一元一次不等式(2)图(1)
合集下载
5.3浙教版一元一次不等式(1)

a +1
2
2
4.如果关于 的不等式(a+1)x<2的自然数解有且只 如果关于x 的不等式( 如果关于 ) 的自然数解有且只 有一个,试求a的取值范围 的取值范围。 有一个,试求 的取值范围。 自然数解只有1个 解:∵自然数解只有 个
∴原不等式的解不可能是x大于某一个数 原不等式的解不可能是 大于某一个数 ∴a+1>0 得 x < 2 a +1 又易知这个自然数必为0 ∴又易知这个自然数必为 ∴ 2 ≤ 1 而a+1≥0
解: 1)x>1; ( ) ;
0 1
(2)x>-2; ) ;
-2 -1 0 5 0
(3)x≥5; ) ;
5 (4) x < − ) 6
−
5 6
0
根据数轴上表示的不等式的解, 根据数轴上表示的不等式的解,写 出不等式的特殊解: 出不等式的特殊解:
0 2
自然数解: 0,1,2 自然数解:________ , ,
例题解析, 例题解析,当堂练习
例1:解下列不等式,并把解表示在数轴上: :解下列不等式,并把解表示在数轴上: (1)4x<10; (2) − 3 x ≥ 1 .2 ) ; )
解:
(1) x < 5
5
2
0
1
2
5 3 2
(2) x≤-2
-3 -2 -1 0
练习1:解下列不等式,并把解表示在数轴上: 练习 :解下列不等式,并把解表示在数轴上: (2) − 1 x ≤ 1 (1)1-x>2; ) 7 解:
(1) x<-1
-1 0
(2) x≥-7
-7 0
解不等式7x-2≤9x+3,把解表示在数轴 , 解不等式 并求出不等式的负整数解。 上,并求出不等式的负整数解。
人教版七年级数学下册《一元一次不等式》PPT优质教学课件

(4)解:解出所列的不等式的解集; (5)验:检验所得结果是否正确,考虑所得的解是否符合问题的 实际意义; (6)答:写出答案.
对点训练
1.“一方有难,八方支援”.某学校计划购买84消毒液和75%酒精 消毒水共4 000瓶,用于支援武汉抗击“新冠肺炎疫情”,已知84 消毒液的单价为3元/瓶,75%酒精消毒水的单价为13元/瓶,若 购买这批物资的总费用不超过28 000元,至少可以购买84消毒 液多少瓶?
解:(1)设购进A种树苗x棵,则购进B种树苗(17-x)棵, 根据题意得80x+60(17-x)=1 220, 解得x=10,∴17-x=7. 答:购进A种树苗10棵,B种树苗7棵.
(2)设购进 A 种树苗 y 棵,则购进 B 种树苗(17-y)棵,
根据题意得 17-y<y,解得 y>81.
2
购进两种树苗所需费用为80y+60(17-y)=20y+1 020, 费用最省需y取最小整数9,此时17-y=8, 这时所需费用为20×9+1 020=1 200(元). 答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需 费用为1 200元.
解:(1)设每只努比亚黑山羊每天需要草料 x kg,每头西门塔尔牛
每天需要草料 y kg.
根据题意,得 60x+15y=330
,解得
x=3 .
(25+60)x+(15+5)y=455
y=10
答:每只努比亚黑山羊每天需要草料 3 kg,每头西门塔尔牛每天
需要草料 10 kg.
(2)设卖出a头牛,则卖出(10-a)只羊,根据题意,得 10(20-a)+3(85-10+a)≤390,解得a≥5. 答:至少卖出5头牛才能保证每天草料够用.
变式练习
4.某种商品的进价为320元,为了吸引顾客,按标价的八折出售, 这时仍可盈利至少25%,则这种商品的标价最低是多少元? 解:设这种商品的标价是x元,由题意得 x×80%-320≥25%×320,解得x≥500. 答:这种商品的标价最低是500元.
一元一次不等式(第2课时)(课件)八年级数学下册(北师大版)

随堂练习
解:(1)设该种商品每次降价的百分率为x%, 依题意得:400×(1-x%)2=324, 解得:x=10,或x=190(舍去). 答:该种商品每次降价的百分率为10%.
随堂练习
(2)设第一次降价后售出该种商品m件,则第二次降价后售出该 种商品(100-m)件, 第一次降价后的单件利润为:400×(1-10%)-300=60(元/件); 第二次降价后的单件利润为:324-300=24(元/件). 依题意得:
探究新知
例3:青年志愿者爱心小分队赴山村送温暖,准备为困 难村民购买一些米面.已知购买1袋大米、4袋面粉,共 需240元;购买2袋大米、1袋面粉,共需165元. (1)求每袋大米和面粉各多少元? (2)如果爱心小分队计划购买这些米面共40袋,总费用 不超过2 140元,那么至少购买多少袋面粉?
探究新知
(比如有的时候只能取整数)
谢谢~
随堂练习
6.2021年5月14日至15日,“一带一路”国际合作高峰论坛在北京 举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某 厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家 和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件 甲种商品比2件乙种商品的销售收入多1500元.
10
≥ 5%
探究新知
例1:某种商品进价为200元,标价为300元出售,商场规定可以打折销售, 但其利润率不能少于5%. 请你计算一下,这种商品最多可以按几折销售?
不等关系:(出售价-进价)÷进价≥利润率 解:设该商品可以打 x 折销售.
则 (300×0.1x-200)÷200≥5%. 解得 x ≥ 7. 答:这种商品最多可以按七折销售.
解:(1)设每袋大米x元,每袋面粉y元,根据题意,得:
人教版七年级数学下学期第九章9.2一元一次不等式课件2

因为购买金额不超过200元, 所以22x+1.5×20≤200.
解得x≤
85 11
78 11
因为x为正整数,且x取最大值,所以x=7.
答:要买的球拍尽可能多,那么孔明应该买7个球拍.
应用一元一次不等式解决实际问题的步骤:
实际问题 找出不等关系 列不等式 设未知数
解不等式
结合实际 确定答案
检测目标
(3)当累计购物超过100元后,设购物为x(x>100)元 ①若 50+0.95(x-50)>100+0.9(x-100) 即x>150 在甲超市购物花费少; ②若 50+0.95(x-50)<100+0.9(x-100) 即x<150 在乙超市购物花费少; ③若 50+0.95(x-50)=100+0.9(x-100) 即x=150 在甲、乙两超市购物花费一样.
大于70%.
精典例题
问题4 你能列出不等式并解出来吗?
设x表示明年增加的空气质量良好的天数, 则明年空气质量是良好的天数是:
解:设明年比去年空气质量良好的天数增加了x天. x 365 60% 70%, 365
x 219 255.5,
x 36.5.
归纳
列一元一次不等式解应用题的基本步骤与列一元一次 方程解应用题的步骤相类似,即
有些实际问题中,存在不等关系,用不等式来表 示这样的关系,就能把实际问题转化为数学问题, 从而通过解不等式得到实际问题的答案.
列一元一次不等式解应用题的基本步骤与列一 元一次方程解应用题的步骤相类似.
目标导学:一元一次不等式的应用
小华打算在星期天与同学去登山,计划上午7点 出发,到达山顶后休息2h,下午4点以前必须回到出 发点. 如果他们去时的平均速度是3km/h,回来时的平 均速度是4km/h,他们最远能登上哪座山顶(图中数 字表示出发点到山顶的路程)?
八年级数学北师大版初二下册--第二单元 2.6《一元一次不等式组》课件

(2)设商店所获利润为y(单位:元),购进篮球的个数为 x(单位:个),请写出y与x之间的函数关系式(不要 求写出x的取值范围).
(3)若要使商店的进货成本在4 300元的限额内,且全 部销售完后所获利润不低于1 400元,请你列举出 商店所有进货方案,并求出最大利润是多少?
解:(1)设购进篮球m个,排球n个,
根据题意得
ìïïíïïî
x+3 y=1.4, 2x+5 y=2.5.
解得
ìïïíïïî
x=0.5, y=0.3.
答:每台大型收割机1 h收割小麦0.5公顷,每台小型收割
机1 h收割小麦0.3公顷.
(2)设大型m)台,
根据题意得
w=300×2m+200×2(10-m)=200m+4 000.
ìïïíïïî
8m+(5 20-m)³ 20-m ³ 2.
148,
解得16≤m≤18.
∵m取整数,
∴m可取16,17,18.
故有三种派车方案:
方案一:大型运输车16辆,小型运输车4辆;
方案二:大型运输车17辆,小型运输车3辆;
方案三:大型运输车18辆,小型运输车2辆.
应用 6 租车方案
8.【 中考•绵阳】江南农场收割小麦,已知1台大型 收割机和3台小型收割机1 h可以收割小麦1.4公顷, 2台大型收割机和5台小型收割机1 h可以收割小 麦2.5公顷. (1)每台大型收割机和每台小型收割机1 h收割小 麦各多少公顷?
解得35≤x≤37.5.
∵x为整数,∴x=35,36,37.
方案如下:
方案 一 二 三
A型口罩 35 36 37
B型口罩 15 14 13
设购买口罩需要y元, 则y=5x+7(50-x)=-2x+350,k=-2<0, ∴y随x增大而减小, ∴x=37时,y的值最小. 答:有3种购买方案,其中方案三最省钱.
(3)若要使商店的进货成本在4 300元的限额内,且全 部销售完后所获利润不低于1 400元,请你列举出 商店所有进货方案,并求出最大利润是多少?
解:(1)设购进篮球m个,排球n个,
根据题意得
ìïïíïïî
x+3 y=1.4, 2x+5 y=2.5.
解得
ìïïíïïî
x=0.5, y=0.3.
答:每台大型收割机1 h收割小麦0.5公顷,每台小型收割
机1 h收割小麦0.3公顷.
(2)设大型m)台,
根据题意得
w=300×2m+200×2(10-m)=200m+4 000.
ìïïíïïî
8m+(5 20-m)³ 20-m ³ 2.
148,
解得16≤m≤18.
∵m取整数,
∴m可取16,17,18.
故有三种派车方案:
方案一:大型运输车16辆,小型运输车4辆;
方案二:大型运输车17辆,小型运输车3辆;
方案三:大型运输车18辆,小型运输车2辆.
应用 6 租车方案
8.【 中考•绵阳】江南农场收割小麦,已知1台大型 收割机和3台小型收割机1 h可以收割小麦1.4公顷, 2台大型收割机和5台小型收割机1 h可以收割小 麦2.5公顷. (1)每台大型收割机和每台小型收割机1 h收割小 麦各多少公顷?
解得35≤x≤37.5.
∵x为整数,∴x=35,36,37.
方案如下:
方案 一 二 三
A型口罩 35 36 37
B型口罩 15 14 13
设购买口罩需要y元, 则y=5x+7(50-x)=-2x+350,k=-2<0, ∴y随x增大而减小, ∴x=37时,y的值最小. 答:有3种购买方案,其中方案三最省钱.
《一元一次不等式》完整版PPT1

变式:若x=2是不等式2x-a-2<0的一个解,则a可取的最小正整数为( ) 变式:不等式4-3x≥2x-6的非负整数解有( ) 只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程.
移项
不等式的性质1
m≥2 B.
有一次,鲁班的手不慎被一片小草叶子割破了,他发现小草叶子的边缘布满了密集的小齿,于是便产生联想,根据小草的结构发明了锯子.
73
64
7.(课本P124 T2)当x或y满足什么条件时,下列关系式成立? (1)2(x+1)大于或等于1; (2)4x与7的和不小于6; (3)y与1的差不大于2y与3的差; (4)3y与7的和的四分之一小于-2.
拓展提升 8.解关于x的一元一次不等式 x+8>4x+m(m是常数).
变式:不等式 x+8>4x+m (m是常数) 的解集是 x<3,则 m=_____.
A.±1 B. 1 C. -1 D. 0
问题思考 解一元一次方程
2(1+x)=3
解:去括号 2+2x=3
移项 2x=3-2
合并同类项 2x=1
系数化为1
x1 2
解一元一次不等式 2(1+x)<3
Hale Waihona Puke 在数轴上表示解集?典例分析
例 解下列不等式,并在数轴上表示解集. 变式:不等式 x+8>4x+m (m是常数) 的解集是 x<3,则 m=_____.
(1)x +1>2x; (2) +2>0; ③移项、合并同类项,得-x>-13;
2 3个 D.
C.
1
①去分母,得5(x+2)>3(2x-1);
A.
(课本P124 T1)解下列不等式,并在数轴上表示解集:
x
一元一次不等式课件(共21张PPT)

随堂演练
基础巩固
1. 若代数式 2x 3 的值是非负数,则x的
7
取值范围是( B )
3
A.x≥ 2
C.x>
3 2
B.x≥ 3
2
D.x> 3
2
2.如图所示,图中阴影部分表示x的取值范 围,则下列表示中正确的是( B )
A.-3>x>2 C.-3≤x≤2
B.-3<x≤2 D.-3<x<2
3.当x或y满足什么条件时,下列关系成立?
系数化为1得:x≥8.
08
(2) 2 x ≥ 2x 1
2
3
解:去分母得:3(2+x)≥2(2x-1);
去括号得:6+3x≥4x-2; 移项得:3x-4x ≥ -2-6; 合并同类项得:-x ≥ -8;
将解集用数轴表 示,则如下图:
系数化为1得:x≤8.
0
8
小 结 解一元一次不等式的一般步骤
01
(3)未知数的次数都是1.
含有一个未知数,未知数次数是1的 不等式,叫做一元一次不等式.
解下列不等式,并在数轴上表示解集:
(1)2(1+x)<3; (2) 2 x ≥ 2x 1
2
3
解下列不等式,并在数轴上表示解集:
(1)2(1+x)<3;
解:去括号得:2+2x<3; 将解集用数轴表
移项得:2x<3-2;
03
05
通过解这两个不等式,
去 分 母
你02能归纳出移解一元0一4 次 不等式的一项般步骤吗?
系数 化为
去
合并
1
括
同类
号
项
练 习 1.解下列不等式和方程(不等式
的解集要在数轴上表示出来)
一元一次不等式-图

一元一次不等式图像的基本概念
定义
一元一次不等式图像是指将一元 一次不等式表示的数学关系转换 为图形表示,通过图形直观地展 示不等式的解集。
特点
一元一次不等式图像具有直观、 简洁、易于理解的特点,能够清 晰地表达不等式的解集和取值范 围。
一元一次不等式图像的绘制方法
确定不等式的解集
根据一元一次不等式的解 法,确定不等式的解集, 即不等式成立的x的取值范 围。
总结词
一元一次不等式的解集是指满足该不等式的未知数的取值范围。
详细描述
解集是满足一元一次不等式条件的未知数的取值范围。解集可以通过移项、合 并同类项、化简等步骤求得。解集通常表示为区间或集合的形式。
02
一元一次不等式的解法
代数法解一元一次不等式
01
02
03
04
移项
将不等式两边的项进行移位, 使不等式只包含一个变量。
时间安排
在安排时间时,我们也会使用到一元一次不等式。例如,我们需要在一个小时内 完成一项任务,那么我们可以用一元一次不等式来表示这个时间范围。
数学建模中的一元一次不等式
线性规划
在解决线性规划问题时,我们需要使用 一元一次不等式来描述约束条件。例如 ,如果我们需要最大化一个目标函数, 同时满足一些约束条件,那么这些约束 条件可以用一元一次不等式来表示。
一元一次不等式-图
目录 CONTENT
• 一元一次不等式的概念 • 一元一次不等式的解法 • 一元一次不等式的图解法 • 一元一次不等式的实际应用
01
一元一次不等式的概念
一元一次不等式的定义
总结词
一元一次不等式是只含有一个变量, 且变量的指数为1的不等式。
详细描述