2一元一次不等式2课件
合集下载
9.2一元一次不等式(公开课) 2.ppt

5/15/2014
比赛规则
先完成且正确率 高的组获胜,每组 加4分。 输的组在下节课 之前为大家唱首歌!
9.2
一元一次不等式
一种 思想
一个 概念
几点应用
五个 步骤
5/15/2014
5/15/2014
9.2
一元一次不等式
xa 1 的解是不等式 已知关于x的方程 x 3
2 x a 0 的一个解,求a的取值范围。
(1) 3x+2>x–1
1 (3) +3<5x–1 x
5/15/2014
✓ ✕
(2)5x+3<0
✓
(4)x(x–1)<2x ✕
教师点拨
9.2
一元一次不等式
4; 1 x> 2x 1 x ; < 3 3 2
(2) 3 x ≥ 30
(4) 1.5 x 12< 0.5 x 1
5/15/2014
有一次,鲁班的手不慎被一片小草
叶子割破了,他发现小草叶子的边缘
布满了密集的小齿,于是便产生联想, 根据小草的结构发明了锯子.
鲁班在这里就运用了“类比”的思想方法,“类比”
也是数学学习中常用的一种重要方法.
福建西山学校
初中部初一数学组
知识与技能
1.经历一元一次不等式概念的形成过程; 2.掌握一元一次不等式的解法,会解简单的一元一 次不等式,并能在数轴上将其解集表示出来.
x 2 2 x -1 ; 1 2 3
教师点拨
5/15/2014
x 2 2 x -1 . 2 2 3
9.2
一元一次不等式
教师点拨
解一元一次不等式的一般步骤: (1) 去分母
比赛规则
先完成且正确率 高的组获胜,每组 加4分。 输的组在下节课 之前为大家唱首歌!
9.2
一元一次不等式
一种 思想
一个 概念
几点应用
五个 步骤
5/15/2014
5/15/2014
9.2
一元一次不等式
xa 1 的解是不等式 已知关于x的方程 x 3
2 x a 0 的一个解,求a的取值范围。
(1) 3x+2>x–1
1 (3) +3<5x–1 x
5/15/2014
✓ ✕
(2)5x+3<0
✓
(4)x(x–1)<2x ✕
教师点拨
9.2
一元一次不等式
4; 1 x> 2x 1 x ; < 3 3 2
(2) 3 x ≥ 30
(4) 1.5 x 12< 0.5 x 1
5/15/2014
有一次,鲁班的手不慎被一片小草
叶子割破了,他发现小草叶子的边缘
布满了密集的小齿,于是便产生联想, 根据小草的结构发明了锯子.
鲁班在这里就运用了“类比”的思想方法,“类比”
也是数学学习中常用的一种重要方法.
福建西山学校
初中部初一数学组
知识与技能
1.经历一元一次不等式概念的形成过程; 2.掌握一元一次不等式的解法,会解简单的一元一 次不等式,并能在数轴上将其解集表示出来.
x 2 2 x -1 ; 1 2 3
教师点拨
5/15/2014
x 2 2 x -1 . 2 2 3
9.2
一元一次不等式
教师点拨
解一元一次不等式的一般步骤: (1) 去分母
一元一次不等式(第2课时)(课件)八年级数学下册(北师大版)

随堂练习
解:(1)设该种商品每次降价的百分率为x%, 依题意得:400×(1-x%)2=324, 解得:x=10,或x=190(舍去). 答:该种商品每次降价的百分率为10%.
随堂练习
(2)设第一次降价后售出该种商品m件,则第二次降价后售出该 种商品(100-m)件, 第一次降价后的单件利润为:400×(1-10%)-300=60(元/件); 第二次降价后的单件利润为:324-300=24(元/件). 依题意得:
探究新知
例3:青年志愿者爱心小分队赴山村送温暖,准备为困 难村民购买一些米面.已知购买1袋大米、4袋面粉,共 需240元;购买2袋大米、1袋面粉,共需165元. (1)求每袋大米和面粉各多少元? (2)如果爱心小分队计划购买这些米面共40袋,总费用 不超过2 140元,那么至少购买多少袋面粉?
探究新知
(比如有的时候只能取整数)
谢谢~
随堂练习
6.2021年5月14日至15日,“一带一路”国际合作高峰论坛在北京 举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某 厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家 和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件 甲种商品比2件乙种商品的销售收入多1500元.
10
≥ 5%
探究新知
例1:某种商品进价为200元,标价为300元出售,商场规定可以打折销售, 但其利润率不能少于5%. 请你计算一下,这种商品最多可以按几折销售?
不等关系:(出售价-进价)÷进价≥利润率 解:设该商品可以打 x 折销售.
则 (300×0.1x-200)÷200≥5%. 解得 x ≥ 7. 答:这种商品最多可以按七折销售.
解:(1)设每袋大米x元,每袋面粉y元,根据题意,得:
人教版七年级数学下册教学课件《一元一次不等式》(第2课时)

探究新知
9.2 一元一次不等式
考点 1 一元一次不等式的实际应用
去年广州空气质量良好(二级以上)的天数与全年 天数(365天)之比达到60%,如果到明年(365天)这样 的比值要超过70%,那么明年空气质量良好的天数要比 去年至少增加多少?
分析:题目蕴含的不等关系为 明年这样的比值要超70% ,
转 化 为 不 等 式,即
9.2 一元一次不等式
拓广探索题
某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少
要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入
的购车款不超过55万元.
(1)符合公司要求的购买方案有哪几种?请说明理由; 解:设轿车要购买x辆,那么面包车要购买(10-x)辆, ∴7x+4(10-x)≤55,解得x≤5, 又x≥3,则x=3,4,5, ∴有三种方案:①轿车3辆,面包车7辆; ②轿车4辆,面包车6辆; ③轿车5辆,面包车5辆.
②若在乙超市花费少,则
100+0.9(x-100)>50+0.95(x-50), 得x<150 .
③若在甲乙超市花费一样,则
100+0.9(x-100)=50+0.95(x-50), 得x=150 .
答:购物不超过50元和刚好是150元时,在两家商场购物
没有区别;超过50元而不到150元时在乙商场购物花费少;
解:设小玲答对的题数是x,则答错的题数是9-x, 根据题意,得10x-5(9-x)≥60, 解这个不等式,得x≥7.
答:她至少答对7道题.
探究新知
9.2 一元一次不等式
考点 2 一元一次不等式解答货币问题 小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2.2
一元一次不等式(公开课优秀课件)

图像法解一元一次不等式需要注意函数图像的走向和性质,以及临界点与不等式解 集的关系。
实际应用中的一元一次不等式
一元一次不等式在实际生活中 有着广泛的应用,如购物、投 资、工程等领域的决策问题。
解决实际应用中的一元一次不 等式需要将问题转化为数学模 型,然后运用代数法和图像法 求解。
解决实际应用中的一元一次不 等式需要注意问题的实际情况 和限制条件,以及解的可行性 和最优性。
一元一次不等式(公开课优秀课件)
目 录
• 一元一次不等式的定义与性质 • 一元一次不等式的解法 • 一元一次不等式的应用 • 一元一次不等式的扩展
01 一元一次不等式的定义与 性质
一元一次不等式的定义
总结词
一元一次不等式是数学中一种简单的不等式,它只含有一个变量,且变量的指 数为1。
详细描述
一元一次不等式的一般形式为 ax + b > c 或 ax + b < c,其中 a、b、c 是常 数,a ≠ 0。这个不等式表示一个线性函数在某个区间内大于或小于另一个值。
在人口发展过程中,如何预测未来人 口数量,可以通过一元一次不等式来 建立数学模型。
交通流量问题
在道路交通中,如何合理规划红绿灯 时间,ห้องสมุดไป่ตู้保证交通流畅,可以通过一 元一次不等式来求解。
一元一次不等式与其他数学知识的结合
一元一次不等式与函数
一元一次不等式可以看作是函数的值大于或小于某个常数的情况, 因此可以结合函数的性质进行求解。
代数法解一元一次不等式的步骤 包括:去分母、去括号、移项、
合并同类项、化系数为1等。
代数法解一元一次不等式需要注 意不等式的性质,如不等式的可 加性、可乘性、可除性和同向不
实际应用中的一元一次不等式
一元一次不等式在实际生活中 有着广泛的应用,如购物、投 资、工程等领域的决策问题。
解决实际应用中的一元一次不 等式需要将问题转化为数学模 型,然后运用代数法和图像法 求解。
解决实际应用中的一元一次不 等式需要注意问题的实际情况 和限制条件,以及解的可行性 和最优性。
一元一次不等式(公开课优秀课件)
目 录
• 一元一次不等式的定义与性质 • 一元一次不等式的解法 • 一元一次不等式的应用 • 一元一次不等式的扩展
01 一元一次不等式的定义与 性质
一元一次不等式的定义
总结词
一元一次不等式是数学中一种简单的不等式,它只含有一个变量,且变量的指 数为1。
详细描述
一元一次不等式的一般形式为 ax + b > c 或 ax + b < c,其中 a、b、c 是常 数,a ≠ 0。这个不等式表示一个线性函数在某个区间内大于或小于另一个值。
在人口发展过程中,如何预测未来人 口数量,可以通过一元一次不等式来 建立数学模型。
交通流量问题
在道路交通中,如何合理规划红绿灯 时间,ห้องสมุดไป่ตู้保证交通流畅,可以通过一 元一次不等式来求解。
一元一次不等式与其他数学知识的结合
一元一次不等式与函数
一元一次不等式可以看作是函数的值大于或小于某个常数的情况, 因此可以结合函数的性质进行求解。
代数法解一元一次不等式的步骤 包括:去分母、去括号、移项、
合并同类项、化系数为1等。
代数法解一元一次不等式需要注 意不等式的性质,如不等式的可 加性、可乘性、可除性和同向不
3.3 一元一次不等式(第2课时,应用) 课件(共18张PPT)

0.9x+10=0.95x+2.5,
解得:x=150,
∴当x=150时,王老师在甲、乙两商场的实际花费相同
已知有理数a在数轴上的位置如图所示:
(3)当王老师在同一商场累计购物超过100元时,在哪家商场的实际
试比较a,-a,|a|,a2和的大小,并将它们按从小到大的顺序,用“<”或“=”连接起来.
花费少?
在乙超市购物所付的费用为:200+0.9×(350-200)=335(元),
所以在乙超市购物更优惠;
当购物为600元时,
在甲超市购物所付的费用为:300+0.8×(600-300)=540(元),
在乙超市购物所付的费用为:200+0.9×(600-200)=560(元),
所以在甲超市购物更优惠;
*
探究新知
用)超过投资购买机器的费用?
解:设生产、销售这种商品X个,则所得利润为(5-3-5×10%)x元。
分析:每生产、销售一个商品的利润是(5-3-5×10%)元,因此生产、
销售 x 个这种商品的利润是(5-3-5×10%)x元,问题中的不等式关系是:
由题意,得
(5-3-5×10%)x>20000
所获利润>购买机器款。
(3)顾客在哪家超市购物更合算?
解:当0.8x+60=0.9x+20时,解得:x=400,∴当x=400元时,两家超市一样20时,解得:x>400,当x>400元时,甲超市更合算;当
0.8x+60>0.9x+20时,解得:x<400,当x<400元时,乙超市更合算,
*
小结归纳
*
八年级上
解:设导火索长度为 x 米,则
.
解得:x=150,
∴当x=150时,王老师在甲、乙两商场的实际花费相同
已知有理数a在数轴上的位置如图所示:
(3)当王老师在同一商场累计购物超过100元时,在哪家商场的实际
试比较a,-a,|a|,a2和的大小,并将它们按从小到大的顺序,用“<”或“=”连接起来.
花费少?
在乙超市购物所付的费用为:200+0.9×(350-200)=335(元),
所以在乙超市购物更优惠;
当购物为600元时,
在甲超市购物所付的费用为:300+0.8×(600-300)=540(元),
在乙超市购物所付的费用为:200+0.9×(600-200)=560(元),
所以在甲超市购物更优惠;
*
探究新知
用)超过投资购买机器的费用?
解:设生产、销售这种商品X个,则所得利润为(5-3-5×10%)x元。
分析:每生产、销售一个商品的利润是(5-3-5×10%)元,因此生产、
销售 x 个这种商品的利润是(5-3-5×10%)x元,问题中的不等式关系是:
由题意,得
(5-3-5×10%)x>20000
所获利润>购买机器款。
(3)顾客在哪家超市购物更合算?
解:当0.8x+60=0.9x+20时,解得:x=400,∴当x=400元时,两家超市一样20时,解得:x>400,当x>400元时,甲超市更合算;当
0.8x+60>0.9x+20时,解得:x<400,当x<400元时,乙超市更合算,
*
小结归纳
*
八年级上
解:设导火索长度为 x 米,则
.
北师大版八年级数学下册.2《一元一次不等式》课件

2.4.2一元一次不等式
1.回忆什么叫一元一次不等式?
不等式的两边都是整式,只含有一个未知数, 且未知数的最高次数是一次,这样的不等式叫一 元一次不等式.
你能说出解一元一次不等式的基本步骤吗?
去分母,去括号,移项,合并同类项,系数化为1.
思考:解一元一次不等式,在系数化为1时应注意些 什么?
要看未知数系数的符号,若未知数的系数是正数, 则不等号的方向不变;若未知数系数是负数,则不 等号的方向要改变.
1)从类型讲,这道应用题属于_行__程___问题。该类型 涉及到的量有_路__程__、_速__度__、__时__间___. 2)本题已给出的量:总路程__5_0_0_0_千米, 已走路程 _1_4_0_0__千米, 剩余路程_5_0_0_0_-_1_4_0_0_千米.“此后” 是从__6_月1_8__日到__9_月_1_5_日,共_9_0_天. 3)本题所求的量是__速__度__,若设他每天至少要行x 千米,则剩余路程可表示为_9_0_x__.根据以上各量之 间的关系可列式 _9_0_x_≥__5_0_0_0_-_1_4_0_0___. 4)他此后平均每天至少要行_4_0__千米。
解一元一次不等式每一步变形的根据是什么?
步骤
去分母 去括号 移项 合并同类项 系数化为1
根据
不等式的性质2 去括号法则 不等式的性质1 合并同类项法则 不等式的性质2或3
解一元一次不等式和解一元一次方程有哪些 相同和不同之处?
相同之处: 基本步骤相同:去分母,去括号,移项,合并同类项, 系数化为1. 基本思想相同:都是运用化归思想,将一元一次方程 或一元一次不等式变形为最简情势.
不同之处: (1)解法根据不同:解一元一次不等式的根据是不 等式的性质,解一元一次方程的根据是等式的性质. (2)最简情势不同,一元一次不等式的最简情势是 x>a或x<a ,一元一次方程的最简情势是x=a.
1.回忆什么叫一元一次不等式?
不等式的两边都是整式,只含有一个未知数, 且未知数的最高次数是一次,这样的不等式叫一 元一次不等式.
你能说出解一元一次不等式的基本步骤吗?
去分母,去括号,移项,合并同类项,系数化为1.
思考:解一元一次不等式,在系数化为1时应注意些 什么?
要看未知数系数的符号,若未知数的系数是正数, 则不等号的方向不变;若未知数系数是负数,则不 等号的方向要改变.
1)从类型讲,这道应用题属于_行__程___问题。该类型 涉及到的量有_路__程__、_速__度__、__时__间___. 2)本题已给出的量:总路程__5_0_0_0_千米, 已走路程 _1_4_0_0__千米, 剩余路程_5_0_0_0_-_1_4_0_0_千米.“此后” 是从__6_月1_8__日到__9_月_1_5_日,共_9_0_天. 3)本题所求的量是__速__度__,若设他每天至少要行x 千米,则剩余路程可表示为_9_0_x__.根据以上各量之 间的关系可列式 _9_0_x_≥__5_0_0_0_-_1_4_0_0___. 4)他此后平均每天至少要行_4_0__千米。
解一元一次不等式每一步变形的根据是什么?
步骤
去分母 去括号 移项 合并同类项 系数化为1
根据
不等式的性质2 去括号法则 不等式的性质1 合并同类项法则 不等式的性质2或3
解一元一次不等式和解一元一次方程有哪些 相同和不同之处?
相同之处: 基本步骤相同:去分母,去括号,移项,合并同类项, 系数化为1. 基本思想相同:都是运用化归思想,将一元一次方程 或一元一次不等式变形为最简情势.
不同之处: (1)解法根据不同:解一元一次不等式的根据是不 等式的性质,解一元一次方程的根据是等式的性质. (2)最简情势不同,一元一次不等式的最简情势是 x>a或x<a ,一元一次方程的最简情势是x=a.
八年级数学北师大版初二下册--第二单元 2.4.1一元一次不等式-课件(第二课时)

新北师版初中数学八年级下册
1.不等式的基本性质是什么?
性质1: 不等式的两边都加上(或减去)同一个数 (或式),不等号的方向不变。 性质2: 不等式的两边都乘(或除以)同一个正数, 不等号的方向不变。 性质3:不等式的两边都乘(或除以)同一个负数, 不等号的方向改变。
2.什么叫一元一次方程 ? 只含一个未知数、并且未知数的指数是1的方程. 3.解一元一次方程的一般步骤是什么?
1.一元一次不等式的概念
2.一元一次不等式的解法: (1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1 3.解一元一次不等式和解一元一次方程的 相同和不同之处
x
(5) 2(1+x)<3 ✓
(4) x(x-1)<2x ✕ (6) 4<5.1 ✕
2.若(m-2)x2m+1-1>5是关于x的一元一次不 等式,则m=____0____.
例1.解不等式3-x<2x+6,并把它的解集表示在数
轴上.
解: 两边都加上-2x,得 3-x -2x <2x+6 -2x
合并同类项,得 3-3x<6
100
10 4
.
这些不等式有哪些共同特点?
①不等式的两边都是整式,
②只含一个未知数、并且未知数的(最高)指数是1.
总结:含一个未知数,未知数的次数是1的不等 式,叫做一元一次不等式.
1.判断:下列不等式中,哪些是一元一次不等
式? (1) 3x+2>x–1 ✓ (2) 5x+3<0 ✓
(3) 1 +3<5x-1 ✕
中_移__项__没__有__变__号___,在第④步中__正__确___.
3.解不等式12-6x≥2(1-2x),并把它的解集在数
1.不等式的基本性质是什么?
性质1: 不等式的两边都加上(或减去)同一个数 (或式),不等号的方向不变。 性质2: 不等式的两边都乘(或除以)同一个正数, 不等号的方向不变。 性质3:不等式的两边都乘(或除以)同一个负数, 不等号的方向改变。
2.什么叫一元一次方程 ? 只含一个未知数、并且未知数的指数是1的方程. 3.解一元一次方程的一般步骤是什么?
1.一元一次不等式的概念
2.一元一次不等式的解法: (1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1 3.解一元一次不等式和解一元一次方程的 相同和不同之处
x
(5) 2(1+x)<3 ✓
(4) x(x-1)<2x ✕ (6) 4<5.1 ✕
2.若(m-2)x2m+1-1>5是关于x的一元一次不 等式,则m=____0____.
例1.解不等式3-x<2x+6,并把它的解集表示在数
轴上.
解: 两边都加上-2x,得 3-x -2x <2x+6 -2x
合并同类项,得 3-3x<6
100
10 4
.
这些不等式有哪些共同特点?
①不等式的两边都是整式,
②只含一个未知数、并且未知数的(最高)指数是1.
总结:含一个未知数,未知数的次数是1的不等 式,叫做一元一次不等式.
1.判断:下列不等式中,哪些是一元一次不等
式? (1) 3x+2>x–1 ✓ (2) 5x+3<0 ✓
(3) 1 +3<5x-1 ✕
中_移__项__没__有__变__号___,在第④步中__正__确___.
3.解不等式12-6x≥2(1-2x),并把它的解集在数
七重要年级人教版教学课件9.2_一元一次不等式2

答:至少要答对13道题.
总结归纳
1.利用不等式来解决实际问题的步骤是什么?
2.一元一次不等式的实际问题中最关键是哪一步?
布置作业
教科书 习题9.2 第5、6题
答:以后几天平均每天至少要修路 0.8米.
问题探究
例1 去年某市空气质量良好(二级以上) 的天数与全年天数(365)之比达到60%, 如果明年(365天)这样的比值要超过 70%,那么明年空气质量良好的天数要 比去年至少增加多少? 问题1 此实际问题中的不等关系是什么?
问题探究
例1 去年某市空气质量良好(二级以上) 的天数与全年天数(365)之比达到60%, 如果明年(365天)这样的比值要超过 70%,那么明年空气质量良好的天数要 比去年至少增加多少? 不等关系是: 明年空气质量良好的天数 大于70%. 明年天数距离A地
50千米,要在12 :00之前驶过A地,车速应
满足什么条件?
A
11 :20
50千米
40分钟=2/3小时
12 :00
分析:
设车速是x千米/时
从时间上看,汽车要 在12:00之前驶过A 地,则以这个速度行 驶50千米所用的时 间不到2/3小时,即 从路程上看,汽车 要在12:00之前驶 过A地,则以这个 速度行驶2/3小时的 路程要超过50千米 ,即
问题探究
例1 去年某市空气质量良好(二级以上) 的天数与全年天数(365)之比达到60%, 如果明年(365天)这样的比值要超过 70%,那么明年空气质量良好的天数要 比去年至少增加多少? 问题2 设x表示明年增加的空气质量良好 的天数,则明年空气质量是良好的天数是 多少?
x 365 60%.
问题探究
问题4 你能列出不等式并解出来吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)3-x<2x+6
2021/2/19
例1 . 解不等式:
4 x 1 x ,
3
2
并把它的解集表示在数轴上。
2021/2/19
❖ 解:去分母 2(4+x)-6<6x
❖
去括号 8+2x-6<6x
❖
移项 2x-6x<6-8
❖ 合并同类项 -4x<-2
❖ 系数化为1 x>1/2
20ቤተ መጻሕፍቲ ባይዱ1/2/19
例2.解下列不等式:
2021/2/19
杨伟
一、复习
1、什么是一元一次不等式? 2、解一元一次不等式的一般步骤 和注意事项。
2021/2/19
3.说出下列不等式变形是根据不等式的哪一条
基本性质.
2x-3x<-1,
2-x>-4x-2
-x<-1,
4x-x>-2-2
x>1.
3x>-4
4
x>- 3
2021/2/19
4.解下列不等式,并把它们的解集分别表 示在数轴上: (1)5x<-10; (2)-3(x-4)≤0;
(1)大于-3
(2)小于-x+1的值
解:由题意可得不等式: 2x-3>-3
解这个不等式得: X>0
解:由题意可得不等式: 2x-3<-x+1
解这个不等式得: X<4/3
所以当x>0时,代数式 2x-3的值大于-3
2021/2/19
所以当x<4/3时,代数式 2x-3的值小于-x+1的 值。
课堂小结:
(1)
x 7 1 3x 2
2
2
(2) x 3x 8 2(13 x) 1
2
7
2021/2/19
(1). x 7 1 3x 2
2
2
解:去分母,得: X+7-2<3x+2
移项,合并同类项,得:
2021/2/19
-2x<-3 系数化为1,得:
x3 2
x 3x 8 2(13 x) 1
2
7
解:去分母,得:
14x-7(3x-8)<4(13-x) -14
去括号,得:
14x-21x+56<52-4x-14
移项,合并同类项,得:
-3x<-18 系数化为1,得:
2021/2/19
X>6
例3.当x取什么值时,代数式2x-3的值
(1)大于-3
(2)小于-x+1的值
2021/2/19
例3.当x取什么值时,代数式2x-3的值
谈谈你本节课的收获!
2021/2/19
作业:32页习题7.2第5、6题
2021/2/19
2021/2/19
例1 . 解不等式:
4 x 1 x ,
3
2
并把它的解集表示在数轴上。
2021/2/19
❖ 解:去分母 2(4+x)-6<6x
❖
去括号 8+2x-6<6x
❖
移项 2x-6x<6-8
❖ 合并同类项 -4x<-2
❖ 系数化为1 x>1/2
20ቤተ መጻሕፍቲ ባይዱ1/2/19
例2.解下列不等式:
2021/2/19
杨伟
一、复习
1、什么是一元一次不等式? 2、解一元一次不等式的一般步骤 和注意事项。
2021/2/19
3.说出下列不等式变形是根据不等式的哪一条
基本性质.
2x-3x<-1,
2-x>-4x-2
-x<-1,
4x-x>-2-2
x>1.
3x>-4
4
x>- 3
2021/2/19
4.解下列不等式,并把它们的解集分别表 示在数轴上: (1)5x<-10; (2)-3(x-4)≤0;
(1)大于-3
(2)小于-x+1的值
解:由题意可得不等式: 2x-3>-3
解这个不等式得: X>0
解:由题意可得不等式: 2x-3<-x+1
解这个不等式得: X<4/3
所以当x>0时,代数式 2x-3的值大于-3
2021/2/19
所以当x<4/3时,代数式 2x-3的值小于-x+1的 值。
课堂小结:
(1)
x 7 1 3x 2
2
2
(2) x 3x 8 2(13 x) 1
2
7
2021/2/19
(1). x 7 1 3x 2
2
2
解:去分母,得: X+7-2<3x+2
移项,合并同类项,得:
2021/2/19
-2x<-3 系数化为1,得:
x3 2
x 3x 8 2(13 x) 1
2
7
解:去分母,得:
14x-7(3x-8)<4(13-x) -14
去括号,得:
14x-21x+56<52-4x-14
移项,合并同类项,得:
-3x<-18 系数化为1,得:
2021/2/19
X>6
例3.当x取什么值时,代数式2x-3的值
(1)大于-3
(2)小于-x+1的值
2021/2/19
例3.当x取什么值时,代数式2x-3的值
谈谈你本节课的收获!
2021/2/19
作业:32页习题7.2第5、6题
2021/2/19