电子科技大学组合数学-2002答案

合集下载

2002-数一真题、标准答案及解析

2002-数一真题、标准答案及解析
2
于是 ,与题设 f ( x) 在 (0, +∞) 内有界矛盾,故 lim f ' ( x) = 0 x→+∞
(4)设有三张不同平面的方程 ai1x + ai2 y + ai3z = bi , i = 1, 2, 3, 它们所组成的线性方程组的
系数矩阵与增广矩阵的秩都是 2,则这三张平面可能的位置关系为
但 lim f ' ( x) = lim cos x = 1 ≠ 0
x→0+
x→0+
进一步排除(C),故应选(B).
【详解 2】
直接证明(B)正确,用反正法,由题设 lim f ' ( x) 存在,设 lim f ' ( x) = A ≠ 0, 不妨设 A > 0 ,
x→+∞
x→+∞
则对于 ε = A >0,存在 X > 0 ,当 x > X 时,有 2
梦飞翔考研论坛

2002 年全国硕士研究生入学统一考试 数学试题解析点评
梦飞翔考研论坛

λ − a −2 −2 λE − A = −2 λ − a −2
−2 −2 λ − a
= ⎡⎣λ − (a + 4)⎤⎦ ⎡⎣λ − (a − 2)⎤⎦2
f ' (x)− A < ε = A.
2
即 A = A− A < f ' (x) < A+ A ,
2
2
2
可见 f ' ( x) > A ,在区间[ X , x] 上应用拉格朗日中值定理,有
2
f ' ( x) = f ( X ) + f ' (ζ )( x − X ) > f ( X ) + A ( x − X )

电子科大试题2002级计算机原理本科考题-A答案

电子科大试题2002级计算机原理本科考题-A答案

电子科大试题2002级计算机原理本科考题-A答案2002年《计算机组成原理》试题A答案一、单项选择题(从每小题的四个备选答案中选出一个正确答案,将其号码填入题干的括号内。

每小题2分,共10分)1、在原码不恢复余数除法中,若本步操作商1,则下步操作(②)。

①将余数左移一位加除数②将余数左移一位减除数③将余数右移一位加除数④将余数右移一位减除数2、微程序存放在(③ )。

①堆栈中②主存中③CPU中④磁盘中3、扩展同步总线(④ )。

①无时钟周期划分②无总线周期划分③允许时钟周期长度可变④允许总线周期长度可变4、总线主设备是指(① )。

①掌握总线权的设备②主要的设备③发送信息的设备④接收信息的设备5、为了禁止某个设备申请中断,CPU应该(④ )。

①关中断②开中断③设置屏蔽位为0④设置屏蔽位为1二、多项选择题(从每小题的四个备选答案中选出所有正确答案,将其号码填入题干的括号内。

每小题3分,共15分)1、为了缩短指令中整个地址字段的长度,可采用(② ③ ④)。

①立即寻址②寄存器寻址③寄存器间址④隐地址2、在异步控制方式中,(① ② ③)。

①按需分配时间②采用异步应答方式③总线传送时间可变④指令执行时间可变3、DMA 方式的特点包括(① ③④)。

①具有随机性②能够处理复杂的事件③CPU和I/O设备可在一定程度上并行操作④用硬件实现传送4、在接口中,常将外围设备的工作状态抽象为三种状态,即(①③ ④)。

①空闲②询问③忙④完成5、可以按随机存取方式工作的存储器有(① ② ④)。

①RAM②ROM③堆栈④高速缓存三、简答题(每小题5分,共25分)1、试比较组合逻辑控制方式和微程序控制方式的优缺点。

答:组合逻辑控制方式的优点:产生微命令的速度较快;缺点:设计不规整,设计效率较低,不易修改、扩展指令系统功能。

微程序控制方式的优点:设计规整,易于修改、扩展指令系统功能,可靠性高,性价比高;缺点:速度慢,执行效率不高。

2、动态存储器采用哪种刷新方式可以既不产生明显死区,又不影响存取周期?这种方式如何安排刷新周期?答:异步刷新方式。

电子科技大学组合数学 考题答案---习题55

电子科技大学组合数学 考题答案---习题55

习题五1.对1*n 棋盘的每个正方形用红或蓝两种颜色之一着色。

设a n 表示没有任何两个着红色的正方形是相邻的着色的方式数。

求a n 所满足的递归关系并解之。

解:设a n 表示1*n 棋盘中无任何两个着红色的方格是相邻的着色个数,则对第一个方格有两种着色方式:a.对第一格着蓝色,则在其余的n-1个方格中无任何两个着红色的方格的着色数为 a n -1.b.对第一格着红色,在第二格只能着蓝色,则在剩下的n-2个方格中无任何两个着红色的方格的着色数为a n -2。

显然有a 1=2,a 2=3,由加法法则得递推关系式12122,3n n n a a a a a --=+⎧⎨==⎩ 特征方程为012=--x x特征根2511+=x ,2512-=x通解n n n c c a )251()251(21-⨯++⨯= 由初始条件有:⎪⎪⎩⎪⎪⎨⎧=-⨯++⨯=-⨯++⨯3)251()251(2251251222121c c c c 故有: a n =])251()251[(5122++--+n n 2.如果用a n 表示没有两个0相邻的n 位三元序列(即有0,1,2组成的序列)的个数。

求a n 所满足的递归关系并解之。

解:对n 位数的第一位数有三种选择方式:1)第一位选1,则在剩下的n-1位数中无两个0相邻的个数为a n -1;2)第一位选2, 则在剩下的n-1位数中无两个0相邻的个数为a n -1,3)第一位选0,则在第则在第二位又有两种选择方式,(1)第一位选1,则在剩下的n-2数中无两个0相邻的个数为a n -2;(2)第一位选2,则在剩下的n-2数中无两个0相邻的个数为a n -2 显然有 a 1=3,a 2=8由加法法则得⎩⎨⎧==≥+=--8,3)3(222121a a n a a a n n n特征方程 x 2-2x-2=0特征根为x 1=1+3,x 2=1-3通解为 a n =c 1(1+3)n +c 2(1-3)n 由初始条件有 ⎩⎨⎧=-++=-++8)31()31(3)31()31(222121c c c c 所以,a n =1/6[(3+23)(1+3)n +(3-23)(1-3)n ]3.有一个楼梯共有n 阶,一个人要从这个楼梯上去,他每一步跨上一阶或两阶。

电子科技大学组合数学考题答案-容斥原理

电子科技大学组合数学考题答案-容斥原理
A1代表S中至少含4个b的10-组合数所组成的集合。
A2............................ 6个c.......................... ..... ...... .....。
A3.............................8个d..................................... .....。
K=n+1时
D2(n+1)-1=D2n+1=(2n+1-1)(D2n+D2n-1)=2n(D2n+D2n-1)为偶数。
D2(n+1)=D2n+2=(2n+2-1)(D2n+1+D2n)=奇数(偶数+奇数)=奇数。
命题也成立。则由数学归纳法原理原命题成立。
3.19a.从S={1,2,3,...,n}中选取k个元素,且无相邻两数,求不同的选取法。
个。
对n个顶点都如此考虑之后,我们将得到X= 个满足要求的k边形。又注意到k边形有k个顶点,所以同一个k边形必在X中被计算了k次,因此满足要求的k边形数有
个。
3.19.在一个宴会上,有n(n 3)对夫妇围圆桌就坐,在男女交替,夫妻不相邻的条件下有多少种就坐方式。
解:我们先让n位女士间隔就坐,并把她们按顺时针方向编号为1,2,...
由容斥原理有,
其中S表示{1,2,…..,8}的所有全排列的集合,故有
而 表示2和4均在自然位置上的全排列的集合,

同理,
类似的有
,代入公式得
:本题用有禁区棋盘来解更简单。
3.14.求由数字1,2,….8所组成的全排列中,恰有4个数在其自然位置上的全排列个数。

组合数学考试题附答案2

组合数学考试题附答案2

组合数学试题 共 4 页 ,第 1 页电子科技大学研究生试卷(考试时间: 14:30 至 16:30 ,共 2 小时)课程名称 组合数学 教师 卢光辉,张先迪 学时 40 学分 2 教学方式 讲授 考核日期 2006 年 12 月 2 日 成绩 考核方式: (学生填写)一.填空题(每空2分,共22分)1.食品店有三种不同的月饼(同种月饼不加区分),第一种有5个,第二种有6个,第三种有7个, (1) 从中取出4个装成一盒(盒内无序),则不同的装法数有 种 ; (2) 从中取出6个装成一盒(盒内无序),则不同的装法数有 种 ;(3)若将所有的月饼排在一个货架上,则排法数有 种(给出表达式,不必算出数值结果)。

(4)若将所有的月饼装在三个不同的盒子中,盒内有序(即盒内作线排列),盒子不空,则不同的装法数又有 种(给出表达式,不必算出数值结果)。

2.棋盘C 如图1所示,则棋子多项式R (C ) =3.设有足够多的红球、黄球和绿球,同色球不加区分,设从中无序地取出n 个球的方式数为a n ,有序地取出n 个球的方式数为b n ,但均需满足红球的数量为偶,黄球的数量为奇,则(1) 由组合意义写出的{a n }的普通母函数为 ;求和后的母函数为 。

(2)由组合意义写出的{b n }的指数母函数为 ;求和后的母函数为 。

4.(1) 将6个无区别的球放入3个无区别的盒子中且盒子不空的放法数为 。

学 号 姓 名 学 院……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………图1题……………无效…组合数学试题 共 4 页 ,第 2 页(2)将6个有区别的球放入3个无区别的盒子中且盒子不空的放法数为 。

(已知将5个有区别的球放入3个无区别的盒子中且盒子不空的放法数为25)二、(14 分) 给定重集B = {3·A , 3·B , 4·C ,10·D }。

2002考研数学一真题及答案解析

2002考研数学一真题及答案解析

2002年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上.) (1)⎰∞+exx dx2ln =.(2)已知函数()y y x =由方程0162=-++x xy e y 确定,则(0)y ''=. (3)微分方程02='+''y y y 满足初始条件0011,'2x x yy ====的特解是.(4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换x Py =可化成标准型216y f =,则a =.(5)设随机变量X 服从正态分布2(,)(0)N μσσ>,且二次方程042=++X y y 无实根的概率为12,则μ= .二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)考虑二元函数),(y x f 的下面4条性质: ①),(y x f 在点),(00y x 处连续; ②),(y x f 在点),(00y x 处的两个偏导数连续; ③),(y x f 在点),(00y x 处可微;④),(y x f 在点),(00y x 处的两个偏导数存在.若用“P Q ⇒”表示可由性质P 推出性质Q ,则有(A ) ②⇒③⇒①. (B ) ③⇒②⇒①. (C ) ③⇒④⇒①.(D ) ③⇒①⇒④.(2)设0(1,2,3,)n u n ≠=L ,且lim1n nnu →∞=,则级数11111(1)()n n n n u u ∞+=+-+∑ (A ) 发散. (B ) 绝对收敛.(C ) 条件收敛.(D ) 收敛性根据所给条件不能判定.(3)设函数()y f x =在(0,)+∞内有界且可导,则 (A ) 当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x .(B ) 当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x .(C ) 当0lim ()0x f x +→=时,必有0lim ()0x f x +→'=. (D ) 当0lim ()x f x +→'存在时,必有0lim ()0x f x +→'=.(4)设有三张不同平面的方程123i i i i a x a y a z b ++=,3,2,1=i ,它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设1X 和2X 是任意两个相互独立的连续型随机变量,它们的概率密度分别为1()f x 和2()f x ,分布函数分别为1()F x 和2()F x ,则(A ) 1()f x +2()f x 必为某一随机变量的概率密度. (B ) 1()f x 2()f x 必为某一随机变量的概率密度. (C ) 1()F x +2()F x 必为某一随机变量的分布函数. (D ) 1()F x 2()F x 必为某一随机变量的分布函数.三、(本题满分6分) 设函数)(x f 在0x =的某邻域内具有一阶连续导数,且(0)0,(0)0f f '≠≠,若()(2)(0)af h bf h f +-在0→h 时是比h 高阶的无穷小,试确定b a ,的值.四、(本题满分7分) 已知两曲线)(x f y =与⎰-=x t dt e yarctan 02在点(0,0)处的切线相同,写出此切线方程,并求极限)2(lim nnf n ∞→.五、(本题满分7分) 计算二重积分dxdy e Dy x⎰⎰},max{22,其中}10,10|),{(≤≤≤≤=y x y x D .六、(本题满分8分)设函数)(x f 在(,)-∞+∞内具有一阶连续导数,L 是上半平面(y >0)内的有向分段光滑曲线,其起点为(b a ,),终点为(d c ,).记2221[1()][()1],L xI y f xy dx y f xy dy y y=++-⎰(1)证明曲线积分I 与路径L 无关; (2)当cd ab =时,求I 的值.七、(本题满分7分)(1)验证函数333369()1()3!6!9!(3)!n x x y x x n =++++++-∞<<+∞L L 满足微分方程x e y y y =+'+'';(2)利用(1)的结果求幂级数30(3)!nn x n ∞=∑的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为xOy 坐标面,其底部所占的区域为2{(,)|D x y x =275}y xy +-≤,小山的高度函数为),(y x h xy y x +--=2275.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上什么方向的方向导数最大?若记此方向导数的最大值为),(00y x g ,试写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一上山坡最大的点作为攀登的起点.也就是说,要在D 的边界线2275x y xy +-=上找出使(1)中),(y x g 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知四阶方阵),,,(4321αααα=A ,4321,,,αααα均为4维列向量,其中432,,ααα线性无关,3212ααα-=,如果4321ααααβ+++=,求线性方程组β=Ax 的通解.十、(本题满分8分) 设,A B 为同阶方阵,(1)若,A B 相似,证明,A B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立. (3)当,A B 均为实对称矩阵时,证明(1)的逆命题成立.十一、(本题满分7分) 设维随机变量X 的概率密度为10,cos ,()220,x x f x π⎧≤≤⎪=⎨⎪⎩其他.对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分7分)其中1(0)2θθ<<是未知参数,利用总体X 的如下样本值3,1,3,0,3,1,2,3,求θ的矩估计值和最大似然估计值.2002年考研数学一试题答案与解析一、填空题 (1)【分析】 原式2ln 11.ln ln eed x x x+∞+∞==-=⎰(2)【分析】 方程两边对x 两次求导得'6'620,y e y xy y x +++=① 2'''6''12'20.y y e y e y xy y ++++=②以0x =代入原方程得0y =,以0x y ==代入①得'0,y =,再以'0x y y ===代入②得''(0) 2.y =-(3)【分析】 这是二阶的可降阶微分方程.令'()y P y =(以y 为自变量),则'''.dy dP dPy P dx dx dy=== 代入方程得20dP yPP dy +=,即0dPy P dy +=(或0P =,但其不满足初始条件01'2x y ==). 分离变量得0,dP dy P y+= 积分得ln ln ',P y C +=即1C P y=(0P =对应10C =); 由0x =时11,',2y P y ===得11.2C =于是又由01x y==得21,C =所求特解为y =(4)【分析】 因为二次型TxAx 经正交变换化为标准型时,标准形中平方项的系数就是二次型矩阵A 的特征值,所以6,0,0是A 的特征值.又因iiia λ=∑∑,故600, 2.a a a a ++=++⇒=(5)【分析】 设事件A 表示“二次方程042=++X y y 无实根”,则{1640}{A X X =-<=>4}.依题意,有1(){4}.2P A P X =>=而 4{4}1{4}1(),P X P X μΦσ->=-≤=-即414141(),(),0. 4.22μμμΦΦμσσσ----===⇒=二、选择题(1)【分析】 这是讨论函数(,)f x y 的连续性,可偏导性,可微性及偏导数的连续性之间的关系.我们知道,(,)f x y 的两个偏导数连续是可微的充分条件,若(,)f x y 可微则必连续,故选(A ).(2)【分析】 由1lim 101n n un n →+∞=>⇒充分大时即,N n N ∃>时10n u >,且1lim 0,n nu →+∞=不妨认为,0,n n u ∀>因而所考虑级数是交错级数,但不能保证1nu 的单调性. 按定义考察部分和111111111111(1)()(1)(1)nn nk k k n k k k k k k k S u u u u +++===++=-+=-+-∑∑∑1111111(1)11(1)1(1)(),k n nn l k l k l n n u u u u u ++==+--=-+-=+→→+∞∑∑⇒原级数收敛.再考察取绝对值后的级数1111()n nn u u ∞=++∑.注意111112,11nn n n u u n n n u u n n++++=+⋅→+ 11n n ∞=∑发散⇒1111()n n n u u ∞=++∑发散.因此选(C ).(3)【分析】 证明(B )对:反证法.假设lim ()0x f x a →+∞'=≠,则由拉格朗日中值定理,(2)()'()()f x f x f x x ξ-=→∞→+∞(当x →+∞时,ξ→+∞,因为2x x ξ<<);但这与(2)()(2)()2f x f x f x f x M -≤+≤矛盾(()).f x M ≤(4)【分析】 因为()()23r A r A ==<,说明方程组有无穷多解,所以三个平面有公共交点且不唯一,因此应选(B ).(A )表示方程组有唯一解,其充要条件是()() 3.r A r A ==(C )中三个平面没有公共交点,即方程组无解,又因三个平面中任两个都不行,故()2r A =和()3r A =,且A 中任两个平行向量都线性无关.类似地,(D )中有两个平面平行,故()2r A =,()3r A =,且A 中有两个平行向量共线.(5)【分析】 首先可以否定选项(A )与(C ),因121212[()()]()()21,()()112 1.f x f x dx f x dx f x dx F F +∞+∞+∞-∞-∞-∞+=+=≠+∞++∞=+=≠⎰⎰⎰对于选项(B ),若121,21,1,01,()()0,0,x x f x f x -<<-<<⎧⎧==⎨⎨⎩⎩其他,其他,则对任何(,),x ∈-∞+∞ 12()()0f x f x ≡,12()()01,f x f x dx +∞-∞=≠⎰因此也应否定(C ),综上分析,用排除法应选(D ).进一步分析可知,若令12max(,)X X X =,而~(),1,2,i i X f x i =则X 的分布函数()F x 恰是12()().F x F x1212(){max(,)}{,}F x P X X x P X x X x =≤=≤≤1212{}{}()().P X x P X x F x F x =≤≤=三、【解】 用洛必达法则.由题设条件知lim[()(2)(0)](1)(0).h af h bf h f a b f →+-=+-由于(0)0f '≠,故必有10.a b +-=及(0)0f '≠,则有20a b +=. 综上,得2, 1.a b ==-四、【解】 由已知条件得(0)0,f =22arctan arctan 02'(0)()'1,1xx t xx x e f e dt x --=====+⎰故所求切线方程为y x =.由导数定义及数列极限与函数极限的关系可得五、【分析与求解】 D 是正方形区域如图.因在D 上被积函数分块表示2222,,max{,}(,),,,x x y x y x y D y x y ⎧≥⎪=∈⎨≤⎪⎩于是要用分块积分法,用y x =将D 分成两块:1212,{},{}.D D D D D y x D D y x ==≤=≥U I I⇒I 222212max{,}max{,}xy xy D D e dxdy e dxdy =+⎰⎰⎰⎰2221212x y x D D D e dxdy e dxdy e dxdy =+=⎰⎰⎰⎰⎰⎰(D 关于y x =对称)2102xx dx e dy =⎰⎰(选择积分顺序)221102 1.x xxe dx e e ===-⎰六、【分析与求解】(1)易知Pdx Qdy +∃原函数,2211()()()()()x Pdx Qdy dx yf xy dx xf xy dy dy ydx xdy f xy ydx xdy y y y+=++-=-++ 0()()()[()].xy x xd f xy d xy d f t dt y y =+=+⎰⇒在0y >上Pdx Qdy +∃原函数,即0(,)()xy xu x y f t dt y =+⎰. ⇒积分I 在0y >与路径无关.(2)因找到了原函数,立即可得(,)(,)(,).c d a b c a I u x y d b==-七、【证明】 与书上解答略有不同,参见数三2002第七题(1)因为幂级数3693()13!6!9!(3)!nx x x x y x n =++++++L L的收敛域是()x -∞<+∞,因而可在()x -∞<+∞上逐项求导数,得25831'()2!5!8!(31)!n x x x x y x n -=+++++-L L ,4732''()4!7!(32)!n x x x y x x n -=+++++-L L ,所以2'''12!!nx x x y y y x e n ++=+++++=L L ()x -∞<+∞.(2)与'''xy y y e ++=相应的齐次微分方程为'''0y y y ++=,其特征方程为210λλ++=,特征根为1,212λ=-±.因此齐次微分方程的通解为212(cossin )22x Y eC x C x -=+. 设非齐次微分方程的特解为xy Ae *=,将y *代入方程'''xy y y e ++=可得13A =,即有13x y e *=.于是,方程通解为2121(sin )3xx y Y y eC x C x e -*=+=++. 当0x =时,有112121(0)1,23,0.311'(0)0.223y C C C y C ⎧==+⎪⎪⇒==⎨⎪==-++⎪⎩于是幂级数30(3)!n n x n ∞=∑的和函数为221()33x x y x e x e -=+()x -∞<+∞八、【分析与求解】(1)由梯度向量的重要性质:函数),(y x h 在点M 处沿该点的梯度方向0000(,)(,)0000(,){,}{2,2}x y x y h h h x y x y y x x y∂∂==-+-+∂∂grad方向导数取最大值即00(,)(,)x y h x y grad 的模,00(,)g x y ⇒=(2)按题意,即求(,)g x y 求在条件22750x y xy +--=下的最大值点⇔22222(,)(2)(2)558g x y y x x y x y xy =-+-=+-在条件22750x y xy +--=下的最大值点.这是求解条件最值问题,用拉格朗日乘子法.令拉格朗日函数 2222(,,)558(75),L x y x y xy x y xy λλ=+-++--则有 22108(2)0,108(2)0,750.L x y x y x L y x y x yL x y xy λλλ⎧∂=-+-=⎪∂⎪∂⎪=-+-=⎨∂⎪⎪∂=+--=⎪∂⎩解此方程组:将①式与②式相加得()(2)0.x y x y λ++=⇒=-或 2.λ=-若y x =-,则由③式得2375x =即5, 5.x y =±=m 若2,λ=-由①或②均得y x =,代入③式得275x=即x y =±=±于是得可能的条件极值点1234(5,5),(5,5),(M M M M ----现比较222(,)(,)558f x y g x y x y xy ==+-在这些点的函数值:1234()()450,()()150.f M f M f M f M ==== 因为实际问题存在最大值,而最大值又只可能在1234,,,M M M M 中取到.因此2(,)g x y 在12,M M 取到在D 的边界上的最大值,即12,M M 可作为攀登的起点.九、【解】 由432,,ααα线性无关及3212ααα-=知,向量组的秩1234(,,,)3r αααα=,即矩阵A 的秩为3.因此0Ax =的基础解系中只包含一个向量.那么由123412312(,,,)2010ααααααα⎡⎤⎢⎥-⎢⎥=-+=⎢⎥⎢⎥⎣⎦知,0Ax =的基础解系是(1,2,1,0).T- 再由123412341111(,,,)1111A βαααααααα⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+++==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦知,(1,1,1,1)T 是β=Ax 的一个特解.故β=Ax 的通解是1121,1101k ⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦其中k 为任意常数.十、【解】(1)若,A B 相似,那么存在可逆矩阵P ,使1,P AP B -=故 111E B E P AP P EP P AP λλλ----=-=-11().P E A P P E A P E A λλλ--=-=-=-(2)令0100,,0000A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦那么2.E A E B λλλ-==- 但,A B 不相似.否则,存在可逆矩阵P ,使10P AP B -==.从而100A P P -==,矛盾,亦可从()1,()0r A r B ==而知A 与B 不相似.(3)由,A B 均为实对称矩阵知,,A B 均相似于对角阵,若,A B 的特征多项式相等,记特征多项式的根为1,,,n λλL 则有A 相似于1,n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦O B 也相似于1.n λλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦O 即存在可逆矩阵,P Q ,使111.n P AP Q BQ λλ--⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦O 于是111()().PQ A PQ B ---=由1PQ -为可逆矩阵知,A 与B 相似.十一、【解】 由于311{}cos ,3222x P X dx πππ>==⎰依题意,Y 服从二项分布1(4,)2B ,则有2222111()()4(4) 5.222EY DY EY npq np =+=+=⨯⨯+⨯= 十二、【解】 22012(1)23(12)34,EX θθθθθθ=⨯+⨯-+⨯+⨯-=-1(3).4EX θ=- θ的矩估计量为1ˆ(3),4X θ=-根据给定的样本观察值计算1(31303123)8x =+++++++ 2.=因此θ的矩估计值11ˆ(3).44x θ=-= 对于给定的样本值似然函数为624()4(1)(12),ln ()ln 46ln 2ln(1)4ln(12),L L θθθθθθθθ=--=++-+-2ln ()62824286.112(1)(12)d L d θθθθθθθθθθ-+=--=---- 令ln ()0d L d θθ=,得方程2121430θθ-+=,解得712θ-=(1,2θ=>不合题意). 于是θ的最大似然估计值为ˆθ=。

组合数学(西安电子科技大学(第二版))习题3

组合数学(西安电子科技大学(第二版))习题3

习题三(递推关系)1.解下列递推关系:(1)120171000,1n n n a a a a a ---+=⎧⎨==⎩ (2)12016900,1n n n a a a a a --++=⎧⎨==⎩ (3)20100,2n n a a a a -+=⎧⎨==⎩ (4)120121n n n a a a a a --=-⎧⎨==⎩ (5)123012990,1,2n n n n a a a a a a a ---=+-⎧⎨===⎩ 解:(1)对应的特征方程为:27100x x -+=,解得122,5x x ==。

所以齐次递推方程的通解为:25n n n a A B =+,代入初始条件,得:00a A B =+=,1251a A B =+=,解得:11,33A B =-=, 故 112533n n n a =-+。

(2)对应的特征方程为:2690x x ++=,解得:123x x ==-,所以,齐次递推方程的通解为:()(3)n n a A Bn =+-,代入初始条件,00a A ==,1()(3)1a A B =+-=,解得:10,3A B ==-,故1(3)3n n a n =--。

(3)对应的特征方程为:210x +=,解得:12,x i x i ==-,所以,齐次递推方程的通解为:()()n n n a A i B i =+-,代入初始条件,00a A B =+=,12a A i B i =-=,解得:,A i B i =-=,故 11()()n n n a i i --=+-。

(4)对应的特征方程为:2210x x -+=,解得:121x x ==,所以,齐次递推方程的通解为:n a A Bn =+,代入初始条件,01a A ==,11a A B =+=,解得:1,0A B ==,故 1n a =。

(5)对应的特征方程为:32990x x x --+=,解得:1231,3,3x x x ===-,所以,齐次递推方程的通解为:3(3)n n n a A B C =++-,代入初始条件,00a A B C =++=,1331a A B C =+-=,2992a A B C =++=, 解得,111,,4312A B C =-==-,故 1113(3)412n n n a -=-+--2.求由A ,B ,C ,D 组成的允许重复的排列中AB 至少出现一次的排列数。

2002考研数学真题+答案

2002考研数学真题+答案

c
d

c a c a f (t )dt f (t )dt f (t )dt , d b ab d b ab bc
2002 年 • 第 3 页
bc
cd
cd
郝海龙:考研数学复习大全·配套光盘·2002 年数学试题参考解答及评分标准
cd
当 ab cd 时,
ab
f (t )dt 0 ,由此得 I d b .
(1) 证明曲线积分 I 与路径 L 无关; (2) 当 ab cd 时,求 I 的值.
1 1 x 2 2 [1 y f ( xy)] f ( xy) 2 xyf ( xy) 2 [ y f ( xy) 1] 在 y y y x y 上半平面内处处成立,所以在上半平面内曲线积分 I 与路径无关.
D ( x, y) x 2 y 2 xy 75 ,小山的高度函数为 h( x, y) 75 x2 y2 xy ,
(1) 设 M ( x0 , y0 ) 为区域 D 上一点,问 h( x, y ) 在该点沿平面上什么方向导数最大?若 记此方向导数的最大值为 g ( x0 , y0 ) ,试写出 g ( x0 , y0 ) 的表达式. (2) 现欲利用此小山开展攀岩活动,为此需要在山脚寻找一上山坡度最大的点作为攀登 的起点,也就是说,要在 D 的边界线 x2 y2 xy 75 上找出使(1)中的 g ( x, y ) 达到最 大值的点.试确定攀登起点的位置. 解:(1) 由梯度的几何意义知, h( x, y ) 在点 M ( x0 , y0 ) 处沿梯度
x 0
1 ,故所求切线方程为 y x .
e
D
max{ x 2 , y 2 }
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档