9.2一元一次不等式学案.2一元一次不等式学案
2020年-人教版七年级数学下册 学案 9.2 第4课时 一元一次不等式的应用--含答案

第9章不等式与不等式组9.2 一元一次不等式第4课时一元一次不等式的应用核心提要在列不等式解应用题的时候要注意:(1)要根据题目中的关键字(如“大于”“不大于”“至多”“不超过”等)所表示的不等关系列出________.(2)在设未知数的时候,不能出现“至多”“不超过”等字眼.典例精讲知识点:一元一次不等式的应用1.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买()A.3支笔B.4支笔C.5支笔D.6支笔2.某文具店计划购进学生用的甲、乙两种圆规80只,进货总价要求不超过384元.两种圆规的进价和售价如下表:甲种乙种进价(元) 4 5售价(元) a(6≥a>4) 7(1)问该文具店至少应购进甲种圆规多少只?(2)在全部可销售完的情况下,针对a的不同取值,应怎样的进货所获利润最大?变式训练变式1某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折变式2某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.蔬菜品种西红柿西兰花批发价(元/kg) 3.68零售价(元/kg) 5.414蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?基础巩固1.有10名菜农,每人种茄子3亩或辣椒2亩,已知茄子每亩可收入0.5万元,辣椒每亩可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排________人种茄子.2.小王家鱼塘有可出售的大鱼和小鱼共800千克,大鱼每千克售价10元,小鱼每千克售价6元,若将这800千克鱼全部出售,收入可以超过6 800元,则其中售出的大鱼至少有多少千克?若设售出的大鱼为x千克,则可列式为:________________________.3.某大型超市从生产基地购进一批水果,运输及销售中估计有10%的苹果正常损耗,苹果的进价是每千克1.8元,商家要避免亏本,需把售价至少定为____元.4.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,缴水费20元.请问:该市规定的每户月用水标准量是多少吨?5.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1 460个,那么至少要招录多少名男学生?能力提升6.某小区为更好地提高业主垃圾分类的意识,管理处决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买3个温馨提示牌和4个垃圾箱共需580元,且每个温馨提示牌比垃圾箱便宜40元.(1)问购买1个温馨提示牌和1个垃圾箱各需多少元?(2)如果需要购买温馨提示牌和垃圾箱共100个,费用不超过8000元,问最多购买垃圾箱多少个?培优训练7.为了加强对校内外安全监控,创建荔湾平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.(2)若购买该批设备的资金不超过11 000元,且两种型号的设备均要至少买一台,学校有哪几种购买方案?(3)在(2)问的条件下,若要求监控半径覆盖范围不低于1 600米,为了节约资金,请你设计一种最省钱的购买方案.第4课时 一元一次不等式的应用----答案【核心提要】 不等式 【典例精讲】 1.C2.解:(1)设该文具店应购进甲种圆规x 个,则乙种圆规的个数为80-x 个, 由题意得,4x +5(80-x)≤384, 解得:x ≥16, 答:该文具店至少应购进甲种圆规16个; (2)设购进甲种圆规x 个,利润为y ,则y =x(a -4)+(7-5)(80-x)=(a -6)x +160, ∵6≥a >4,∴a -6≤0, 故x 越小,y 值越大, 当x =16时,y 值最大.答:该文具店应购进甲种圆规16个,乙种圆规64个,所获利润最大.【变式训练】1.B2.解:(1)设批发西红柿x kg ,西兰花y kg ,由题意得⎩⎪⎨⎪⎧x +y =3003.6x +8y =1 520, 解得:⎩⎪⎨⎪⎧x =200y =100 ,故批发西红柿200 kg ,西兰花100 kg ,则这两种蔬菜当天全部售完一共能赚:200×1.8+100×6=960(元),答:这两种蔬菜当天全部售完一共能赚960元;(2)设批发西红柿a kg ,由题意得,(5.4-3.6)a +(14-8)×1 520-3.6a8≥1 050,解得:a ≤100,答:该经营户最多能批发西红柿100 kg.【基础巩固】 1.42.10x +6(800-x)>6 800 3.24.解:设该市规定的每户每月标准用水量为x 吨,∵12×1.5=18<20, ∴x <12. 则1.5x +2.5(12-x)=20, 解得:x =10. 答:该市规定的每户每月标准用水量为10吨. 5.解:(1)设该班男生有x 人,女生有y 人,依题意得:⎩⎪⎨⎪⎧x +y =42,x =2y -3,解得:⎩⎪⎨⎪⎧x =27,y =15.∴该班男生有27人,女生有15人.(2)设招录的男生为m 名,则招录的女生为(30-m)名,依题意得:50m +45(30-m)≥1 460, 即5m +1 350≥1 460, 解得:m ≥22.答:工厂在该班至少要招录22名男生.【能力提升】6.(1)解:设购买1个温馨提示牌需要x 元,购买1个垃圾箱需要y 元,依题意得⎩⎪⎨⎪⎧3x +4y =580x =y -40,解得:⎩⎪⎨⎪⎧x =60y =100 答:购买1个温馨提示牌需要60元,购买1个垃圾箱需要100元. (2)解:设购买垃圾箱m 个,则购买温馨提示牌(100-m)个,依题意得60(100-m)+100m ≤8 000,解得m ≤50, 答:最多购买垃圾箱50个.【培优训练】7.解:(1)由题意得:⎩⎪⎨⎪⎧a -b =1503b -2a =400, 解得⎩⎪⎨⎪⎧a =850b =700;(2)设购买甲型设备x 台,则购买乙型设备(15-x)台,依题意得 850x +700(15-x)≤11 000, 解得x ≤313,∵两种型号的设备均要至少买一台,∴x=1,2,3,∴有3种购买方案:①甲型设备1台,乙型设备14台;②甲型设备2台,乙型设备13台;③甲型设备3台,乙型设备12台;(3)依题意得:150x+100(15-x)≥1 600,解得x≥2,∴x取值为2或3.当x=2时,购买所需资金为:850×2+700×13=10 800(元),当x=3时,购买所需资金为:850×3+700×12=10 950(元),∴最省钱的购买方案为:购买甲型设备2台,乙型设备13台.。
人教版七年级数学下册9.2.1一元一次不等式优秀教学案例

在本案例中,教师关注每个学生的学习特点,给予个性化的指导。这种关注个体差异的教学策略,有助于激发学生的学习潜能,使他们在数学学习过程中都能获得成功的体验。
5.反思与评价相结合,促进全面发展
本案例将反思与评价贯穿于整个教学过程。教师引导学生进行自我反思,总结学习过程中的收获与不足,帮助他们形成自我认知。同时,采用多元化的评价方式,关注学生的知识掌握、能力提升以及情感态度等方面,促进学生的全面发展。
(二)过程与方法
1.通过自主探究、合作交流的学习方式,让学生在实践中掌握一元一次不等式的解法。
2.引导学生运用已学的代数知识,将实际问题抽象为一元一次不等式,培养学生的建模能力。
3.教学过程中,注重启发式教学,激发学生的思维,培养他们分析问题、解决问题的能力。
4.针对不同学生的学习特点,给予个性化的指导,使他们在探索过程中,形成适合自己的学习方法。
2.问题驱动的教学策略
本案例以问题为导向,引导学生进行自主探究和思考。通过设计具有启发性和挑战性的问题,让学生在解决问题的过程中,掌握一元一次不等式的解法,培养他们的逻辑思维能力和问题解决能力。
3.小组合作与交流
案例中,小组合作是核心教学策略。学生在小组内部分工合作,共同探讨问题,培养了团队合作精神。同时,通过小组间的交流与分享,学生能够借鉴他人的思路和方法,拓宽自己的视野,提高沟通能力。
三、教学策略
(一)情景创设
为了让学生更好地理解一元一次不等式的实际意义,我将创设贴近学生生活的教学情景。例如,通过设计购物比较、身高体重比较等实际问题,引导学生从具体情境中抽象出一元一次不等式的概念。通过这种方式,让学生感知到数学知识在实际生活中的应用,激发他们的学习兴趣。
人教版初中数学七年级下册9.2.2《一元一次不等式的应用》教案设计

课题:9.2实际问题与一元一次不等式教材:人教版义务教育课程标准实验教科书七年级下册【教学目标】:1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,会用一元一次不等式解决简单的实际问题.2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型3.情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习惯;学会在解决问题时,与其他同学交流,培养互相合作精神。
【重点难点】:重点:一元一次不等式在实际问题中的应用。
难点:在实际问题中建立一元一次不等式的数量关系。
关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。
注意问题中隐含的不等量关系,列代数式得到不等式,转化为纯数学问题求解。
【教学过程】:创设情境,研究新知这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。
在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。
问题1:中国旅行社的原价是每人100元,可以给我们打7.7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。
本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。
让学生充分进行讨论交流,在活动中体会不等式的应用。
在分析问题的过程中运用了“求差值比较大小”这一方式,使学生又掌握了一种新的比较两个量之间大小的方式;同时体会到分类考虑问题的思考方式)观察探讨,实际操作选定了旅行社以后,咱们要去购物了,正好商店为了吸引顾客在举行优惠打折活动问题2:甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费.我们选择商店购物才获得更大优惠?分析:这个问题较复杂,从何处入手呢?甲商店优惠方案的起点为购物款达___元后;乙商店优惠方案的起点为购物款过___元后.启发提问:我们是否应分情况考虑?可以怎样分情况呢?(1)如果累计购物不超过50元,则在两店购物花费有区别吗?(2)如果累计购物超过50元,则在哪家商店购物花费小?为什么?关键是对于第二个问题的分类,鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模,在活动中体会不等式的实际作用。
9.2 一元一次不等式[1][公开课学案]
![9.2 一元一次不等式[1][公开课学案]](https://img.taocdn.com/s3/m/e2a98dae0029bd64783e2c8d.png)
东莞市宏远外国语学校2013-2014学年度第二学期◆七年级◆数学◆学案课题:9.2 一元一次不等式(1) 班级:_______ 姓名:________学习目标:掌握一元一次不等式的概念及解法;并能正确地将一元一次不等式的解集表示在数轴上。
学习过程:[一] 预习先学:(认真阅读教材122-123页,完成下列内容)1、下列各式是一元一次不等式的有 (只填序号)①3x+2<2x —5; ②x x 322-≤3; ③823≥x; ④43x -≥—2; ⑤-0.5x-1≤2; ⑥3x-4y ≥0. 2、一元一次不等式的概念:只含有_________未知数,且未知数的次数是__________的不等式(未知数的系数____________),这样的不等式叫做一元一次不等式。
3x+4<7,并把它的解集表示在数轴上。
解:[二] 合作探究:1、比较解方程与解不等式的步骤及格式:2、一题多变,学会转换:主备人:胡厚伟 审核:七年级数学组 印刷时间:2014年5月28日3、解一元一次不等式的步骤: (1)去______;(2)去_____;(3)移_____;(4)合并______;(5)系数______;[三] 课堂小结:本节课学了什么?有什么收获?[四] 快乐达标:1、下列不等式中,是一元一次不等式的是: ( )A.3x -y >-2B.x 2>-3C. x32-≤1 D.2x >3 2、一元一次不等式3-x >5的解集,在数轴上表示正确的是: ( )3、在解不等式32x +>512-x 的下列过程中,错误的一步是:( ) A .去分母得5(2+x )>3(2x-1) B .去括号得10+5x >6x-3C .移项得5x-6x >-3-10D .系数化为1得x >134、请写出一个一元一次不等式:_________________________.5、求一元一次不等式21-x ≤1352+-x 的解,并在数轴上表示解集.[五] 能力升级:6、①若13--k x +5>6是一元一次不等式,则k=________。
9.2《一元一次不等式》第一课时优秀教案

9.2《一元一次不等式》教案第一课时教学目标:(1)了解一元一次不等式的概念,掌握一元一次不等式的解法。
(2)在依据不等式的性质探究一元一次不等式解法过程中,加深对化归思想的体会。
教学重点:一元一次不等式的解法教学手段:多媒体教学教学过程:一、引入概念,导入新课问题1 观察下面的不等式,它们有哪些共同特征?x-7>26 3x<2x+1 -4x>32x>503引出一元一次不等式的概念:含有一个未知数,未知数次数是1的不等式,叫做一元一次不等式。
二、研究解法练习:利用不等式的性质解不等式:x-7>26生说解题思路,师演示课件。
问题2回忆解一元一次方程的依据和一般步骤,对你解一元一次不等式有什么启发?解下列不等式,并在数轴上表示解集:例1 2(1+x )<3问题(1)解一元一次不等式的目标是什么?问题(2)你能类比一元一次方程的步骤,解这个不等式吗?生试说解题思路,师板书格式。
例2 22x +≥312-x 问题(3) 对比不等式22x +≥312-x 与2(1+x )<3的两边,它们在形式上有什么不同? 问题(4) 怎样将不等式22x +≥ 312-x 变形,使变形后的不等式不含分母? 问题(5)(小组讨论)你能说出解一元一次不等式的基本步骤吗?去分母,去括号,移项,合并同类项,系数化为1。
问题(6)对比第(1)小题和第(2)小题的解题过程,系数化为1时应注意些什么? 要看未知数系数的符号,若未知数的系数是正数,则不等号的方向不变;若未知数系数是负数,则不等号的方向要改变。
问题3解一元一次不等式每一步变形的依据是什么?问题4解一元一次不等式和解一元一次方程有哪些相同和不同之处?相同之处:基本步骤相同:去分母,去括号,移项,合并同类项,系数化为1。
基本思想相同:都是运用化归思想,将一元一次方程或一元一次不等式变形为最简形式。
不同之处:(1)解法依据不同:解一元一次不等式的依据是不等式的性质,解一元一次方程的依据是等式的性质。
2020年-人教版七年级数学下册 学案 9.2 第1课时 一元一次不等式--含答案

第9章不等式与不等式组9.2 一元一次不等式第1课时一元一次不等式核心提要1.含有________个未知数,未知数的次数是________的不等式,叫做一元一次不等式.2.一元一次不等式的解法步骤:(1)去分母;(2)______;(3)移项;(4)合并同类项;(5)____________.典例精讲知识点1:一元一次不等式的定义1.下列不等式中哪一个不是一元一次不等式()A.x>3 B.-y+1>y C.1x>2 D.2x>1知识点2:一元一次不等式的定义和其解法2.若(m+1)x|m|+2>0是关于x的一元一次不等式,则m的取值是________,此不等式的解集为________.知识点3:解一元一次不等式3.解不等式:3x-1>5+x.变式训练变式1下列不等式中哪一个不是一元一次不等式()A.3x-2>4 B.2y>4 C.2x<5 D.2<3x+17变式2若(m-2)x2m+1-1>5是关于x的一元一次不等式,则该不等式的解集为________.变式3解不等式:3(x-1)>2x+2. 基础巩固1.下列不等式是一元一次不等式的是()A.2(1-y)+y>4y+2 B.x2-2x-1<0 C.12+13>16D.x+1<x+2 2.不等式2x<4的解集是()A.x>2 B.x<2 C.x>-2 D.x<-23.不等式12x+1<3的正整数解有()A.1个B.2个C.3个D.4个4.关于x的方程4x-2m+1=5x-8的解集是负数,则m的取值范围是() A.m>92B.m<0 C.m<92D.m>05.解不等式:(1)5x+3<3(2+x).(2)2(x+1)-1≥3x+2.(3)5x+15>4x-1. (4)-2x+2<x+17.能力提升6.不等式13(x-m)>2-m的解集为x>2,则m的值为()A.4 B.2 C.32D.127.若12x2m-1-8>5是关于x的一元一次不等式,则m=________.8.不等式5x-12≤2(4x-3)的负整数解是____________.9.已知不等式3x-m≤0只有2个正整数解,则m的取值范围是________.10.已知不等式12x-3≥2x与不等式3x-a≤0解集相同,则a=________.11.关于x的方程ax=3x-5有负数解,则a的取值范围是________.培优训练12.已知x=12是方程6(2x+m)=3m-6的解,求关于x的不等式mx+2>m(1-2x)的解集.第1课时 一元一次不等式----答案【核心提要】1.一 1 2.约分 系数化为1【典例精讲】 1.C 2.1,x>-1.3.解:3x -x >5+1. 2x >6. x >3. 【变式训练】 1.C 2.x <-33.解:3x -3>2x +2, 3x -2x >2+3, x >5. 【基础巩固】 1.A 2.B 3.C 4.A5.(1)解:5x +3<6+3x ,5x -3x <6-3,2x <3, x <32.(2)解:2x +2-1≥3x +2,x ≤-1. (3)解:5x -4x >-1-15,x >-16. (4)解:-2x -x <17-2,-3x <15,x >-5. 【能力提升】 6.B 7.1 8.-2和-1 9.6≤m <9 10.-6 11.a >3【培优训练】12.解:∵x =12是方程6(2x +m)=3m -6的解,∴6(1+m)=3m -6,解得m =-4,∴不等式mx +2>m(1-2x)可化为-4x +2>-4(1-2x),解得x <12.。
人教版数学七年级下册9.2一元一次不等式教学设计

3.总结一元一次不等式与一元一次方程的联系与区别,用文字和示例进行阐述,不少于200字。
4.预习下一节课的内容,提前了解一元一次不等式的应用范围和实际意义。
作业要求:
1.作业应独立完成,切勿抄袭,确保作业的真实性。
精选典型例题,通过师生共同分析、讨论,总结出一元一次不等式的解法步骤。同时,强调解题过程中的注意事项,如变号、移项等。
4.练习巩固,拓展提升
设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题能力。同时,针对学生的个体差异,适当进行拓展提升,提高学生的思维品质。
5.实践应用,解决问题
设计具有现实背景的问题,引导学生运用一元一次不等式进行分析和解决。通过实践应用,让学生感受数学的价值,提高学生的应用意识。
(二)讲授新知
1.教学内容:讲解一元一次不等式的性质及解法。
教学过程:
(1)讲解一元一次不等式的性质,如不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;同时乘以(或除以)同一个负数,不等号的方向改变。
(2)结合实例,演示一元一次不等式的解法步骤。
(3)强调解题过程中的注意事项,如变号、移项等。
二、学情分析
七年级下册的学生已经具备了一定的数学基础,掌握了基本的代数运算,能解一元一次方程。但在不等式的认识上,大部分学生还较为陌生,对一元一次不等式的性质和解法还不够熟悉。此外,学生在解决实际问题时,往往不能很好地运用不等式进行分析和解决。因此,在教学过程中,应关注以下几点:
1.针对学生对不等式知识的掌握程度,设计合适的引入环节,帮助学生顺利过渡到一元一次不等式的学习。
2.培养学生严谨、细致的学习态度,养成独立思考、勇于探索的良好习惯。
9.2 一元一次不等式 第2课时

解得 x≥0.5 答:导火索的长度至少取0.5 m.
3.(广州·中考)某商店5月1日举行促销优惠活动,当天 到该商店购买商品有两种方案,方案一:用168元购买会 员卡成为会员后,凭会员卡购买商店内任何商品,一律按 商品价格的8折优惠;方案二:若不购买会员卡,则购买 商店内任何商品,一律按商品价格的9.5折优惠.已知小敏 5月1日前不是该商店的会员. (1)若小敏不购买会员卡,所购买商品的价格为120元时, 实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围时, 采用方案一更合算?
解决较复杂问题时,常需要分不同情况进行讨论.
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/72021/9/7Tuesday, September 07, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/72021/9/72021/9/79/7/2021 1:32:23 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/72021/9/72021/9/7Sep-217-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/72021/9/72021/9/7Tuesday, September 07, 2021
想一想:小玲有几种答题可能? 小玲有3种答题可能,分别是 答对7道题,答错2道题,有1道题未答; 答对8道题,答错1道题,有1道题未答; 答对9道题,有1道题未答.
【跟踪训练】
1.我班几个同学合影留念,每人交0.70元.已 知一张彩色底片0.68元,扩印一张相片0.50元, 每人分一张,在将收来的钱尽量用掉的前提下, 这张相片上的同学最少有几人?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.2一元一次不等式学案
学习目标:
1.了解一元一次不等式的概念;
2.掌握一元一次不等式的解法,会解形式较复杂的一元一次不等式,并能在数轴上表示出解集。
一、基础过关
解下列不等式,并在数轴上表示解集:
二、合作学习
和同桌一起完成以下两题。
三、归纳总结
(1)解一元一次不等式的依据是
解一元一次不等式的一般步骤是: (1)21x ->-(2)31x -+>(3)246x --≥-(4)2(1)4x +<
(2)各步骤有哪些注意事项?
四、火眼金睛
下列解不等式的过程是否正确,如果不正确请给予改正。
解:去分母,得 去括号,得 移项,得 合并同类项,得
系数化为1,得
五、课堂练习 解下列不等式,并在数轴上表示解集:
18136
x x +++<-x 不等式 x-2632(1)68
x x x x -++<-+632268
x x x x -++<-+632682
x x x x -+-<++416x <4
x <(1)2(5)3(5)x x +≤-(2)104(4)2(1)x x --≤-325(3)23x x --<2134(4)36x x --≤515(5)264x x +-->125(6)164y y +--≥。