕ=++在一个周期的图象,最后把这个周期的图象以周期为单位,向左右两边平移,则得到函数()sin y A x h ωϕ=++的图象.【典例剖析】高频考点一 三角函数的定义域和值域 【典例1】(2020·山东高一期末)函数tan2xy =的定义域为_____.【答案】{}2,x x k k Z ππ≠+∈ 【解析】 解不等式()22x k k Z ππ≠+∈,可得()2x k k Z ππ≠+∈, 因此,函数tan2xy =的定义域为{}2,x x k k Z ππ≠+∈. 故答案为:{}2,x x k k Z ππ≠+∈.【典例2】(2017新课标2)函数()的最大值是__________.【答案】1【解析】化简三角函数的解析式,则,由可得,当时,函数取得最大值1.【规律方法】1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解. 2.三角函数值域的不同求法(1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域; (3)把sin x 或cos x 看作一个整体,转换成二次函数求值域; (4)利用sin x ±cos x 和sin x cos x 的关系转换成二次函数求值域. 【变式探究】1.(2020·上海高三专题练习)函数sin y m x n =+的最大值为2,最小值为4-,则m =_________,n =_________.【答案】3± 1- 【解析】由已知得24m n m n ⎧+=⎪⎨-+=-⎪⎩,解得31m n =±⎧⎨=-⎩. 故答案为:3±;1-.2.(2020·全国高一课时练习)求下列函数的定义域. (1)y =(2)sin cos tan x xy x+=.【答案】(1){|22,}x k x k k Z πππ≤≤+∈;(2)|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭【解析】(1)要使函数有意义,必须使sin 0x ≥.由正弦的定义知,sin 0x ≥就是角x 的终边与单位圆的交点的纵坐标是非负数. ∴角x 的终边应在x 轴或其上方区域, ∴22,k x k k Z πππ≤≤+∈.∴函数y ={|22,}x k x k k Z πππ≤≤+∈.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ≠.∴,()2x k k Z x k πππ⎧≠+⎪∈⎨⎪≠⎩ ∴,2kx k Z π≠∈. ∴函数sin cos tan x x y x +=的定义域为|,2k x x k Z π⎧⎫≠∈⎨⎬⎩⎭.【总结提升】在使用开平方关系sin α=±1-cos 2α和cos α=±1-sin 2α时,一定要注意正负号的选取,确定正负号的依据是角α所在的象限,如果角α所在的象限是已知的,则按三角函数在各个象限的符号来确定正负号;如果角α所在的象限是未知的,则需要按象限进行讨论. 高频考点二 三角函数的单调性【典例3】(2020·海南枫叶国际学校高一期中)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈D .13(2,2),44k k k Z -+∈【答案】D 【解析】由五点作图知,1+42{53+42πωϕπωϕ==,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D.【典例4】(2020·河南洛阳�高一期末(理))已知sin33a =︒,cos55b =︒,tan35c =︒则a ,b ,c ,的大小关系是( ) A .a b c << B .a c b <<C .b a c <<D .b c a <<【答案】A 【解析】因为cos55sin35sin33b a ==>=,且sin 35tan 35sin 35cos35c ==>,所以c b a >>. 故选:A .【典例5】(2020·浙江柯城�衢州二中高三其他)已知函数()()2sin 0f x x ωω=>,则()f x 的最大值为________,若()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上是增函数,则ω的取值范围是________. 【答案】2 30,2⎛⎤ ⎥⎝⎦【解析】因为函数()()2sin 0f x x ωω=>, 所以()[]2sin 2,2ω=∈-f x x , 所以()f x 的最大值为2, 因为()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上是增函数, 所以,,4322πωπωππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦, 所以4232πωππωπ⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得30,2ω⎛⎤∈ ⎥⎝⎦.故答案为:(1). 2 (2). 30,2⎛⎤⎥⎝⎦【规律方法】1.求形如()sin y A x ωϕ=+或()cos y A x ωϕ=+ (其中A ≠0,0ω>)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“x ωϕ+ (0ω>)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与sin y x = (x R ∈),cos y x = (x R ∈)的单调区间对应的不等式方向相同(反).2.当0ω<时,需要利用诱导公式把负号提出来,转化为sin()y A x ωϕ=---的形式,然后求其单调递增区间,应把x ωϕ--放在正弦函数的递减区间之内;若求其递减区间,应把x ωϕ--放在正弦函数的递增区间之内.3.已知三角函数的单调区间求参数的取值范围的三种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解. (2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解. 【变式探究】1.(2020·河北路北�开滦第一中学高一期末)在ABC 中,A B C >>,且2C π≠,则下列结论中正确的是( ) A .tan tan A C < B .tan tan A C >C .sin sin <A CD .sin sin A C >【答案】D 【解析】若543,,12123124A B C πππππ=====,由于02C A π<<<,则tan tan A C >,所以A 选项错误. 若74,,1212312A B C ππππ====,则tan 0tan A C <<, 75sin sin sin sin sin 121212A C πππ==>=,所以BC 选项错误.在三角形ABC 中,大角对大边,由于A C >,所以a c >,由正弦定理得2sin 2sin R A R B >①,R 是三角形ABC 外接圆的半径.由①得sin sin A C >.所以D 选项正确. 故选:D2.(2020·河南林州一中高一月考)π()sin()(0,),2f x x ωϕωϕ=+>≤若π8x =-是函数()f x 的零点,π8x =是函数()f x 的对称轴,()f x 在区间ππ(,)54上单调,则ω的最大值是 ( ) A .14 B .18C .20D .22【答案】A 【解析】因为π8x =-是函数()f x 的零点,π8x =是函数()f x 的对称轴, 所以2144n T n N ,π+=∈,即21244n ππω+=, n N ∈,即42,?n n N ω=+∈,即ω为正偶数. 因为()f x 在区间ππ,54⎛⎫⎪⎝⎭上单调,则ππ45202T π-=≤,即210T ππω=≥. 20ω≤. 当18ω=时,ππ sin 18088f ϕ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,得9 ,4k k Z πϕπ-+=∈,9 ,?4k k Z πϕπ=+∈,π 2ϕ≤,所以π4ϕ=,()πsin 184f x x ⎛⎫=+ ⎪⎝⎭,ππ,54x ⎛⎫∈ ⎪⎝⎭,时,π779518,42020x ππ⎛⎫+∈ ⎪⎝⎭,其中,901202f f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即()f x 在区间ππ,54⎛⎫⎪⎝⎭上不单调; 当14ω=时,ππ sin 14088f ϕ⎡⎤⎛⎫⎛⎫-=⨯-+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,得7 ,4k k Z πϕπ-+=∈,7 ,?4k k Z πϕπ=+∈,π 2ϕ≤,所以π4ϕ=-,()πsin 144f x x ⎛⎫=- ⎪⎝⎭,ππ,54x ⎛⎫∈ ⎪⎝⎭,时,π516514,42020x ππ⎛⎫-∈ ⎪⎝⎭,满足()f x 在区间ππ,54⎛⎫⎪⎝⎭上不单调. 故ω的最大值是14. 故选A.3.(2019·涡阳县第九中学高一期末(文))已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭.求()f x 的单调增区间; 【答案】5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【解析】因为sin y x =在区间2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦上单调递增,所以222,232k x k k πππ-+π≤+≤+π∈Z ,解得5,1212k x k k Z ππππ-≤≤+∈ 所以()f x 的单调增区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 【总结提升】1.对正弦函数、余弦函数单调性的两点说明(1)正弦函数、余弦函数在定义域R 上均不是单调函数,但存在单调区间.(2)由正弦函数、余弦函数的最小正周期为2π,所以任给一个正弦函数、余弦函数的单调区间,加上2k π,(k ∈Z)后,仍是单调区间,且单调性相同. 2.对正弦函数、余弦函数最值的三点说明(1)明确正、余弦函数的有界性,即|sin x |≤1,|cos x |≤1.(2)函数y =sin x ,x ∈D ,(y =cos x ,x ∈D )的最值不一定是1或-1,要依赖函数定义域D 来决定. (3)形如y =A sin(ωx +φ)(A >0,ω>0)的函数最值通常利用“整体代换”,即令ωx +φ=Z ,将函数转化为y =A sin Z 的形式求最值.3.正切函数单调性的三个关注点 (1)正切函数在定义域上不具有单调性.(2)正切函数无单调递减区间,有无数个单调递增区间,在(-π2,π2),(π2,32π),…上都是增函数.(3)正切函数的每个单调区间均为开区间,不能写成闭区间,也不能说正切函数在(-π2,π2)∪(π2,3π2)∪…上是增函数.高频考点三 三角函数的周期性 【典例6】(2018年全国卷Ⅲ文)函数的最小正周期为( )A. B. C. D.【答案】C 【解析】 由已知得的最小正周期故选C. 【规律方法】1.求三角函数的周期的方法(1)定义法:使得当x 取定义域内的每一个值时,都有()()f x T f x +=.利用定义我们可采用取值进行验证的思路,非常适合选择题;(2)公式法:()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+的最小正周期都是2||T πω=,()tan()f x A x ωϕ=+的周期为T πω=.要特别注意两个公式不要弄混; (3)图象法:可以画出函数的图象,利用图象的重复的特征进行确定,一般适应于不易直接判断,但是能够容易画出函数草图的函数;(4)绝对值或平方对三角函数周期性的影响:一般说来,某一周期函数解析式加绝对值或平方,其周期性是:弦减半、切不变.既为周期函数又是偶函数的函数自变量加绝对值,其周期性不变,其它不定. 如x y x y sin ,sin 2==的周期都是π, 但sin y x =cos x +的周期为2π,而1|2sin(3)|,|2sin(3)2|626y x y x ππ=-+=-+,|tan |y x =的周期不变.2.使用周期公式,必须先将解析式化为sin()y A x h ωϕ=++或cos()y A x h ωϕ=++的形式;正弦余弦函数的最小正周期是2T πϖ=,正切函数的最小正周期公式是T πϖ=;注意一定要注意加绝对值.3.对称与周期:正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期. 【变式探究】已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 【答案】(1)见解析;(2)是,2π. 【解析】(1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π]k ∈Z ,0,x ∈[2k π-π,2k πk ∈Z . 函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的周期是2π. 【特别提醒】最小正周期是指使函数重复出现的自变量x 要加上的最小正数,是对x 而言,而不是对ωx 而言.. 高频考点四 三角函数的奇偶性【典例7】(2018届辽宁省丹东市测试(二))设,若,则函数A. 是奇函数B. 的图象关于点对称C. 是偶函数D. 的图象关于直线对称【答案】C 【解析】 由题意得,∴.∴,∴函数为偶函数.故选C . 【规律方法】1. 一般根据函数的奇偶性的定义解答,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数;如果函数的定义域关于原点对称,则继续求()f x -;最后比较()f x -和()f x 的关系,如果有()f x -=()f x ,则函数是偶函数,如果有()f x -=-()f x ,则函数是奇函数,否则是非奇非偶函数.2. 如何判断函数()f x ωϕ+的奇偶性:根据三角函数的奇偶性,利用诱导公式可推得函数()f x ωϕ+的奇偶性,常见的结论如下:(1)若sin()y A x ωϕ=+为偶函数,则有()2k k Z πϕπ=+∈;若为奇函数则有()k k Z ϕπ=∈;(2)若cos()y A x ωϕ=+为偶函数,则有()k k Z ϕπ=∈;若为奇函数则有()2k k Z πϕπ=+∈;(3)若tan()y A x ωϕ=+为奇函数则有()k k Z ϕπ=∈. 【变式探究】(浙江省2019届高考模拟卷(二))函数的图象可能是( )A .B .C .D .【答案】A 【解析】 由题意得函数的定义域为,∵,∴函数为偶函数,∴函数图象关于y 轴对称,故排除C,D . 又当时,,因此可排除B . 故选A . 【特别提醒】利用定义判断与正切函数有关的一些函数的奇偶性时,必须要坚持定义域优先的原则,即首先要看f(x)的定义域是否关于原点对称,然后再判断f(-x)与f(x)的关系. 高频考点五 三角函数的对称性 【典例8】(2018年江苏卷)已知函数的图象关于直线对称,则的值是________. 【答案】【解析】 由题意可得,所以,因为,所以【规律方法】函数的对称性问题,往往先将函数化成sin )y A x B ωϕ=++(的形式,其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心, 关键是记住三角函数的图象,根据图象并结合整体代入的基本思想即可求三角函数的对称轴与对称中心. 【变式探究】(2021·广西钦州一中高三开学考试(理))关于函数()1cos cos f x x x=+有如下四个命题: ①()f x 的图像关于y 轴对称. ②()f x 的图像关于原点对称. ③()f x 的图像关于直线2x π=对称.④()f x 的图像关于点,02π⎛⎫⎪⎝⎭对称. 其中所有真命题的序号是__________. 【答案】①④ 【解析】对于①,()f x 定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,显然关于原点对称, 且()()()()11cos cos cos cos x x x f x f x x=-=-++=-,所以()f x 的图象关于y 轴对称,命题①正确;对于②,532f π⎛⎫= ⎪⎝⎭,532f π⎛⎫-= ⎪⎝⎭,则33f f ππ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于原点对称,命题②错误; 对③,532f π⎛⎫= ⎪⎝⎭,2532f π⎛⎫=- ⎪⎝⎭,则233f f ππ⎛⎫⎛⎫≠ ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于2x π=对称,命题③错误; 对④,1sin 2sin f x x x π⎛⎫-=+ ⎪⎝⎭,1sin 2sin f x x x π⎛⎫+=-- ⎪⎝⎭, 则22f x f x ππ⎛⎫⎛⎫-=-+⎪ ⎪⎝⎭⎝⎭,命题④正确. 故答案为:①④.【特别提醒】1.求y =Asin(ωx +φ)或y =Acos(ωx +φ)函数的对称轴或对称中心时,应把ωx +φ作为整体,代入相应的公式中,解出x 的值,最后写出结果.2.正切函数图象的对称中心是(k π2,0)而非(k π,0)(k ∈Z ).高频考点六 三角函数的图象和性质的应用 【典例9】(2018年理北京卷】设函数f (x )=,若对任意的实数x 都成立,则ω的最小值为__________. 【答案】 【解析】 因为对任意的实数x 都成立,所以取最大值,所以,因为,所以当时,ω取最小值为.【典例10】(2020·上海高三专题练习)函数3sin 1()sin 2x f x x -=+的最大值是____,最小值是_________.【答案】234- 【解析】3(sin 2)77()3sin 2sin 2x f x x x +-==-++ sin [1,1]x[]sin 21,3x ∴+∈11,1sin 23x ⎡⎤∴∈⎢⎥+⎣⎦777,sin 23x ⎡⎤∴-∈--⎢⎥+⎣⎦7234,sin 23x ⎡⎤∴-∈-⎢⎥+⎣⎦即max 2()3f x =,min ()4f x =- 故答案为:23;4- 【典例11】(2020·陕西省汉中中学(理))已知函数()2sin()1(0)6f x x πωω=-->的周期是π.(1)求()f x 的单调递增区间; (2)求()f x 在[0,]2π上的最值及其对应的x 的值.【答案】(1)(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;(2)当0x =时,()min 2f x =-;当3x π=时,()max 1f x =.【解析】 (1)解:∵2T ππω==,∴2ω=,又∵0>ω,∴2ω=,∴()2sin 216f x x π⎛⎫=-- ⎪⎝⎭, ∵222262k x k πππππ-+≤-≤+,k Z ∈,∴222233k x k ππππ-+≤≤+,k Z ∈, ∴63k x k ππππ-+≤≤+,k Z ∈,∴()f x 的单调递增区间为(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦(2)解:∵02x π≤≤,∴02x ≤≤π,∴52666x πππ-≤-≤,∴1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭, ∴12sin 226x π⎛⎫-≤-≤ ⎪⎝⎭,∴22sin 2116x π⎛⎫-≤--≤ ⎪⎝⎭, 当0x =时,()min 2f x =-, 当226x ππ-=,即3x π=时,()max 1f x = 【规律方法】1.求形如y =a sin x +b 的函数的最值或值域时,可利用正弦函数的有界性(-1≤sin x ≤1)求解.2.对于形如y =A sin(ωx +φ)+k (Aω≠0)的函数,当定义域为R 时,值域为[-|A |+k ,|A |+k ];当定义域为某个给定的区间时,需确定ωx +φ的范围,结合函数的单调性确定值域.3.求形如y =a sin 2x +b sin x +c ,a ≠0,x ∈R 的函数的值域或最值时,可以通过换元,令t =sin x ,将原函数转化为关于t 的二次函数,利用配方法求值域或最值,求解过程中要注意正弦函数的有界性.4.求形如y =a sin x +bc sin x +d ,ac ≠0的函数的值域,可以用分离常量法求解;也可以利用正弦函数的有界性建立关于y 的不等式反解出y .综上可知,求与三角函数有关的函数的值域(或最值)的常用方法有:(1)借助于正弦函数的有界性、单调性求解;(2)转化为关于sin x 的二次函数求解.注意求三角函数的最值对应的自变量x 的值时,要考虑三角函数的周期性. 【变式探究】1.(2020·山东潍坊�高一期末)若函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,则( ) A .(2)(0)5f f f π⎛⎫>>-⎪⎝⎭B .(0)(2)5f f f π⎛⎫>>-⎪⎝⎭C .(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭D .(0)(2)5f f f π⎛⎫->> ⎪⎝⎭【答案】C 【解析】由题意,函数()tan (0)4f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π, 可得w ππ=,解得1w =,即()tan()4f x x π=+,令,242k x k k Z πππππ-+<+<+∈,即3,44k x k k Z ππππ-+<<+∈, 当1k =时,544x ππ<<,即函数()f x 在5(,)44ππ上单调递增, 又由4(0)(),()()()555f f f f f πππππ=-=-+=, 又由425ππ>>,所以(0)(2)5f f f π⎛⎫>-> ⎪⎝⎭. 故选:C.2.(2020·陕西新城�西安中学高三月考(文))设0a <,若不等式22cos (1)cos 0x a x a -+-+≥对于任意的x ∈R 恒成立,则a 的取值范围是__________. 【答案】2a ≤- 【解析】令cos [1,1]t x =∈- ,则不等式22()(1)0f t t a t a =---≤ 对[1,1]t ∈- 恒成立,因此22(1)00,02(1)020f a a a a f a a -≤⎧-≤⎧⇒<∴≤-⎨⎨≤--≤⎩⎩ 3.(浙江省绍兴市第一中学2019届高三上期末)设函数(1)求函数的最小正周期和单调递增区间; (2)当时,的最大值为,求的值【答案】(1) 最小正周期,为的单调递增区间;(2) .【解析】 (1)则的最小正周期当时,单调递增即的单调递增区间为:(2)当时,当,即时,所以【总结提升】比较三角函数值大小的步骤:①异名函数化为同名函数;②利用诱导公式把角化到同一单调区间上;③利用函数的单调性比较大小.。

浙江省绍兴市第一中学2019届高三上学期期末考试数学试题含详解

浙江省绍兴市第一中学2019届高三上学期期末考试数学试题含详解

2019年4月高三期末一、选择题(每小题4分,共40分)1.设全集,集合,则集合()A. B.C. D.【答案】D【分析】先根据补集的定义求出集合A的补集,然后和集合B进行交集运算,可求【详解】因为A={x|x≥3},所以 ={x|x<3},所以()∩B═{x|0≤x<3}.故选:D.【点睛】本题的考点是集合的补集和交集运算,比较基础.2.已知角的终边与单位圆交于点,则( )A. B. C. D.【答案】B【分析】根据三角函数的定义可直接求得结果。

【详解】由题意得:本题正确选项:【点睛】本题考查三角函数的定义,要注意区分与的具体表示形式,基础题。

3.若复数在复平面内对应的点关于y轴对称,且,则复数A. B. 1 C. D.【答案】C分析:由z1=2﹣i,复数z1,z2在复平面内对应的点关于y轴对称,求出z2,然后代入,利用复数代数形式的乘除运算化简即可.详解:∵z1=2﹣i,复数z1,z2在复平面内对应的点关于y轴对称,∴z2=﹣2﹣i.∴==,故选:C点睛:复数的运算,难点是乘除法法则,设,则,.4.设,则“”是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【分析】根据充要条件的定义进行判断即可。

【详解】由得,,所以是充分条件;由可得,所以是必要条件,故“”是“”的充要条件。

答案选C。

【点睛】本题考查充分必要条件的定义,不等式的性质,属于基础题。

5.设为数列的前项和,,,若,则=( )A. B. C. D.【答案】C【分析】根据,可列出,利用可求得数列为等比数列。

求解出的通项公式,进而解得的取值。

【详解】由可得:当时,两式作差得:,即又,满足是以为首项,为公比的等比数列,又本题正确选项:【点睛】解题关键在于利用数列的前项和求得数列的通项公式。

在利用时,要注意对数列首项是否满足所求通项公式的验证。

6.某射手射击所得环数的分布列如下:已知的数学期望,则的值为( )A. B. C. D.【答案】B【分析】根据概率之和等于和数学期望的公式,可列出关于和的二元一次方程组,解方程组求得的取值。

浙江省绍兴市第一中学2018_2019学年高一数学下学期学考模拟考试试题

浙江省绍兴市第一中学2018_2019学年高一数学下学期学考模拟考试试题

浙江省绍兴市第一中学2018-2019学年高一数学下学期学考模拟考试试题《不等式》班级 __ 姓名 ________ 学号 ____ 得分____一、选择题(每题6分,共36分) 1.若a <b <0,则( )A.1a <1b B .0<a b <1 C .ab >b 2D.b a >a b2.若关于x 的不等式mx 2+8mx +28<0的解集是{x |-7<x <-1},则实数m 的值是( ) A .1 B .2 C .3 D .43. 如果方程x 2+(m -1)x +m 2-2=0的两个实根一个小于-1,另一个大于1,那么实数m 的取值范围是( )A .(-2,2)B .(-2,0)C .(-2,1)D .(0,1)4.已知实数x ,y 满足-4≤x -y ≤-1,-1≤4x -y ≤5,则9x -y 的取值范围是( )A .[-7,26]B .[-1,20]C .[4,15]D .[1,15]5.给出平面区域如图所示,若目标函数z =x +ay (a ≥0) 仅在点(2,2)处取得最大值,则a 的取值范围为( )A .0<a <13B .a ≥13C .a >13D .0<a <126.正实数x 、y 满足42422=-+xy y x ,则2x+y 的最大值是 ( )A .2B .3C .4D .8二、填空题(每题6分,共24分) 7. 已知12<a<60,15<b<36,则ab的取值范围为 . 8.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为__________.9. 若关于x 的不等式|x-2|+|x-a|≥a 在R 上恒成立,则a 的最大值是 .10. 若正实数x ,y 满足2x+y=2,则224122x y y x +++的最小值是____ _.三、解答题(每题20分,共40分)11.已知f (x )=x 2-⎝ ⎛⎭⎪⎫a +1a x +1.(1)当a =12时,解不等式f (x )≤0; (2)若a >0,解关于x 的不等式f (x )≤0.12.已知函数f (x )=|3x+2| (Ⅰ)解不等式14)(--<x x f ,(Ⅱ)已知m+n=1(m ,n>0),若11||()(0)x a f x a m n--≥+>有解,求实数a 的取值范围.高一数学学考模拟测验《不等式》班级 __ 姓名 ________ 学号 ____ 得分____一、选择题(每题6分,共36分) 1.若a <b <0,则( C )A.1a <1b B .0<a b <1 C .ab >b 2D.b a >a b解析:∵a <b <0,∴两边同乘以b 得ab >b 2,故选C.2.若关于x 的不等式mx 2+8mx +28<0的解集是{x |-7<x <-1},则实数m 的值是( D ) A .1 B .2 C .3 D .43. 如果方程x 2+(m -1)x +m 2-2=0的两个实根一个小于-1,另一个大于1,那么实数m 的取值范围是( )A .(-2,2)B .(-2,0)C .(-2,1)D .(0,1)解析:令f (x )=x 2+(m -1)x +m 2-2,则⎩⎪⎨⎪⎧f 1=m 2+m -2<0,f -1=m 2-m <0,解得0<m <1,故选D.4.已知实数x ,y 满足-4≤x -y ≤-1,-1≤4x -y ≤5,则9x -y 的取值范围是( B )A .[-7,26]B .[-1,20]C .[4,15]D .[1,15]解析:令m =x -y ,n =4x -y ,则z =9x -y =83n -53m ∈[-1,20].5.给出平面区域如图所示,若目标函数z =x +ay (a ≥0) 仅在点(2,2)处取得最大值,则a 的取值范围为( C )A .0<a <13B .a ≥13C .a >13D .0<a <12解析:画出已知约束条件的可行域为△ABC 内部(包括边界),如图,易知当a =0时,不符合题意;当a >0时,由目标函数z =x +ay 得y =-1a x +za ,则由题意得-3=k AC <-1a <0,故a >13.综上所述,a >13.答案:C6.正实数x 、y 满足42422=-+xy y x ,则2x+y 的最大值是 ( C )A .2B .3C .4D .8二、填空题(每题6分,共24分) 7. 已知12<a<60,15<b<36,则a b 的取值范围为 . 1(,4)38.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为__________.解析:画出可行域(如图所示).(x +3)2+y 2即点A (-3,0)与可行域内点(x ,y )间距离的平方.显然AC 长度最小,∴AC 2=(0+3)2+(1-0)2=10,即(x +3)2+y 2的最小值为10. 9. 若关于x 的不等式|x-2|+|x-a|≥a 在R 上恒成立,则a 的最大值是 【解析】|x-2|+|x-a|=|x-2|+|a-x|≥|x-2+a-x|=|a-2|,所以|a-2|≥a,解得a ≤1, 所以a 的最大值为1.10. 若正实数x ,y 满足2x+y=2,则224122x y y x +++的最小值是_____.45三、解答题(每题20分,共40分)11.已知f (x )=x 2-⎝ ⎛⎭⎪⎫a +1a x +1.(1)当a =12时,解不等式f (x )≤0; (2)若a >0,解关于x 的不等式f (x )≤0. 【解】(1)当a =12时,不等式f (x )=x 2-52x +1≤0,即⎝ ⎛⎭⎪⎫x -12(x -2)≤0,解得12≤x ≤2.故原不等式的解集为⎩⎨⎧⎭⎬⎫x |12≤x ≤2.(2)因为不等式f (x )=⎝ ⎛⎭⎪⎫x -1a (x -a )≤0,当0<a <1时,有1a >a ,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |a ≤x ≤1a ;当a >1时,有1a <a ,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |1a ≤x ≤a ;当a =1时,原不等式的解集为{1}.12.已知函数f (x )=|3x+2| (Ⅰ)解不等式14)(--<x x f ,(Ⅱ)已知m+n=1(m ,n>0),若11||()(0)x a f x a m n--≥+>有解,求实数a 的取值范围. 【答案】(Ⅰ)51(,)42-(Ⅱ)3100≤<a【解析】:(Ⅰ)解含绝对值的不等式,关键在于根据绝对值的定义去绝对值,分类讨论 (Ⅱ)不等式恒成立问题,先化为函数最值,即先求11m n+最小值,由411))(11(11≥+++=++=+nmm n n m n m n m 得||()4x a f x --≥,再根据绝对值的定义去绝对值,分类讨论.试题解析:(Ⅰ)不等式14)(--<x x f ,即4123<-++x x ,当32-<x 时,即,4123<+---x x 解得,3245-<<-x 当132≤≤-x 时,即,4123<+-+x x 解得,2132<≤-x当1>x 时,即,4123<-++x x 无解,综上所述)21,45(-∈x . (Ⅱ)411))(11(11≥+++=++=+nmm n n m n m n m , 令。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省绍兴市第一中学2019届高三上学期期末考试数学试题一、选择题(每小题4分,共40分)1.设全集,集合,则集合()A. B.C. D.【答案】D【解析】【分析】先根据补集的定义求出集合A的补集,然后和集合B进行交集运算,可求【详解】因为A={x|x≥3},所以 ={x|x<3},所以()∩B═{x|0≤x<3}.故选:D.【点睛】本题的考点是集合的补集和交集运算,比较基础.2.已知角的终边与单位圆交于点,则( )A. B. C. D.【答案】B【解析】【分析】根据三角函数的定义可直接求得结果。

【详解】由题意得:本题正确选项:【点睛】本题考查三角函数的定义,要注意区分与的具体表示形式,基础题。

3.若复数在复平面内对应的点关于y轴对称,且,则复数A. B. 1 C. D.【答案】C【解析】分析:由z1=2﹣i,复数z1,z2在复平面内对应的点关于y轴对称,求出z2,然后代入,利用复数代数形式的乘除运算化简即可.详解:∵z1=2﹣i,复数z1,z2在复平面内对应的点关于y轴对称,∴z2=﹣2﹣i.∴==,故选:C点睛:复数的运算,难点是乘除法法则,设,则,.4.设,则“”是“”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】【分析】根据充要条件的定义进行判断即可。

【详解】由得,,所以是充分条件;由可得,所以是必要条件,故“”是“”的充要条件。

答案选C。

【点睛】本题考查充分必要条件的定义,不等式的性质,属于基础题。

5.设为数列的前项和,,,若,则=( )A. B. C. D.【答案】C【解析】【分析】根据,可列出,利用可求得数列为等比数列。

求解出的通项公式,进而解得的取值。

【详解】由可得:当时,两式作差得:,即又,满足是以为首项,为公比的等比数列,又本题正确选项:【点睛】解题关键在于利用数列的前项和求得数列的通项公式。

在利用时,要注意对数列首项是否满足所求通项公式的验证。

6.某射手射击所得环数的分布列如下:已知的数学期望,则的值为( )A. B. C. D.【答案】B【解析】【分析】根据概率之和等于和数学期望的公式,可列出关于和的二元一次方程组,解方程组求得的取值。

【详解】由题意可知:解得本题正确选项:【点睛】本题考察离散型随机变量及其分布列问题,需要熟记数学期望的求解方法,属于基础题型。

7.已知正四棱柱中,,为的中点,则直线与平面的距离为( )A. 1B.C.D. 2【答案】A【解析】如图,连接交于,在三角形中,易证,平面直线与平面的距离即为点到平面的距离,设为在三棱锥中,在三棱锥中,故选8.对于定义域为R的函数,若存在非零实数,使函数在和上与轴都有交点,则称为函数的一个“界点”.则下列四个函数中,不存在“界点”的是( )A. B.C. D.【答案】D【解析】【分析】由“界点”定义可知,存在“界点”要求函数至少有个零点。

通过对四个函数零点个数的判断,得到最终结果。

【详解】选项:令,即,根据与图像如图所示:可知当时,有与两个交点当时,有个交点因此两函数共有个交点,故必有“界点”;选项:令,可知,方程恒有个不等式根,即必有个零点,故必有“界点”;选项:令,解得或,即有个零点,故必有“界点”;选项:令,令,则又,所以在上单调递增又,即只有一个零点,故不存在“界点”。

本题正确选项:【点睛】本题属于新定义问题,考查转化化归的数学思想。

解题关键在于明确“界点”的定义,从而转化为零点个数问题。

9.已知是抛物线的焦点,为抛物线上的动点,且的坐标为,则的最小值是()A. B. C. D.【答案】C【解析】由题意可得,抛物线的焦点,准线方程为.过点作垂直于准线,为垂足,则由抛物线的定义可得,则,为锐角.∴当最小时,最小,则当和抛物线相切时,最小.设切点,由的导数为,则的斜率为.∴,则.∴,∴故选C.点睛:本题主要考查抛物线的定义和几何性质,与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到焦点的距离与点到准线的距离的转化,这样可利用三角形相似,直角三角形中的锐角三角函数或是平行线段比例关系可求得距离弦长以及相关的最值等问题.10.设,且,记,则的最小值为()A. 1B.C. 2D.【答案】B【解析】设,记,则(利用三角函数的有界性)【点睛】构造向量,把转化为向量,由不等式可变为,再由三角形面积公式和夹角公式变形,再由三角函数的有界性可求解。

二、填空题(每小题5分,共35分)11.已知双曲线的方程为,则双曲线的渐近线方程为___________.【答案】【解析】【分析】根据渐近线方程直接求得结果。

【详解】由双曲线方程可知:,渐近线方程为:本题正确结果:【点睛】考查双曲线的基础定义和性质,熟记渐近线方程即可,属于基础题。

12.一个几何体的三视图如图所示,则该几何体的体积为___________.【答案】【解析】【分析】根据三视图还原几何体,得到所求几何体为半个圆柱,利用圆柱体积公式可求得结果。

【详解】由三视图还原几何体,可知几何体为以半径为的圆为底面,为高的圆柱的一半几何体的体积:本题正确结果:【点睛】本题关键在于能够通过三视图还原几何体,属于基础题。

13.设变量、满足约束条件则的最大值为______.【答案】5【解析】【分析】先画出可行域,然后求出最大值【详解】如图,先画出可行域,由,得,当即时,,所以的最大值为【点睛】本题考查了线性规划求最值,在解题中一般步骤:画出可行域、改写目标函数、取出最值情况、代入求值。

14.已知的展开式中的系数为5,则.【答案】-1【解析】试题分析:展开式中由两项,分别是中含和的,故的系数为,解得,故答案为-1.考点:二项式定理的应用.15.在中,,为的平分线,,则___________.【答案】【解析】【分析】假设,通过列出与有关的方程,求解出的长度,从而得到的值。

【详解】原题图形如图所示:则:设,则,又解得:本题正确结果:【点睛】本题考查三角形面积公式,关键在于通过面积桥的方式求解出的长度,从而得到所求比值。

16.在中,点满足,当点在射线(不含点)上移动时,若,则的取值范围为__________.【答案】【解析】因为点在射线(不含点)上,设,又,所以,所以,,故的取值范围.17.己知实数x,y,z[0,4],如果x2,y2,z2是公差为2的等差数列,则的最小值为_______.【答案】4-2【解析】【分析】利用递增的等差数列可得,由此将所求去掉绝对值变为的最小值.再利用等差数列的性质化简上式,利用函数的值域来求得的最小值.【详解】由于数列是递增的等差数列,故,且,故,,而函数在上为增函数,故当时取得最大值为,所以.【点睛】本小题主要考查等差数列的性质,考查含有两个绝对值符号式子的化简,考查函数求最小值的方法,属于难题.三、解答题(每小题15分,共75分)18.设函数(1)求函数的最小正周期和单调递增区间;(2)当时,的最大值为,求的值【答案】(1) 最小正周期,为的单调递增区间;(2) .【解析】【分析】(1)将整理为的形式,进而求得最小正周期和单调区间;(2)当取得最大值时,取最大值,借此建立方程,求得的值。

【详解】(1)则的最小正周期当时,单调递增即的单调递增区间为:(2)当时,当,即时,所以【点睛】本题考查的性质和值域问题的求解。

关键是利用整体代入的方式,利用的范围与图像的对应关系求得结果。

19.(本小题满分12分)已知等差数列满足:,.的前n项和为.(Ⅰ)求及;(Ⅱ)令(),求数列的前项和.【答案】(Ⅰ); (Ⅱ).【解析】试题分析:(1)设等差数列的公差为,由已知可得解得,则及可求;(2)由(1)可得,裂项求和即可试题解析:(1)设等差数列的公差为,因为,,所以有,解得,所以,.(2)由(1)知,,所以,所以,即数列的前项和.考点:等差数列的通项公式,前项和公式。

裂项求和20.如图,已知三棱锥,,,平面平面,是中点.(Ⅰ)证明:平面;(Ⅱ)求直线与平面所成的角的正弦值.【答案】(Ⅰ)详见解析(Ⅱ)【解析】【分析】(1)通过面面垂直的性质,可以得到平面,证明出,即可证得平面;(2)过作的垂线,可证得为直线与平面所成的角;再利用勾股定理求出的长度,从而得到所求正弦值。

【详解】(Ⅰ)由得由平面平面得:平面,所以又因为,所以平面(Ⅱ)过作且,连结由平面得:平面平面所以平面,故为直线与平面所成的角不妨设由得由(Ⅰ)可知:平面,可知由中线定理可得:解得:,又,即所以,故直线与平面所成的角的正弦值是【点睛】本题主要考察了线面垂直的证明、直线与平面所成角问题。

要注意通过面面垂直的性质得到线面垂直的关系。

求解线面角的关键在于找到平面的垂线,从而将所求角放到直角三角形中来进行求解。

难点在于求解和的长度。

21.已知椭圆的焦点坐标为(-1,0),(1,0),过垂直于长轴的直线交椭圆于P、Q两点,且|PQ|=3,(1)求椭圆的方程;(2)过的直线l与椭圆交于不同的两点M、N,则△MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.【答案】(1);(2)存在,内切圆面积最大值是,直线方程为. 【解析】(1)设椭圆方程为=1(a>b>0),由焦点坐标可得c=1.由|PQ|=3,可得=3.又a2-b2=1,得a=2,b=.故椭圆方程为=1.(2)设M(x1,y1),N(x2,y2),不妨令y1>0,y2<0,设△F1MN的内切圆的半径R,则△F1MN的周长为4a=8,S△F1MN=(|MN|+|F1M|+|F1N|)R=4R,因此要使△F1MN内切圆的面积最大,则R最大,此时S△F1MN也最大.S△F1MN=F1F2||y1-y2|=y1-y2,由题知,直线l的斜率不为零,可设直线l的方程为x=my+1,由得(3m2+4)y2+6my-9=0,得y1=,y2=,则S△F1MN=y1-y2=,令t=,则t≥1,则S△F1MN===.令f(t)=3t+,则f′(t)=3-,当t≥1时,f′(t)>0,所以f(t)在[1,+∞)上单调递增,有f(t)≥f(1)=4,S△F1MN≤=3,当t=1,m=0时,S△F1MN=3,又S△F1MN=4R,∴R max=这时所求内切圆面积的最大值为π.故△F1MN内切圆面积的最大值为π,且此时直线l的方程为x=1.22.已知函数,曲线在点处的切线方程为。

(1)求、的值;(2)如果当,且时,,求的取值范围。

【答案】(1),(2)(-,0]【解析】(1)由于直线的斜率为,且过点,故即解得,。

(2)由(1)知,所以。

考虑函数,则。

(i)设,由知,当时,,h(x)递减。

相关文档
最新文档