第十七章:勾股定理知识点归纳
勾股定理知识点+对应类型

第二章勾股定理、平方根专题第_节勾股定理-、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a, b,斜边长为c,那么勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a, b, c有下面关系:a2+ b2= c2,那么这个三角形是直角三角形。
2. 勾股数:满足a2+ b2= c2的三个正整数叫做勾股数(注意:若a, b, c、为勾股数,那么ka, kb, kc同样也是勾股数组。
)* 附:常见勾股数: 3,4,5 ; 6,8,10 ; 9,12,15 ; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2) 若c2= a2+ b2,则^ ABC是以Z C为直角的三角形;若a2 + b2v c2,则此三角形为钝角三角形(其中c为最大边);若a2 + b2> c2,则此三角形为锐角三角形(其中c为最大边)4. 注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的(3) 在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
5. 勾股定理的作用:(1) 已知直角三角形的两边求第三边。
(2) 已知直角三角形的一边,求另两边的关系。
(3) 用于证明线段平方关系的问题。
(4) 利用勾股定理,作出长为际的线段二、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a,那么这个数就叫做a的平方根。
(也称为二次方根),也就是说如果x2=a,那么x就叫做a的平方根。
勾股定理知识点总结大全

勾股定理知识点总结大全一、勾股定理的定义勾股定理又称毕达哥拉斯定理,它是指:在直角三角形中,直角边的平方等于其他两条边的平方和。
具体表达方式是:设直角三角形的两个直角边分别为a、b,斜边为c,则有a²+b²=c²。
这就是著名的毕达哥拉斯定理,也是勾股定理的核心概念。
二、勾股定理的证明1. 几何证明勾股定理有多种证明方法,其中有几何证明是最常见的。
几何证明主要通过图形的构造和变换,利用几何形状的属性,从而证明勾股定理。
常见的几何证明方法包括利用正方形、相似三角形、垂直平分线、圆的性质等,通过构造等辅助图形,最终得到a²+b²=c²的结论。
2. 代数证明另外,勾股定理也可以通过代数方法进行证明。
代数证明主要通过变换方程、化简运算,利用数学公式和规律,从而得到a²+b²=c²的结论。
通过几何和代数两种证明方法,可以更全面地理解勾股定理的内涵和外延,为后续的学习和应用打下坚实的基础。
三、勾股定理的性质1. 勾股三元数根据勾股定理,我们可以找到很多满足a²+b²=c²的整数解组,这样的整数解组叫做勾股三元数。
例如:3²+4²=5²、5²+12²=13²、9²+40²=41²等。
勾股三元数的性质是研究勾股定理的重要方面,它们具有很多有趣的特性和规律,对于数论的研究有着重要的意义。
2. 勾股定理的逆定理对于一个三元数组(a, b, c),如果它满足a²+b²=c²,则称它是勾股三元数。
而勾股定理的逆定理表明,每个整数对(a, b),都可以构成一个勾股三元数。
这个逆定理的证明非常复杂,它涉及到模运算、费马大定理、椭圆曲线等高深的数学知识,是数论和代数学研究的重要课题之一。
3. 勾股定理的推广在直角三角形外,勾股定理也有很多推广成立的情况。
第十七章 勾股定理知识点与常见题型总结

《勾股定理》小结与复习资料一.知识点:1. 勾股定理及逆定理①勾股定理:如果直角三角形的两直角边长分别为 ,斜边为 ,那么 __ 。
直角三角形2+b 2=c 2 (数)(形)公式的变形:(1)c 2= , c= ;(2)a 2= , a= ;(3)b 2= , b= ; ②勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足 ___ ,那么这个三角形是 __ .a 2+b 2=c 2 (数直角三角形 注:(1依据;(2)勾股定理的逆定理主要的应用是把数转化为形,通过计算三角形三边之间的关系来判断一个三角形是否是直角三角形,它可作为直角三角形的判定依据.利用勾股定理逆定理证明三角形是否是直角三角形的步骤:①先判断哪条边最大;②分别用代数法计算 a 2+b 2 和c 2 的值;③判断a 2+b 2和 c 2 是否相等。
若相等,则是直角三角形;若不相等,则不是直角三角形。
2、勾股数满足a 2 + b 2= c 2的三个正整数,称为勾股数。
注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数。
常见勾股数如下:3、互逆命题和互逆定理互逆命题:两个命题中,如果第一个命题的 恰为第二个命题的 ,而第一个命题的 恰为第二个命题的 ,像这样的两个命题叫做 .如果把其中一个叫做原命题,那么另一个叫做它的 .互逆定理:一般的,如果一个定理的逆命题经过证明是 ,那么它也是一个 ,称这两个定理互为 ,其中一个叫做另一个的逆定理.4、勾股定理的应用(最短路线、梯子下滑、船在水中航行等)5、常见平方数:121112=; 144122=; 169132=; 196142=; 225152=;256162=289172=; 324182=; 361192=; 400202=;441212=; 484222=529232=; 576242=; 625252=; 676262=;729272=《勾股定理题型分类》题型一:直接考查勾股定理:直角三角形中,若a, b 分别为直角边,c 为斜边,那么直角三角形三边的关系为 a 2 +b 2 =c 2注意:直角三角形中,最长的边为斜边,较短的两边为直角边1、如图1中,64、400分别为所在正方形的面积,则图中A 字母所代表的正方形面积是2、 如图4,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
物理勾股定理知识点总结

物理勾股定理知识点总结一、勾股定理的概念勾股定理是指直角三角形中,直角边的平方和等于斜边的平方。
勾股定理广泛应用于物理学中的各个领域,如力学、光学、电磁学等。
它不仅是物理学的基础知识,也是解决实际问题的重要工具。
在直角三角形ABC中,若角C为90度,则有a²+b²=c²,其中a、b分别为直角边,c为斜边。
这是勾股定理的基本表达形式。
二、勾股定理的证明1. 几何证明:勾股定理最早由古希腊数学家毕达哥拉斯提出,并给出了一种几何证明。
这种证明方法是通过构造一个正方形,利用三角形的相似性和面积相等来证明。
在直角三角形ABC中,作a和b为直角边的正方形,其边长分别为a和b。
然后再构造一个以c为边长的正方形。
根据相似三角形的性质和面积相等,可以得出a²+b²=c²。
2. 代数证明:勾股定理也可以通过代数方法进行证明。
假设直角三角形的两直角边分别为a和b,斜边为c。
则可以利用勾股定理进行代数运算。
首先,将直角三角形的两直角边分别表示为a 和b,根据毕达哥拉斯定理,得:a²+b²=c²然后,对两边取平方根,得:c=√(a²+b²)因此,可以通过代数方法证明勾股定理的成立。
三、物理学中勾股定理的应用1. 力学:在力学中,勾股定理常常用于解决叠加物体受力的问题。
例如,一个物体受到两个力的作用,可以利用勾股定理计算合成力的大小和方向。
另外,勾股定理也可用于解决斜面上物体滑动的问题。
2. 光学:在光学中,勾股定理常常用于计算光的反射和折射。
例如,当光线入射到一个介质边界上时,可以通过勾股定理计算入射角和折射角之间的关系。
另外,勾股定理也可以用于计算物体在镜子中的像的位置和大小。
3. 电磁学:在电磁学中,勾股定理常常用于计算电场和磁场的合成和分解。
例如,两个电荷之间的相互作用力可以通过勾股定理计算合成力的大小和方向。
勾股定理重点知识点

勾股定理重点知识点2017精选关于勾股定理重点知识点一、勾股定理与逆定理A.勾股定理在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。
如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2。
1、勾股定理应用的前提条件是在直角三角形中。
2、勾股定理公式a2+b2=c2 的变形有:a2= c2—b2,b2=c2-a2及c2=a2+b2。
3、由于a2+b2=c2>a2 ,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边。
B.勾股定理的逆定理如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。
说明:①勾股定理的逆定理验证利用了三角形的全等。
②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形。
必须满足较小两边平方的和等于最大边的平方才能做出判断。
(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角。
然后进一步结合其他已知条件来解决问题。
注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是。
面积分割法、构造直角三角形二、实数与数轴1、实数与数轴上的点是一一对应关系。
任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数。
数轴上的任一点表示的数,不是有理数,就是无理数。
2、在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等,实数a的绝对值就是在数轴上这个数对应的点与原点的距离。
3、利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小。
三、矩形的性质1、矩形的定义:有一个角是直角的平行四边形是矩形。
2、矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形。
勾股定理知识点总结

17.1勾股定理考点一:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2) 技巧归纳:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题考点二:勾股定理的证明一般是通过剪拼,借助面积进行证明。
其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不变。
图1是由4个全等三角形拼成的,得到一个以a+b 为边长的大正方形和以直角三角形斜边c 为边长的小正方形。
则大正方形的面积可表示为(a+b)2,又可表示为12ab ·4+c 2,所以(a+b)2=12ab ·4+c 2,整理得a 2+b 2=c 2在图2的另一种拼法中,以c 为边长的正方形的面积可表示成四个全等的直角三角形与边长为(b-a)的正方形的面积的和,所以12ab ·4+(b-a)2=c 2,整理得a 2+b 2=c 2.考点三:勾股定理的应用(1)勾股定理的应用条件勾股定理只适用于直角三角形,所以常作辅助线——高,构造直角三角形。
(2)勾股定理的实际应用勾股定理反映了直角三角形3条边之间的关系,利用勾股定理,可以解决直角三角形的有关计算和证明.例如:已知直角三角形的两条直角边可求斜边;已知直角三角形的斜边和一条直角边,可求另一条直角边。
勾股定理还可以解决生产生活中的一些实际问题。
在解决问题的过程中,往往利用勾股定理列方程(组),将实际问题转化成直角三角形的模型来解决。
(3)利用勾股定理作长为 n (n 为大于1的整数)的线段实数与数轴上的点是一一对应的,有理数在数轴上较易找到与它对应的点,而若要在数轴上直接标出无理数对应的点则较难。
勾股定理笔记要点

勾股定理基础知识汇总一、 已经学过的有关直角三角形中的边角关系BA1.两锐角之间的关系:90oA B ∠+∠=2.边与高的关系: ab ch =3.边与角之间的特殊关系:在直角三角形中30°角所对的直角边等于斜边的一半;4.直角三角形斜边上的中线等于斜边的一半。
二、 勾股定理在直角三角形中,两条直角边的平方和等于斜边的平方。
即222a b c +=三、 勾股定理逆定理如果一个三角形的两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
四、 勾股数组1.如果三个正整数,,a b c 满足关系222a b c +=,那么,,a b c 叫做勾股数。
2.勾股数的性质如果,,a b c 是勾股数,k 为正整数,那么,,ka kb kc 也是勾股数思考:勾股数的定义中有何限制?3.常用勾股数:3,4,5;5, 12,13;7,24,25;8,15,17;4.勾股数的几种表达方式22(1).21,22,221n n n n n ++++(毕达哥拉斯)22(2)1,2,1n n n -+(柏拉图) 2222(3),2,m n mn m n -+(丢番图)请探究上述三个表达式,思考下列问题 (1) 你能从勾股数3,4,5;5, 12,13;7,24,25;归纳出毕达哥拉斯给出的表达式吗?这组勾股数有何特征?(2) 柏拉图公式与丢番图公式之间有何联系?与你已经学过的哪些公式有关联?五、勾股定理应用(1) 学习过勾股定理之后三角形的特殊关系①如果30oA ∠=,那么::2a b c =②如果45o A ∠=,那么::a b c = ③如果,,a b c 是直角三角形的三条直角边,那么以a+ b ,c + h ,h 的长为边的三条线段能组成直角三角形④如果,,a b c 是直角三角形的三条直角边,那么以a 1,b 1,1h的长为边的三条线段能组成直角三角形(2) 藤绕树问题的解法我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是尺.(3)长方体盒子对角线的长度公式GEB(4)蚂蚁最短路径问题公式GcGcBcGEB六、典型例题例1:我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)),图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为2,则S1+S2+S3= .【答案】122.如图是用硬纸板做成的四个全等的直角三角形,两直角边长分别是a b ,,斜边长为c 和一个边长为c 的正方形,请你将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图. (2)证明勾股定理.3.(1)如图1是一个重要公式的几何解释.请你写出这个公式;(2)如图2,Rt Rt ABC CDE △≌△,90B D ∠=∠=,且B C D ,,三点共线.试证明90ACE ∠=;(3)伽菲尔德(Garfield ,1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(1876年4月1日,发表在《新英格兰教育日志》上),现请你尝试该证明过程.4.「问题情境」勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行了证明.著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言. 「定理表述」请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述):(3分)「尝试证明」以图1中的直角三角形为基础,可以构造出以a b 、为底,以a b +为高的直角梯形(如图2).请你利用图2,验证勾股定理;(4分) 「知识拓展」利用图2中的直角梯形,我们可以证明a bc+< BC a b =+,AD = .又在直角梯形ABCD 中有BC AD(填大小关系),即 .a bc+∴<.(3分)(图1)(图2)A BC Dc baa ab b ccEa b b a 图1 abc c A E D C B b 图25.给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.6.在△ABC中,BC=a,AC=b,AB=c,设c为最长边.当a2+b2=c2时,△ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究△ABC的形状(按角分类).(1)当△ABC三边长分别为6,8,9时,△ABC为______c2;当△ABC三边长分别为6,8,11时,△ABC 为___________三角形.(4分)(2)猜想:当a2+b2______c2时,△ABC为锐角三角形;当a2+b2______c2时,△ABC为钝角三角形.(4分) (3)判断当a=2,b=4时,△ABC的形状,并求出对应的c的取值范围.(4分)7.阅读材料:例:并求它的最小值.解:3x如图,建立平面直角坐标系,点()0P x,是x轴上一点,P与点()01A,的距离,可以看成点P与点()32B,的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA PB+的最小值.设点A关于x轴的对称点为A′,则P A P A=′,因此,求PA PB+的最小值,只需求PA PB+′的最小值,而点A′、B间的直线段距离最短,所以PA PB+′的最小值为线段A B′的长度.为此,构造直角三角形A CB′,因为=3=3A C CB',,所以A B=′,即原式的最小值为根据以上阅读材料,解答下列问题:(1)代数式的值可以看成平面直角坐标系中点()0P x,与点()11A,、点B___________的距离之和.(填写点B的坐标)(2)代数式_____________.。
最新人教版数学八年级下册第十七章 -勾股定理

第十七章—勾股定理一、勾股定理1. 概念:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a2+b 2=c 2.2. 公式变形: ①:a2=c 2-b 2,b 2=c 2-a 2②:c=22b a + ,a=22b c - ,b=22a c -勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下: 方法一:4EFGH S S S ∆+=正方形正方形ABCD,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCBA方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题.b acbac cabcab a bccbaED CBA5.勾股定理的常见类型:(1)勾股定理在实际问题中的应用一般情况下,遇到高度、长度、距离、面积等实际问题时,可以构造直角三角形、运用勾股定理求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.勾股定理
内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为
,,斜边为,那么
,变形公式c=22b a +,b=22b c -,a=22a c -
2.勾股定理的证明
勾股定理的证明方法很多,常见的是拼图的方法
用拼图的方法验证勾股定理的思路是
①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理.
3.勾股定理的适用范围
勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边。
在 中,则c=22b a +, b=22b c -, a=22a c -, ②已知直角三角形一边,另外两边之间的数量关系
利用勾股定理:222
c b a =+,列方程求解。
③可运用勾股定理解决一些实际问题
5.勾股定理的逆定理
如果三角形三边长 a ,b ,c 满足222c b a
=+ ,那么这个三角形是直角三角形,
最长边所对的角等于90 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一
种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以,,为三边的三角形是直角三角形;若,时,以,,为三边的三角形是钝角三角形;若,时,以,,为三边的三角形是锐角三角形;。