29基本不等式学案
基本不等式导学案

基本不等式导学案一、 教学目标1、 通过学习,进一步加深对基本不等式的理解,能灵活地通过配凑、变形及“1”的恒等变换利用基本不等式解决实际问题;2、 理解用不等式a+b 2≥√ab 求最值的条件,并能灵活地求实际问题的最大值或最小值;3、 通过本节的探究过程,培养学生观察、比较、分析、配凑、转化等数学意识与数学能力.二、 课前准备1、基础预测(1)不等式a+b 2≥√ab 中的a,b 的取值范围是_____,等号成立的条件是______。
(2)不等式22⎪⎭⎫ ⎝⎛+≤b a ab 中的a,b 的取值范围是______,等号成立的条件是______ 2、基本不等式的理解:1、x,y∈R +,x+y 2为x,y 的算术平均数,√xy 为x,y 的几何平均数,算术平均数不小于几何平均数.2、结构特点:左边为和式,右边为积式.3、如果x,y ∈ℝ+,x +y =p 为定值时,它们的积xy 有最_____值; 如果x,y ∈ℝ+,xy =s 为定值时,它们的和x +y 有最_____值.三、 自我测验练习1、设a >0,b >0,给出下列不等式 (1)a +1a ≥2, (2)(a +1a )(b +1b )≥4,(3)(a +b )(1a +1b )≥4, (4)a 2+2+1a 2+2≥2,其中成立的是_____等号能成立的是_____练习2、在下列函数中,最小值为2的是()A、y=x5+5x(x∈ℝ,x≠0) B、y=lgx+1lgx(1<x<10)C、y=3x+3−x(x∈R)D、y=sinx+1sinx (0<x<π2)四、学以致用例1、求函数y=1x−3+x(x>3)的最小值例2、已知:0<x<13,求函数y=x(1-3x)的最大值例3、已知正数x、y,求(x+y)(1x+1y)的最小值思考:已知正数x,y满足2x+y=1,求1x+1y的最小值。
基本不等式教案

基本不等式教案
教案:基本不等式
一、教学目标:
1. 理解不等式的概念和意义;
2. 掌握不等式的表示方法;
3. 能够解决基本不等式的求解问题。
二、教学重点:
1. 理解不等式的概念和意义;
2. 掌握不等式的表示方法。
三、教学难点:
能够解决基本不等式的求解问题。
四、教学步骤:
1. 导入新知识:
与学生进行一段对话,了解学生对不等式的认识程度,并引出本节课的主题。
2. 概念解释:
通过例子及图示,简单明了地向学生解释什么是不等式,以及不等式的表示方法,如“大于”、“小于”、“大于等于”、“小于等于”等。
3. 基本不等式的求解方法:
介绍几个基本不等式的求解方法,并通过具体的例子进行讲解,如将不等式转化为方程、利用数轴图解法等。
4. 练习与巩固:
通过对一些简单的不等式进行练习,让学生逐步掌握基本不等式的求
解方法,并在解题过程中注意注意解题步骤和思路。
5. 拓展应用:
给学生一些有挑战性的不等式问题,让他们进一步巩固和应用所学的
求解方法,并在解答过程中培养他们的综合运用能力和创新思维。
6. 归纳总结:
对本节课的内容进行归纳总结,梳理基本不等式的求解方法,并强调
解题时的注意事项。
7. 课堂作业:
布置一些不等式的练习题,让学生独立完成并交作业。
五、教学资源:
教学课件、练习题。
六、教学评估:
通过课堂练习及作业的完成情况,评估学生对基本不等式的掌握情况。
七、教学反思:
根据学生的学习情况及问题反馈,及时调整教学策略,提高教学效果。
基本不等式答案

基本不等式学案(含答案)一 :基础演练1.若x>0,则x +2x 的最小值为________.答案:22解析:∵ x>0,∴ x +2x≥2x·2x=22,当且仅当x =2时等号成立. 2. 设x<0,则y =3-3x -4x 的最小值为________.答案:3+43解析:∵ x<0,∴ y =3-3x -4x =3+(-3x)+⎝⎛⎭⎫-4x ≥3+2(-3x )·⎝⎛⎭⎫-4x =3+43,当且仅当x =-233时等号成立,故所求最小值为3+4 3.3. 若x>-3,则x +2x +3的最小值为________.答案:22-3解析:∵ x +3>0,∴ x +2x +3=(x +3)+2x +3-3≥2(x +3)×2x +3-3=22-3.4. 设x ,y ∈R ,且x +y =5,则3x +3y 的最小值是________.答案:183解析:3x +3y ≥23x ·3y =23x +y =235=183,当且仅当x =y =52时等号成立.5. (必修5P 88例2改编)已知函数f(x)=x +ax -2(x>2)的图象过点A(3,7),则此函数的最小值是________.答案:6解析:∵ 函数f(x)=x +ax -2(x>2)的图象过点A(3,7),即7=3+a ,∴ a =4.∵ x -2>0,∴ f(x)=(x -2)+4x -2+2≥2(x -2)·4x -2+2=6,当且仅当x =4时等号成立,故此函数的最小值是6. 二:典型例题例1 (1) 已知x<54,求函数y =4x -2+14x -5的最大值;(2) 已知x>0,y>0且1x +9y=1,求x +y 的最小值.解:(1) x<54,∴ 4x -5<0.∴ y =4x -5+14x -5+3=-[(5-4x)+1(5-4x )]+3≤-2(5-4x )1(5-4x )+3=1,y max =1.(2) ∵ x>0,y>0且1x +9y =1,∴ x +y =(x +y)⎝⎛⎭⎫1x +9y =10+9x y +yx ≥10+29x y ·yx=16,即x +y 的最小值为16.例2已知函数f(x)=x 2+2x +ax,x ∈[1,+∞).(1) 当a =4时,求函数f(x)的最小值;(2) 若对任意x ∈[1,+∞),f(x)>0恒成立,试求实数a 的取值范围.解:(1) 由a =4,∴f(x)=x 2+2x +4x =x +4x +2≥6,当x =2时,取得等号.即当x =2时,f(x)min =6.(2) x ∈[1,+∞),x 2+2x +ax >0恒成立,即x ∈[1,+∞),x 2+2x +a>0恒成立.等价于a>-x 2-2x ,当x ∈[1,+∞)时恒成立,令g(x)=-x 2-2x ,x ∈[1,+∞), ∴a>g(x)max =-1-2×1=-3,即a>-3.∴a 的取值范围是()-3,+∞. 例3 已知x>0,y>0,求证:1x +1y ≥4x +y.证明:原不等式等价于(x +y)2≥4xy ,即(x -y)2≥0,显然成立.故原不等式得证.变式训练(1) 若a>b>c ,求证:1a -b +1b -c ≥4a -c;(2) 若a>b>c ,求使得1a -b +1b -c ≥ka -c恒成立的k 的最大值.证明:(1) 令a -b =x ,b -c =y ,则a -c =x +y.原不等式等价于1x +1y ≥4x +y ,由作差法可证该不等式成立,故原不等式成立.(2) 由(1)可知,1a -b +1b -c ≥4a -c 恒成立,而1a -b +1b -c ≥ka -c ,k 的最大值为4.例4 如图,动物园要围成相同面积的长方形虎笼四间.一面可利用原有的墙,其他各面用钢筋网围成.(1) 现有可围成36m 长的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼的面积最大?(2) 若使每间虎笼的面积为24m 2,则每间虎笼的长、宽各设计为多少时,可使围成的四间虎笼的钢筋网总长最小?解:(1) 设每间虎笼长为xm ,宽为ym ,则⎩⎪⎨⎪⎧4x +6y =36,x>0,y>0,面积S =xy.由于2x +3y ≥22x·3y =26xy ,所以26xy ≤18,得xy ≤272,即S ≤272,当且仅当2x =3y 时取等号.则⎩⎪⎨⎪⎧2x =3y 2x +3y =18⎩⎪⎨⎪⎧x =4.5,y =3,所以每间虎笼长、宽分别为4.5m 、3m 时,可使面积最大.(2) 设围成四间虎笼的钢筋网总长为lm ,则l =4x +6y ,且xy =24,所以l =4x +6y =2(2x +3y)≥2×22x·3y =46xy =4×6×24=48(m),当且仅当2x =3y 时取等号.⎩⎪⎨⎪⎧xy =242x =3y⎩⎪⎨⎪⎧x =6,y =4.故每间虎笼长、宽分别为6m 、4m 时,可使钢筋网的总长最小为48m.例5某造纸厂拟建一座平面图形为矩形且面积为162 m 2的三级污水处理池,池的深度一定(平面图如图所示),如果池四周围墙建造单价为400元/m 2,中间两道隔墙建造单价为248元/m 2,池底建造单价为80元/m 2,水池所有墙的厚度忽略不计.(1) 试设计污水处理池的长和宽,使总造价最低,并求出最低总造价;(2) 若由于地形限制,该池的长和宽都不能超过16 m ,试设计污水池的长和宽,使总造价最低,并求出最低总造价.解:(1) 设污水处理池的宽为x m ,则长为162xm.总造价为f(x)=400×⎝⎛⎭⎫2x +2·162x +248×2x +80×162=1 296x +1 296×100x +12 960=1 296⎝⎛⎭⎫x +100x +1 2960≥1 296×2x·100x +12 960=38 880元.当且仅当x =100x(x>0),即x =10时取等号.∴ 当长为16.2 m ,宽为10 m 时总造价最低,最低总造价为38 880元.(2) 由限制条件知⎩⎪⎨⎪⎧0<x ≤16,0<162x ≤16,∴ 1018≤x ≤16.设g(x)+x +100x ⎝⎛⎭⎫∴ 1018≤x ≤16,由函数性质易知g(x)在⎣⎡⎦⎤1018,16上是增函数,∴ 当x =1018时(此时162x =16),g(x)有最小值,即f(x)有最小值1 296×⎝⎛⎭⎫1018+80081+12 960=38 882(元).∴ 当长为16 m ,宽为1018 m 时,总造价最低,为38 882元.三:能力提僧升1. (2013·上海)设常数a>0,若9x +a 2x ≥a +1对一切正实数x 成立,则a 的取值范围为________.答案:⎣⎡⎭⎫15,+∞解析:9x +a 2x≥29x·a 2x =6a ,所以6a ≥a +1,即a ≥15. 2. 已知正实数x 、y 、z 满足2x(x +1y +1z )=yz ,则⎝⎛⎭⎫x +1y ⎝⎛⎭⎫x +1z 的最小值为________. 答案:2解析:∵ 2x ⎝⎛⎭⎫x +1y +1z =yz ,∴ 1y +1z =yz2x -x , ∴ ⎝⎛⎭⎫x +1y ⎝⎛⎭⎫x +1z =x 2+x ⎝⎛⎭⎫1y +1z +1yz =yz 2+1yz≥ 2.3. 已知P 是△ABC 的边BC 上的任一点,且满足AP →=xAB →+yAC →,x 、y ∈R ,则1x +4y 的最小值是________.答案:9解析:因为B 、C 、P 三点共线且AP →=xAB →+yAC →,故x >0,y >0且x +y =1,所以1x +4y =⎝⎛⎭⎫1x +4y (x +y)=5+y x +4x y≥9. 4. 若不等式4x 2+9y 2≥2k xy 对一切正数x 、y 恒成立,则整数k 的最大值为________.答案:3解析:原不等式可化为4x y +9y x ≥2k 而4x y +9yx ≥12,∴ 2k ≤12,则整数k 的最大值为3.5. 设正项等差数列{a n }的前2 011项和等于2 011,则1a 2+1a 2 010的最小值为________.答案:2解析:由题意得S 2 011=2 011(a 1+a 2 011)2=2 011,∴ a 1+a 2 011=2.又a 2+a 2 010=a 1+a 2 011=2,∴ 1a 2+1a 2 010=12⎝⎛⎭⎫1a 2+1a 2 010(a 2+a 2 010)=12(a 2 010a 2+a 2a 2 010)+1≥2.。
基本不等式教学设计(多篇)

基本不等式教学设计(多篇)第1篇:基本不等式教学设计基本不等式一、教学设计理念:注重学生自主、合作、探究学习,用新课程理念打造新的教学模式.二、教学设计思路: 1.教学目标确定这节课的目标定位分为三个层面:第一层面:知识与技能层面,①了解两个正数的算术平均数和几何平均数的概念;②要创设几何和代数两个方面的背景,从数形结合的高度让学生了解基本不等式;③引导学生从不同角度去证明基本不等式;④用基本不等式来证明一些简单不等式.第二层面:过程与方法,通过掌握公式的结构特点,适当运用公式的变形,能够提高学生分析问题和解决问题的能力,加强学生的实践能力,渗透数学的思想方法.第三层面:情感、态度与价值观,①通过具体问题的解决,让学生去感受日常生活中存在大量的不等关系,鼓励学生用数学观点进行归纳,抽象,使学生感受到数学美,走进数学,培养学生严谨的数学学习习惯和良好的思维方式;②通过问题的解决,激发学生探究精神和科学态度,同时去感受数学的运用性,体会数学的奥妙,数学的简洁美,激发学生学习数学的兴趣.2.教学过程本节课我设计了五个环节:第一个环节:创设情境,引入新课.我设计了两个情境:一个是天平测量的问题,另一个是让学生动手操作折纸试验,从不同的角度体验和理解基本不等式,让学生能够体会数学与生活紧密联系,激发学生学习兴趣,为后面学习作铺垫.第二个环节:探究交流,发现规律.我在问题的情境中,让学生带着不同的数据去比较几何平均数和算术平均数的大小,并通过小组折纸试验,通过这样合作交流的方式让学生初步感受到几何平均数和算术平均数之间的大小关系.第三个环节:启发引导、形成结论.本节课的重要任务就是对基本不等式进行严格的证明,包括了比较法,综合法和分析法,而学生对作差比较法是比较熟悉的,综合法和分析法的过程要加强引导,并组织学生去探究这两种方法之间的关系,并规范证明过程,为今后学习证明方法打下基础.第四个环节:训练小结,巩固深化.学习基本不等式最终的目的体现在它的运用上,首先在例题选择上,注重让学生充分认识和间的关系,给出一般的结论,在练习中我选择了题组形式,目的是与让学生强化对基本不等式成立条件包括等号成立的条件.第五个环节:研究拓展,提高能力.我设计了一道关于例题的变式题,目的是让学生感受到,通过适当的变形将其化为例题中出现的形式,体现化归的思想,最后设计三道思考题,两道进一步巩固化归思想及应用基本不等式的条件,一道需要分类讨论,让学有余力的学生提供更好展示自己能力的机会,得到进一步提高.最后我通过问题式的小结,让学生自行归纳我们这节课当中学到的知识,特别是最后一问中,让学生去总结在使用基本不等式的时候要注意哪些条件.虽然我没有点出“一正二定三相等”这样的结论,但已潜移默化为我们下一节课使用基本不等式求最值问题作了铺垫,起到承前启后的作用.三、本节课重点重点:应用数形结合的思想和日常生活中例子理解基本不等式,并从不同的角度探索不等式的证明过程.难点:灵活使用化归思想把问题转化为运用基本不等式,以及基本不等式成立条件中包括等号成立的条件.在这一节中的主要任务就是让学生从不同的角度去探索基本不等式的证明过程,包括它的成立条件,在这一节课中我的总体想法是通过互动,发现规律,直接猜想,指定验证,得出结论,最后灵活运用这个结论来解决问题.四、本节课亮点:1.积极引导学生自主探究问题,解决问题.2.灵活运用转化与化归的思想.3.实现课堂三大转变:①变教学生学会知识为指导学生会学知识;②变重视结论的记忆为重视学生获取结论的体验和感悟;③变模仿式学习为探究式学习.4.课堂小结采取问题式小结给学生留下满口香.导入新课探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗??(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)?? 推进新课师同学们能在这个图中找出一些相等关系或不等关系吗?如何找??【三维目标】:一、知识与技能1.能够运用基本不等式解决生活中的应用问题2.进一步掌握用基本不等式求函数的最值问题;3.审清题意,综合运用函数关系、不等式知识解决一些实际问题.4.能综合运用函数关系,不等式知识解决一些实际问题.二、过程与方法本节课是基本不等式应用举例的延伸。
基本不等式教案

基本不等式教案教案标题:基本不等式教案教学目标:1. 理解和运用基本不等式的概念;2. 掌握基本不等式的性质及解题方法;3. 提升对不等式问题的分析和解决能力。
教学准备:1. 教师:白板、标志笔、多媒体设备;2. 学生:教科书、练习册、笔、纸。
教学过程:步骤一:导入(5分钟)利用一些简单的实例向学生介绍不等式的概念,并引发对不等式的思考,例如:3 > 2、4 ≠ 5。
步骤二:教学(30分钟)1. 解释基本不等式的定义和性质,包括大于、小于、大于等于、小于等于等概念。
2. 介绍不等式的运算规则,如相加、相减、相乘等,以及这些运算对不等式的影响。
3. 演示并分析如何解决一步骤的基本不等式方程,引导学生理解解不等式方程的思路和方法。
4. 提供一些具体的例子,让学生通过实际操作来练习解决不等式方程的能力。
步骤三:巩固(15分钟)1. 设计一些巩固练习,让学生独立或合作完成,检测他们对基本不等式的理解和应用。
2. 在学生完成练习后,逐个检查答案,并解释如何得出正确答案。
步骤四:拓展(10分钟)1. 提出一些扩展问题,要求学生运用基本不等式的知识,解决更复杂的不等式问题。
2. 引导学生思考应用不等式解决实际问题时可能遇到的困难,并讨论如何克服这些困难。
步骤五:总结(5分钟)总结基本不等式的概念、性质和解题方法,并鼓励学生运用这些知识解决更多的不等式问题。
教学扩展:1. 鼓励学生品尝到不同类型不等式的实例,如一元一次不等式、绝对值不等式等,扩展他们对不等式的理解和应用。
2. 提供更多的练习和挑战题,提高学生解决不等式问题的技巧和速度。
3. 引导学生进行小组或个人项目,研究不等式在实际生活中的应用,如经济学、生物学等领域。
衡量评估:1. 教师观察学生在课堂上的互动和参与度;2. 学生完成的练习和作业的准确性和完整性;3. 学生通过小组或个人项目展示的能力和创造性。
注意事项:1. 教师应根据学生的实际情况和学习进度,调整教学步骤和难度,确保教学效果;2. 鼓励学生积极参与互动,提出问题并解答;3. 考虑学生的不同学习特点和能力,利用多种教学方法和资源,提供个性化的教学指导。
基本不等式教学设计(通用8篇)

基本不等式教学设计(通用8篇)基本不等式教学设计1教材分析本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。
要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。
基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
通过本节学习体会数学来源于生活,提高学习数学的乐趣。
课程目标分析依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。
2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。
启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。
3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。
教学重、难点分析重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本不等式的证明过程及应用。
难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);2、利用基本不等式求解实际问题中的最大值和最小值。
基本不等式课程设计

基本不等式课程设计一、教学目标本节课的教学目标是让学生掌握基本不等式的概念、性质和应用,能够运用基本不等式解决一些简单的问题。
具体目标如下:1.了解基本不等式的定义和性质。
2.掌握基本不等式的证明方法。
3.理解基本不等式在实际问题中的应用。
4.能够运用基本不等式解决一些简单的问题。
5.能够运用基本不等式进行不等式的证明。
情感态度价值观目标:1.培养学生的逻辑思维能力。
2.培养学生的数学美感。
二、教学内容本节课的教学内容主要包括基本不等式的定义、性质和应用。
具体内容如下:1.基本不等式的定义:介绍基本不等式的定义,解释其含义和作用。
2.基本不等式的性质:讲解基本不等式的性质,包括对称性、单调性等。
3.基本不等式的应用:介绍基本不等式在实际问题中的应用,如求最值、证明不等式等。
三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法:1.讲授法:教师通过讲解基本不等式的定义、性质和应用,引导学生理解并掌握知识。
2.讨论法:教师学生进行小组讨论,让学生通过互动交流,加深对基本不等式的理解。
3.案例分析法:教师通过举例子,让学生运用基本不等式解决实际问题,巩固知识。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:为学生提供《数学课本》等相关教材,作为学习的基本依据。
2.参考书:提供一些数学参考书,供学生课后拓展学习。
3.多媒体资料:制作课件、视频等多媒体资料,帮助学生直观理解基本不等式的性质和应用。
4.实验设备:准备一些实验设备,如白板、黑板等,方便教师进行演示和讲解。
五、教学评估为了全面、客观、公正地评估学生的学习成果,本节课的评估方式包括以下几个方面:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评估学生的学习态度和理解程度。
2.作业:布置与本节课内容相关的作业,评估学生对基本不等式的掌握情况和应用能力。
3.考试:安排一次考试,测试学生对基本不等式的概念、性质和应用的掌握程度。
基本不等式教案

基本不等式教案一、教学目标1、知识与技能目标(1)学生能够理解基本不等式的内容及其证明过程。
(2)掌握运用基本不等式求最值的方法和条件。
2、过程与方法目标(1)通过对基本不等式的探究,培养学生观察、分析、归纳和逻辑推理的能力。
(2)引导学生运用基本不等式解决实际问题,提高学生的数学应用意识和能力。
3、情感态度与价值观目标(1)让学生感受数学的简洁美和应用价值,激发学生学习数学的兴趣。
(2)培养学生严谨的治学态度和勇于探索的精神。
二、教学重难点1、教学重点(1)基本不等式的内容及证明。
(2)运用基本不等式求最值的方法和条件。
2、教学难点(1)基本不等式的证明。
(2)运用基本不等式求最值时条件的判断和正确应用。
三、教学方法讲授法、探究法、练习法四、教学过程(一)导入新课通过实际生活中的问题引入,比如:某工厂要建造一个面积为 100 平方米的矩形仓库,仓库的一边靠墙,墙长 16 米,问怎样建造才能使所用材料最省?(二)新课讲授1、基本不等式的推导对于任意两个正实数 a,b,有\(a + b \geq 2\sqrt{ab}\),当且仅当 a = b 时,等号成立。
证明:\\begin{align}(a b)^2&\geq 0\\a^2 2ab + b^2&\geq 0\\a^2 + 2ab + b^2&\geq 4ab\\(a + b)^2&\geq 4ab\\a + b&\geq 2\sqrt{ab}\end{align}\当且仅当\(a b = 0\),即\(a = b\)时,等号成立。
2、基本不等式的几何解释以直角三角形为例,直角边为 a,b,斜边为 c,那么\(c =\sqrt{a^2 + b^2}\)。
对于基本不等式\(a + b \geq 2\sqrt{ab}\),可以看作是以 a,b 为直角边的直角三角形的斜边长大于等于以\(\sqrt{ab}\)为边长的正方形的对角线长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4.1基本不等式:2
b
a a
b +≤
学案作者:张春燕
一、教学目标
1. 使学生了解基本不等式的代数、几何背景及基本不等式的证明.
2. 感知与基本不等式相近的一些不等式的证明和几何背景.
3. 初步了解用分析法证明不等式,培养学生分析问题能力和逻辑思维能力. 二、教学重点,难点
重点:理解掌握基本不等式,并能借助几何图形说明基本不等式的意义.
难点:利用基本不等式推导一些与其相似的不等式,关键是对基本不等式的理解与掌握. 三、问题导学
问题1:我们把“风车”造型抽象成图3.4-2,在正方形ABCD 中有四个全等的直角三角形,设直角三角形边长为a ,b ,则正方形的边长为_____________面积为_____________. 问题2:那四个直角三角形的面积和为_____________.
问题3:根据四个三角形的面积和正方形的面积,可得到一个不等式:2
2
b a +_____ab 2, 什么时候这两部分面积相等呢?
问题4:证明不等式:2
2b a +≥ab 2.
问题5:特别地,如果a>0, b>0, 则b a +≥ab 2 , 2b a ab +≤,其中2
b
a +叫正数a,
b 的算术平均数,ab 叫正数a, b 的几何平均数. 问题6:课本98P 探究给出基本不等式的几何解释. 四、探究交流(基本不等式的应用)
已知x, y 都是正数,求证:
① 如果积xy 是定值P ,那么当x=y 时,和x+y 有最小值P 2. ② 如果和x+y 是定值S ,那么当x=y 时,积xy 有最大值24
1S . 证明:
总结:“和定积最大,积定和最小”. 注:应用基本不等式须注意三点: ① 各项或各因式为正. ② 和或积为定值.
③ 各因式或各项能取得相等的值,必要时作适当变形,以适应上述前提. 即:一正 二定 三相等. 五、例题
例1:x>0, 当x 取什么值时,x
x 1
+
的值最小?最小是多少?
例2:一段长30m 的篱笆围成一个一边靠墙的矩形菜园,墙长18m ,问这个矩形的长和宽各为多少时,菜园的面积最大?最大面积是多少?
例3:x>1, 当x 取什么值时,1
1
-+x x 的值最小?最小是多少?
例4:已知+∈R b a ,,且1=+b a ,求证: ①
411≥+b a . ②9)11
)(11(22≥--b
a .
课堂反馈: 选择题
1.已知R b a ab ∈≠,,0,则下列式子总能成立的是( )
A.
b a a b +2≥ B.b a
a b +2-≥ C.b
a a
b +2-≤ D.
b a
a b +2≥ 2.已知y>x>0, 且x + y=1,那么( )
A. x<2y
x +<y<2xy B.2xy 2y
x +<y C. x<2
y
x +<2xy<y D.x<2
2
y
x +<y 3.设+
∈R b a ,,且4=+b a ,则有( )
A.
211≥ab B.111≥+b a C. 2≥ab D.41122≥+b
a 4.下列不等式在+
∈R b a ,时一定成立的是( )
A.
b a ab +2≤ab ≤2b
a +≤22
2b a + B.
ab ≤b a ab +2≤2
b a +≤
2
2
2b a +
C. ab ≤2b a +≤b
a ab
+2≤
2
2
2b a +
D. ab ≤b
a ab
+2≤
2
2
2b a +≤2b a + 5.若2
lg ),lg (lg 21,lg lg ,1b a R b a Q b a P b a +=+=
=
>>,则( ) A .R<P<Q B. P < Q < R C. Q < P < R D. P < R < Q 6.若+∈R y x ,,则下列不等式中等号不成立的是( ) A.211
1
≥+++
x
x x
x B.4)1
)(1(≥++y y x x C.4)1
1)((≥++y
x y x D.2lg lg )2lg lg (22y x y x +≤+ 7.某民营企业的一种电子产品,2007年的产品在2006年基础上增长率是a ,2008年又在2007
年的基础上增长率为b ,(a, b>0), 若这两年的平均增长率为q ,则( )
A.2b a q +=
B.2b
a q +≥ C.2
b a q +≤ D.大小关系不确定
二:填空题
1. 当x>1时,不等式a x x ≥-+
1
1
恒成立,则实数a 的取值范围是_____________. 2. 当10,1<<>b a 时,a b b a log log +的范围是_____________. 3. 设,0>>b a 把2
b
a +,a
b ,a ,b 按从小到大的顺序排列起来为_____________. 4. 若不等式
b
a
a b +>2成立,实数a ,b 满足的条件是_____________. 5. 若实数a ,b 满足a +b =2,则b
a
33+的最小值是_____________.
三:证明
已知:a, b, c 都是正数,且a + b + c=1, 求证:(1-a)(1-b)(1-c)≥8abc. 思考题:若0<x , 求x
x 1
+
的最大值.。