全等三角形思维导图
初中数学《全等三角形》单元教学设计以及思维导图

初中数学《全等三角形》单元教学设计以及思维导图全等三角形”是八年级数学教材第十一章的重要内容,旨在让学生掌握全等三角形的概念和性质,以及五种判定全等的方法和角平分线的性质和判定方法,进而解决实际问题。
本单元共分三个专题,通过小组讨论和交流,引导学生进行探索、猜想、证明的过程,发展学生的推理意识和能力,课堂效果良好。
研究重点是全等三角形的性质和判定的综合运用,难点在于让学生理解证明的基本过程和用综合法证明的格式,并能灵活运用。
研究目标包括知识与技能、过程与方法、情感态度与价值观三个方面,旨在培养学生的空间观念、几何直觉、合作交流意识、大胆猜想和解决问题的能力。
本文介绍了数学中的两个重要概念:全等三角形和角平分线。
全等三角形的概念包括对应顶点、对应边和对应角等,掌握全等三角形的判定方法和证明格式是必要的。
角平分线的性质包括将一个角平分成两个相等的角,掌握角平分线的判定方法也是必要的。
在研究全等三角形时,需要掌握全等三角形的概念和性质,以及准确地辨认全等三角形中的对应元素。
通过观察、操作、想象、交流等教学活动,让学生经历理解全等三角形性质的过程。
同时,运用多媒体演示图形的位置变化,让学生从中了解、体会图形的变换思想,逐步培养学生动态研究几何图形的意识。
在研究角平分线时,需要掌握角平分线的性质和判定方法。
角平分线将一个角平分成两个相等的角,可以通过作图来判定角平分线。
在教学中可以使用多媒体课件、几何画板课件、作图工具和纸笔等教学资源,让学生通过动手操作、分组讨论、归纳结论等方式来探究全等三角形和角平分线的概念和性质。
总之,掌握全等三角形和角平分线的概念、性质和判定方法对于研究数学和几何学都是必要的。
在教学中,可以通过多种方式来引导学生探究和理解这些概念和性质,培养学生动态研究几何图形的意识,激发学生热爱科学、勇于探索的精神。
提出问题:两个全等的三角形,能否任意摆放并重合?如何放置才能重合?活动二:探究全等三角形的性质1、提出问题:观察图中两个三角形的对应边和对应角有什么关系?2、让学生观察图形、动手操作、分组讨论得出结论。
完整word版八年级数学思维导图

第十一章三角形
有关概念三角形的定义
指任意两)18 边形的内角和等n-x 18°36边形的外角和等于
第十二章全等三角形
全等三角形的对应边相等
AA
第十三章轴对称
第十四章整式的乘法与因式分解
第十五章分式
二次根式第十六章
满足下列两个特点的二次根式,叫最简二次根式.(1)被开方数不含分母,分母定义:式子(a≥0)叫做二次根式
中不含二次根式;)被开方数中不含开得尽方2(.的因数或因式(a
≥0)是一个非负数
最简二次根式(a≥0)二次根式二次根式性质的乘法)b≥0(a,≥0
二次根式的除法
)b>0,≥0a(0)>b≥0,a(二次根式的混合运算运算二次根式加减是,可以先将二次根式化成最简二次根式,再二次根式合并同类二次根式的加减
第十七章勾股定理
第十八章平行四边形
第十九章一次函数
第二十章数据的分析。
人教版八年级数学上册 第十二章 全等三角形知识归纳与题型突破(12类题型清单)

第十二章全等三角形知识归纳与题型突破(题型清单)01思维导图02知识速记一、全等图形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.二、全等三角形能够完全重合的两个三角形叫全等三角形.三、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.四、全等三角形的判定五、全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边六、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3)等式性质.2.证明角相等的方法:(1)利用平行线的性质进行证明.(2)证明两个角所在的两个三角形全等.(3)利用角平分线的判定进行证明.(4)同角(等角)的余角(补角)相等.(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.七、角平分线概念:从一个角的顶点引出一条射线,把这个角分成完全相同的角,这条射线叫做这个角的角平分线。
八年级上册数学思维导图第一至五章

八年级上册数学思维导图第一至五章
八年级上册数学思维导图第一至五章:
第一章《三角形》
三角形这章的主要考点有5个:(1)三角形三边的关系,主要能判断三条线段能否构成三角形,能求线段的取值范围或证明线段的不等关系;(2)三角形的高、角平分线和中线的应用;(3)有关三角形内角与外角的计算;(4)多边形的内角和与外角和;(5)数学思想的应用,这章主要有方程思想、分类讨论思想和化归思想的应用。
难点是数学思想的应用。
第二章《三角形全等》
全等三角形的主要考点主要有2个:(1)全等三角形的判定和性质;(2)角平分线的性质。
难点是三角形种常需要添加辅助线构造全等三角形。
第三章《轴对称》
本章考点有6个:(1)判断轴对称图形;(2)画轴对称图形;(3)坐标系内点的对称问题;(4)等腰三角形“三线合一”定理;(5)利用轴对称解决最短距离问题;(6)直角三角形中30度角性质。
这章的难点是解决最短距离问题,我们数学称为将军饮马数学模型,也就是建模思想的应用。
第四章《整式乘除与因式分解》
这章考点有5个:(1)幂的运算法则与逆运用;(2)整式乘除法运算;(3)乘法公式的应用;(4)0指数和负整指数幂;(5)因式分解。
本章难点是幂运算法则的逆运用和整体代换思想的运用。
第五章《分式及分式方程》
分式这章的考点有4个:(1)分式的化简求值;(2)解分式方程;(3)分式应用题。
这章的难点是分式应用题,在解题应用题我们要注意应用题的基本等量关系及每份量×份数=总量,若每份量和份数都未知,可以确定为分数应用题;易错点是分式化简求值时,代入的值要保证原分式的分母和除数都不为零,解分式方程要记得验根。
三角形思维导图初三。

三个内角总和是180度
角
三个外角总和则是360度
三角形的任意一个外角,都是另外两个不相邻内角的和
z+b>c
任意两边之和大于第三边
a+c>b
c+b>a
边
a-b<c
任意两边之差小于第三边
a-c<b
c-b<a
三角形的分类
从边的角度分类
从角的角度分类
等腰三角形
不等边三角形 直角三角形斜三角形源自锐角三角形钝角三角形
三角形的主要线段
中线
高线
角平分线
其中一个角的顶点与其对应边的中点所连成的线
过一个顶点作垂直于它对边所在直线的线段
三角形的其中一个角的平分线与其对应的边相交,
角的顶点与交点组成的线
初中数学《全等三角形》单元教学设计以及思维导图

初中数学《全等三角形》单元教学设计以及思维导图全等三角形”是八年级数学教材第十一章的重要内容。
学生需要理解全等三角形的概念和性质,掌握五种判定全等的方法,并能熟练应用这些方法解决实际问题。
此外,学生还需要结合角的平分线的性质综合运用这些知识,为后续研究打下基础。
本主题单元共分为三个专题:全等三角形、三角形全等的判定、全等三角形的应用。
教学方式主要是通过小组讨论和交流,引导学生自主探究和归纳得出全等三角形的性质和判定定理,并能熟练应用。
研究重点是全等三角形的性质和判定的综合运用,难点是让学生理解证明的基本过程和运用综合法证明的格式。
研究目标包括知识与技能、过程与方法、情感态度与价值观三个方面。
学生需要了解全等三角形的概念和性质,掌握五种判定全等的方法,并能初步应用这些方法判定三角形全等。
同时,学生还需要在图形变换和实际操作中发展空间观念和几何直觉,体验用操作归纳得出数学结论的过程,并能在生活、生产中应用角平分线的性质和判定进行推理计算。
通过本单元研究,学生可以观察、发现生活中的全等三角形,并在实际操作中获得全等三角形的体验。
同时,通过探究判定三角形全等方法的活动,培养学生合作交流的意识和大胆猜想、乐于探索的品质及发现问题、解决问题的能力。
通过折纸、画图、文字与符号的互译活动,培养学生的联想、探索、概括归纳的能力,激发学生研究数学的兴趣。
对应课标要求学生理解全等三角形的概念和性质,掌握全等三角形的判定方法,并能运用综合法进行证明。
同时,学生还需要掌握角平分线的性质和判定方法。
1、教师用课件展示全等三角形的性质,引导学生观察、分析、总结。
2、学生自主探究、验证全等三角形的性质。
1)学生在纸板上画出两个全等三角形,并标出对应元素。
2)学生通过测量、计算、推理等方法验证全等三角形的性质,如对应角相等、对应边相等、对应顶点连线相等等。
3)学生归纳总结全等三角形的性质。
活动三:应用全等三角形的性质活动步骤】1、教师用课件展示一些实际问题,引导学生运用全等三角形的性质解决问题。
数学八年级上册第一章思维导图

数学八年级上册第一章思维导图
勾股定理的内容:如果直角三角形的两直角边分别是a、b,斜边为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方。
同时勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
能够完全重合的两个三角形称为全等三角形。
(注:全等三角形是相似三角形中相似比为1:1的特殊情况)。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此:全等三角形的对应边相等,对应角相等。
以下是思维导图:
全等三角形的判定定理:
⑴边边边:三边对应相等的两个三角形全等。
⑵边角边:两边和它们的夹角对应相等的两个三角形全等。
⑶角边角:两角和它们的夹边对应相等的两个三角形全等。
⑷角角边:两角和其中一个角的对边对应相等的两个三角形全等。
⑸斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等
1、其中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3、当图中出现两个以上等边三角形时,应首先考虑用SAS找全等三角形。
4、用在实际中,一般我们用全等三角形测相等的距离。
以及相等的角,可以用于工业和军事。
三角形思维导图

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1全等三角形思维导图(可点击放大)全等三角形是整个初中平面几何的基础,一般考察不会太难,但是会很细,多以基础为主,注意角平分线和垂直平分析的性质和判定。
2相似三角形思维导图(可点击放大)相似三角形是几何的重点,中考会与圆,特殊四边形(矩形,菱形,正方形)等结合考察,还有可能与锐角三角函数结合。
而在一模中,这更是一个必考重点!
3几何初步和三角形思维导图(可点击放大)本部分是几何的一个开始,重要在于等腰、等边、直角三角形的性质部分,也是作为基础来考察的。
4圆思维导图(可点击放大)这部分就是几何的一个重难点了,虽然一般一模是不会考圆的,但是12年长宁区的试卷中就大大方方出现了圆的压轴题。
尽管近年教材中已经统一删掉了圆与圆的位置关系,降低了一些难度,但同学们如果做足准备去掌握的这一块知识,相信定能
高枕无忧了。
5投影与视图思维导图(可点击放大)其实投影与视图部分,在中考里都不是那么重要,也就是考个小题,在一模中可能出现的概率大家也可以预见。
当然,三视图属于立体几何的一个入门,对于高中来说,这部分内容还是很重要的。
同学们如果学有余力,也可以提前掌握,重
点是培养空间想象能力。