人教版七年级数学(下)第五章全章教案教学内容

合集下载

2024年人教版七年级下册数学教案全册

2024年人教版七年级下册数学教案全册

2024年人教版七年级下册数学教案全册一、教学内容1. 第一章:数的概念与运算第一节:有理数的乘方与开方第二节:实数的概念与运算第三节:数的估算与无理数2. 第二章:代数式与方程第一节:单项式与多项式第二节:一元一次方程第三节:不等式与不等式组3. 第三章:图形的认识与图形的测量第一节:平行线与相交线第二节:三角形的概念与性质第三节:四边形的概念与性质二、教学目标1. 理解有理数乘方、开方及实数的概念,掌握实数的混合运算方法。

2. 学会解一元一次方程,掌握不等式与不等式组的解法。

3. 掌握平行线、相交线、三角形及四边形的性质,提高空间想象能力。

三、教学难点与重点1. 教学难点:实数的概念、一元一次方程的解法、不等式组的解法、图形的性质。

2. 教学重点:实数的运算、方程与不等式的解法、图形的测量。

四、教具与学具准备1. 教具:三角板、直尺、圆规、多媒体设备。

2. 学具:练习本、铅笔、三角板、直尺。

五、教学过程1. 导入:通过生活实例引入数的概念,激发学生学习兴趣。

2. 新课导入:讲解教材内容,结合例题进行讲解。

3. 随堂练习:设计实践情景,让学生动手操作,巩固所学知识。

6. 课后作业:布置适量的作业,巩固所学知识。

六、板书设计1. 板书内容:章节、重要概念、公式、典型例题、解题步骤。

2. 板书要求:条理清晰、层次分明、重点突出。

七、作业设计1. 作业题目:课后习题1.1、1.2、1.3;课后习题2.1、2.2、2.3;课后习题3.1、3.2、3.3。

2. 答案:课后习题答案附后。

八、课后反思及拓展延伸2. 拓展延伸:针对学生的实际情况,设计拓展性练习,提高学生的思维能力。

重点和难点解析一、教学难点与重点1. 实数的概念与运算:实数是数学中的一个基本概念,包括有理数和无理数。

实数的运算是学生容易出错的地方,需要重点关注。

补充说明:在讲解实数的概念时,可以通过具体例子(如π、√2等)来帮助学生理解无理数的存在。

2024年人教版初中数学七年级下册教案全册

2024年人教版初中数学七年级下册教案全册

2024年人教版初中数学七年级下册教案全册一、教学内容1. 第1章:有理数1.1 有理数的概念与分类1.2 有理数的加减法1.3 有理数的乘除法1.4 有理数的乘方2. 第2章:一元一次方程2.1 方程的概念2.2 一元一次方程的解法2.3 实际问题与一元一次方程3. 第3章:几何图形3.1 线段、射线与直线3.2 角的概念与分类3.3 三角形的性质3.4 平行线的性质与判定二、教学目标1. 理解有理数的概念,掌握有理数的分类、加减乘除及乘方运算。

2. 掌握一元一次方程的解法,并能解决实际问题。

3. 掌握几何图形的基本概念与性质,培养空间想象能力。

三、教学难点与重点1. 教学难点:有理数的乘除法及乘方运算一元一次方程的解法几何图形的性质及判定2. 教学重点:有理数的运算规律方程的解法几何图形的基本性质四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、尺子、圆规等。

2. 学具:练习本、铅笔、直尺、圆规、量角器等。

五、教学过程1. 实践情景引入:通过生活实例引入有理数的概念与运算。

通过实际问题引入方程的概念。

通过观察身边的几何图形,引入几何图形的性质。

2. 例题讲解:讲解有理数的加减乘除、乘方运算的法则与例题。

讲解一元一次方程的解法及实际应用例题。

讲解几何图形的性质与判定方法。

3. 随堂练习:进行有理数运算的练习。

解答一元一次方程的练习题。

识别与判断几何图形的练习。

4. 课堂小结:六、板书设计1. 有理数的概念、分类及运算规律。

2. 一元一次方程的解法及实际应用。

3. 几何图形的性质与判定。

七、作业设计1. 作业题目:有理数运算练习题。

一元一次方程实际应用题。

几何图形的识别与判断题。

答案:见课后练习册。

八、课后反思及拓展延伸1. 反思本次教学过程中的优点与不足,针对学生掌握程度进行查漏补缺。

2. 拓展延伸:引导学生探索有理数的更多运算性质。

介绍更高层次的方程解法,如二元一次方程组。

引导学生观察生活中的几何图形,培养空间想象能力。

2024年新人教版 七年级数学下册 全册教案可打印下载

2024年新人教版 七年级数学下册 全册教案可打印下载

2024年新人教版七年级数学下册全册教案可打印一、教学内容1. 第五章:相交线与平行线5.1 两条直线的位置关系5.2 平行线的判定与性质5.3 生活中的平行线2. 第六章:数据的收集与整理6.1 数据的收集6.2 数据的整理与表示6.3 概率初步二、教学目标1. 理解并掌握相交线与平行线的性质及其在实际中的应用。

2. 学会进行数据的收集、整理和表示,并能够运用概率知识解决实际问题。

3. 培养学生的逻辑思维能力和解决实际问题的能力。

三、教学难点与重点1. 教学难点:平行线的判定与性质的理解数据的整理与概率的计算2. 教学重点:两条直线的位置关系及平行线的应用数据的收集、整理和表示方法四、教具与学具准备1. 教具:直尺、量角器、三角板数据收集表格、统计图表2. 学具:练习题、草稿纸数据收集与整理工具(如计算器、调查问卷等)五、教学过程1. 实践情景引入:通过展示实际生活中的相交线和平行线现象,激发学生对本章学习的兴趣。

2. 例题讲解:讲解相交线与平行线的判定方法和性质,配合实际例题进行分析。

3. 随堂练习:分组讨论并解决实际问题,巩固所学知识。

4. 数据的收集与整理:引导学生进行数据收集、整理和表示的实践操作,解释概率初步概念。

六、板书设计1. 相交线与平行线的判定与性质2. 数据的收集、整理与表示方法3. 概率初步概念及计算七、作业设计1. 作业题目:练习题5.1、5.2、6.1、6.2各2题。

附加题:设计一份调查问卷,收集数据并整理成统计图表。

2. 答案:练习题答案将在课后统一发放。

八、课后反思及拓展延伸1. 反思:2. 拓展延伸:鼓励学生探索生活中的相交线和平行线现象,以及数据的收集与整理的实际应用。

推荐相关阅读材料,加深学生对概率概念的理解。

重点和难点解析1. 教学内容的选择与安排2. 教学目标的设定3. 教学难点与重点的确定4. 教学过程中的实践情景引入和例题讲解5. 板书设计6. 作业设计及答案解析7. 课后反思与拓展延伸一、教学内容的选择与安排在教学内容的选择上,应确保章节的连贯性和逻辑性,将抽象的数学概念与生活实际相结合。

2024年新课标人教版七年级下全册数学教案

2024年新课标人教版七年级下全册数学教案

2024年新课标人教版七年级下全册数学教案一、教学内容本节课选自2024年新课标人教版七年级下册数学教材第五章《三角形的初步认识》,具体内容包括:5.1三角形的定义及性质,5.2三角形的分类,5.3三角形的周长和面积。

二、教学目标1. 知识目标:使学生掌握三角形的定义,理解三角形的性质,掌握三角形的分类,掌握三角形周长和面积的计算方法。

2. 能力目标:培养学生运用三角形知识解决实际问题的能力,提高学生的空间想象力和逻辑思维能力。

3. 情感目标:激发学生对数学学习的兴趣,培养学生的合作意识和探究精神。

三、教学难点与重点重点:三角形的定义及性质,三角形的分类,三角形周长和面积的计算方法。

难点:三角形性质的理解,三角形面积公式的推导。

四、教具与学具准备教具:三角板、直尺、圆规、多媒体设备。

学具:三角板、直尺、圆规、练习本。

五、教学过程1. 导入:通过展示生活中的三角形实物,引导学生发现三角形的特征,从而引出本节课的主题。

2. 新课导入:(2)三角形的性质:引导学生通过画图、观察、思考,发现三角形的性质,如内角和等于180°等。

(3)三角形的分类:根据三角形的边长和角度,将三角形分为不等边三角形、等腰三角形、等边三角形、直角三角形等。

(4)三角形周长和面积的计算:通过实例讲解,引导学生掌握三角形周长和面积的计算方法。

3. 例题讲解:讲解典型例题,巩固所学知识,引导学生运用所学知识解决实际问题。

4. 随堂练习:设计有针对性的练习题,让学生当堂巩固所学知识。

六、板书设计1. 三角形的定义:由三条线段首尾顺次连接所围成的图形。

2. 三角形的性质:内角和等于180°,两边之和大于第三边等。

3. 三角形的分类:不等边三角形、等腰三角形、等边三角形、直角三角形等。

4. 三角形周长和面积的计算方法。

七、作业设计1. 作业题目:(3)应用题:运用三角形的周长和面积知识,解决实际问题。

2. 答案:见附页。

2024年最全面新人教版七年级数学下册教案全册精华版

2024年最全面新人教版七年级数学下册教案全册精华版

2024年最全面新人教版七年级数学下册教案全册精华版一、教学内容1. 第五章:相交线与平行线5.1:相交线5.2:平行线的判定5.3:平行线的性质2. 第六章:平面几何初步6.1:三角形的内角和6.2:三角形的性质6.3:全等三角形6.4:等腰三角形6.5:平行四边形二、教学目标1. 理解并掌握相交线和平行线的性质及判定方法。

2. 掌握三角形内角和定理及三角形的性质,学会运用全等三角形的判定。

3. 培养学生的空间想象能力和逻辑思维能力。

三、教学难点与重点1. 教学难点:相交线与平行线的判定和应用全等三角形的判定方法等腰三角形的性质和应用2. 教学重点:掌握三角形内角和定理理解并运用全等三角形的判定四、教具与学具准备1. 教具:三角板、直尺、圆规、量角器2. 学具:练习本、铅笔、三角板、直尺五、教学过程1. 实践情景引入:引导学生观察教室内的平行线和相交线,激发兴趣提问学生:在生活中,你们还见过哪些平行线和相交线?2. 例题讲解:讲解相交线和平行线的判定方法通过例题,展示三角形内角和定理的应用讲解全等三角形的判定方法及等腰三角形的性质3. 随堂练习:让学生独立完成练习题,巩固所学知识引导学生互相讨论,解决问题4. 知识拓展:介绍平面几何的发展历程拓展平行线和相交线在实际生活中的应用六、板书设计1. 相交线与平行线的判定方法2. 三角形内角和定理3. 全等三角形的判定方法4. 等腰三角形的性质七、作业设计1. 作业题目:练习相交线和平行线的判定计算三角形的内角和判断全等三角形运用等腰三角形的性质解决问题2. 答案:八、课后反思及拓展延伸1. 教学反思:分析学生的学习情况,调整教学方法2. 拓展延伸:鼓励学生课后观察生活中的几何图形,发现数学之美推荐相关书籍和资料,激发学生的学习兴趣组织实践活动,提高学生的实际操作能力重点和难点解析1. 教学难点与重点的确定2. 实践情景引入的设计3. 例题讲解的深度和广度4. 随堂练习的针对性和有效性5. 知识拓展的适时性和适度性6. 作业设计的系统性和层次性7. 课后反思及拓展延伸的实践性一、教学难点与重点的确定(1)难点解析:相交线与平行线的判定和应用是学生容易混淆的部分,需通过直观的教具演示和实际例题讲解,帮助学生建立清晰的概念。

2024年人教版初中数学七年级下册教案全册

2024年人教版初中数学七年级下册教案全册

2024年人教版初中数学七年级下册教案全册一、教学内容1. 第五章:相交线与平行线1.1 探索直线交点1.2 平行线的判定与性质1.3 平行线的应用2. 第六章:平面几何初步2.1 角的概念与性质2.2 三角形的分类与性质2.3 四边形的性质与判定3. 第七章:一元一次不等式与不等式组3.1 不等式的概念与性质3.2 一元一次不等式的解法3.3 不等式组的解法与应用4. 第八章:实数4.1 实数的概念与分类4.2 实数的运算4.3 实数与数轴二、教学目标1. 理解并掌握相交线、平行线的性质与判定方法,能够解决实际问题。

2. 掌握平面几何图形(角、三角形、四边形)的性质、分类与判定,培养空间想象能力。

3. 学会一元一次不等式与不等式组的解法,能够解决实际问题,提高逻辑思维能力。

4. 理解实数的概念,掌握实数的运算方法,培养运算能力。

三、教学难点与重点1. 教学难点:平行线的判定与性质、三角形与四边形的性质与判定、一元一次不等式与不等式组的解法、实数的概念与运算。

2. 教学重点:相交线与平行线的性质、平面几何图形的性质与判定、不等式的解法、实数的运算。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何模型。

2. 学具:直尺、圆规、量角器、练习本、笔。

五、教学过程1. 导入:通过实践情景引入,激发学生学习兴趣。

1.1 以生活中的实例(如斑马线、操场跑道等)引入相交线与平行线的概念。

1.2 通过观察几何模型,引导学生发现三角形、四边形的性质。

1.3 以实际问题的形式,让学生感受不等式与实数的应用。

2. 新课导入:讲解新课内容,阐述重点与难点。

2.1 利用多媒体教学设备,展示相交线、平行线的性质与判定方法。

2.2 通过例题讲解,让学生掌握平面几何图形的性质与判定。

2.3 结合实际例题,引导学生学会一元一次不等式与不等式组的解法。

2.4 通过实数的运算练习,让学生掌握实数的概念与运算方法。

3. 随堂练习:巩固所学知识,检验学习效果。

人教版 七年级下册数学第五章:相交线与平行线 平行线教案设计

人教版 七年级下册数学第五章:相交线与平行线 平行线教案设计

平行线一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论;●掌握平行线的判定方法与平行线的性质,运用所学的知识,判定两条直线是否平行。

用作图工具画平行线,从而学习如何进行简单的推理论证;●理解两条平行线的距离的概念;●什么是命题,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命题,能找出它的题设和结论。

重点难点:●重点:平行线的判定及性质,平移变换。

●难点:平行线的判定和性质的联系与区别;推理能力的培养;平移变换的理解及应用。

学习策略:●通过观察、思考、探究等活动归纳出平行线的概念和性质,借助练习熟悉“说理”和“简单推理”的过程,从而加深理解并熟练掌握本节内容。

二、学习与应用“凡事预则立,不预则废”。

科学地预习才能使我们上课听讲更有目的性和针对性。

知识回顾---复习学习新知识之前,看看你的知识贮备过关了吗?(一)两条直线被第三条直线截成的八个角中共有对同位角,对内错角,对同旁内角。

(二)同位角特征:截线旁,被截两线的方向。

内错角特征:截线旁,被截两线之间。

同旁内角特征:截线旁,被截两线之间。

知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习,请在虚线部分填写预习内容,在实线部分填写课堂学习内容。

课堂笔记或者其知识点一:平行线的概念及表示方法在同一平面内,不相交的两条直线叫做。

通常用“”表示平行,如图1中,直线AB与CD平行,记作,如果用l,m表示这两条直线,那么直线l与直线m平行,记作。

要点诠释:(1)平行线必须满足两个条件:①,②,但要注意直线的特点是可以向__方无限延长,在平面内只能画出有限长,如下图2中直线a,b看上去不相交,但当把它们看作无限长之后会发现它们其实是相交的,因此直线a,b不平行,从平行线的定义中,我们还可以学习到这样的知识:在同一平面内,不重合的两条直线的位置关系有两种:①,②。

2024年新课标人教版七年级下全册数学教案

2024年新课标人教版七年级下全册数学教案

2024年新课标人教版七年级下全册数学教案【教学目标】1.让学生掌握本册教材的重点知识和技能。

2.培养学生的数学思维能力,提高解决问题的能力。

3.增强学生对数学的兴趣,激发学生的自主学习意识。

【教学内容】第一章:相交线与平行线第二章:平面图形的性质与证明第三章:数据的收集、整理与分析第四章:不等式与不等式组第五章:概率初步【教学重点与难点】一、相交线与平行线重点:相交线的性质,平行线的判定与性质。

难点:平行线性质的证明。

二、平面图形的性质与证明重点:三角形、四边形、圆的性质与证明。

难点:几何图形性质的证明。

三、数据的收集、整理与分析重点:数据的收集、整理与分析方法。

难点:数据分析的实际应用。

四、不等式与不等式组重点:不等式的解法,不等式组的解法。

难点:不等式组的解法及应用。

五、概率初步重点:概率的定义,概率的计算。

难点:概率的实际应用。

【教学步骤】一、相交线与平行线1.引入:通过生活中的实例,让学生感受相交线与平行线在实际中的应用。

2.讲解:讲解相交线与平行线的性质,以及判定方法。

3.练习:让学生在练习本上完成相关练习题,巩固知识。

二、平面图形的性质与证明1.引入:通过生活中的实例,让学生感受几何图形在实际中的应用。

2.讲解:讲解三角形、四边形、圆的性质与证明方法。

3.练习:让学生在练习本上完成相关练习题,巩固知识。

三、数据的收集、整理与分析1.引入:通过生活中的实例,让学生感受数据分析在实际中的应用。

2.讲解:讲解数据的收集、整理与分析方法。

3.练习:让学生在练习本上完成相关练习题,巩固知识。

四、不等式与不等式组1.引入:通过生活中的实例,让学生感受不等式与不等式组在实际中的应用。

2.讲解:讲解不等式的解法,不等式组的解法。

3.练习:让学生在练习本上完成相关练习题,巩固知识。

五、概率初步1.引入:通过生活中的实例,让学生感受概率在实际中的应用。

2.讲解:讲解概率的定义,概率的计算。

3.练习:让学生在练习本上完成相关练习题,巩固知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

AB CD 1 234 O【对话设计】〖探究1〗 两条直线相交所得的角(1)如图,直线AB 、CD 相交于O,若∠1=140º,你能求出其它3个角的度数吗?(2)两条直线相交所得的四个角之间,有怎样的关系(指位置及大小)? (3)〖结论〗在(1)图中,∠1与∠2是______角,∠1与∠3是____角,∠2的对顶角是______,邻补角是_______________.〖了解邻补角及对顶角的特征〗〖探究2〗如果两个角的顶点重合,这两个角是对顶角."这句话对吗?画图说明.教学过程一、认识邻补角和对顶角,探索对顶角性质 1.邻补角、对顶角概念.有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角. 2.对顶角性质: 对顶角相等. 二、巩固运用 (一)、判断题:(1).如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )(2).两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )(二)、填空题:(1).如图1,直线AB 、CD 、EF 相交于点O,∠BOE 的对顶角是_____,∠COF 的邻补角是 若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=______FE OD CB A FEODC B A(1) (2) (2).如图2,直线AB 、CD 相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________. (三)、解答题:1、如图,直线a,b 相交,∠1=40°,求∠2,∠3,∠4的度数.ba43212、如图,直线AB 、CD 相交于点O.(1)若∠AOC+∠BOD=100°,求各角的度数.(2)若∠BOC 比∠AOC 的2倍多33°,求各角的度数.O D CBA3、两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?〖探究3〗如图,C 是直线AB 上一点,CD 是射线,图中有几个角?哪两个角互为邻补角? 有两个角互为对顶角吗?A〖结论〗在很多图形中,邻补角还可以看成是一条直线与端点在这条直线上的一 条射线组成的两个角.〖探究4〗判断下列语句是否正确: (1)互补的两个角一定是邻补角. (2)一个角的邻补角一定和它互补.(3)邻补角是有特殊位置关系的两个互补的角.教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的(一)演示:1.出示相交线的模型,学生观察思考:固定木条a,转动木条, 当b 的位置变化时,a 、b 所成的角a 是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a 、b 所成的四个角有什么特殊关系?得出结论:当b 的位置变化时,角a 从锐角变为钝角,其中∠a 是_____角是特殊情况.其特殊之处还在于:当∠a 是_____角时,它的邻补角,对顶角都是_____角,即a 、b 所成的四个角都是_____角,都_____.bb aODC B A2.师生共同给出垂直定义.两条直线相交,所成四个角中有一个角是_____角时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____。

3.表示方法:垂直用符号“⊥”来表示,结合 “直线AB 垂直于直线CD , 垂足为O ”,则记为__________________,并在图中任意一个角处作上直角记号,如图.教学过程(一)、应用练习 1.垂直应用:∵∠AOD=90°( ) ∴AB ⊥CD ( ) ∵ AB ⊥CD ( ) ∴ ∠AOD=90 ( )应用垂直的定义:∠AOC=∠BOC=∠BOD=90° 2.判断以下两条直线是否垂直:①两条直线相交所成的四个角中有一个是直角; ②两条直线相交所成的四个角相等; ③两条直线相交,有一组邻补角相等; ④两条直线相交,对顶角互补.3.巩固垂线的概念和画法,如图根据下列语句画图: (1)过点P 画射线MN 的垂线,Q 为垂足;(2)过点P 画射线BN 的垂线,交射线BN 反向延长线于Q 点; (3)过点P 画线段AB 的垂线,交线AB 延长线于Q 点.P MANPPBA4.填空题.(1).如图1,OA ⊥OB,OD ⊥OC,O 为垂足,若∠AOC=35°,则∠BOD=________. (2).如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________.E(3)OD CB A (2)O D C BA (1)O DCB(3).如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB的位置关系是_________.(二)、解答题.1.已知钝角∠AOB,点D 在射线OB 上. (1)画直线DE ⊥OB;(2)画直线DF ⊥OA,垂足为F. 2.已知:如图,直线AB,直线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.(二)画图实践,探究垂线的性质1.学生用三角尺或量角器画已知直线L 的垂线.(1)已知直线L(教师在黑板上画一条直线L),画出直线L 的垂线.追问学生:还能画出L 的垂线吗?能画几条?(2)经过直线L 外一点B 画直线L 的垂线,这样的垂线能画出几条? 教师让学生通过画图操作所得两条结论合并成一条,并板书: 垂线性质1:过一点有且只有一条直线与已知直线垂直. 说明:“有”表示存在,“只有”表示唯一,要让学生理解这个词的意思,这也体现了数学语言的丰富和精炼。

〖探究1〗怎样测量跳远的成绩E O DC B A如图,这是你们班的运动员小欣在校运会上跳远后留下的脚印,裁判员怎样测量跳远的成绩?画出皮尺的位置.〖归纳〗你能说出垂线的第二条性质吗?什么叫做点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

说明:距离是一个数量概念。

连接直线外一点与直线上各点的所有线段中,垂线段最短。

简单说成:垂线段最短。

〖探究2〗如图,要从A 处到河边B 挖一道水渠AB 引水,B 点一般应选在哪一处?为什么?如果比例尺是1:100 000,水渠大约要挖多长?教学过程 【练习】1.如图,已知:AD 是ΔABC 的高,E 是AD 上一点,∠AEB=∠AEC,找出图中相等的角.2.如图,四边形ABCD 中,若∠DAB=∠BCD,∠DAC=∠BCA,找出其它相等的角,并说明理由.A ·AB CDEA B C D A起 跑线3.如图,若∠DAB=∠EAC,∠D=∠B,问ΔAED 与ΔACB 之间还有哪些相等的角?4.如图,若BD ⊥AC 于D,CE ⊥AB 于E,CE 、BD 相交于点O.(1)ΔAEC 与ΔADB 之间有哪些角是相等的? (2)ΔOCD 与ΔOBE 之间有哪些角是相等的?5.如图,已知:AD 、BC 相交于点E, 如果∠A=∠D,图 中还有相等的角吗?6.如图,这是比例尺为1∶300 000的地图,用度量法求学校A 到河流m 的实际距离.7.如图,找出等腰△ABC 底边的中点 D, 再用度量法求点D 到两腰的距离(可用三角尺).8.用度量法分别求等腰 △ABC 底边的两个端点B 、C 到两腰AC 、AB 的距离. (提 示:要先画出垂线 段.)9.如图,用量角器画∠ BOC 的平分 线 OP,再在OP 上任取一点Q,从Q 到OB 、OC分别画垂线O BCA B CDEO A BCD EB CA ·m适当复习比例尺的相关知识。

比例尺=图上距离:实际距离通过一系列的练习题来巩固学生对两线互相垂直的理解和应用,让学生熟悉几何语言,并且能够熟练的使用画图工具进行画图。

适当复习量角器的使用。

〖复习〗两条直线相交所成的角共有四个,这四个角之间有哪几种关系?〖有关三线八角的介绍〗一条直线分别同两条直线相交(或者说两条直线被第三条直线所截) , 构成8个角,这些角中,没有公共顶点的两个角之间有以下三种位置关系:同位角、内错角和同旁内角.如图,直线AB、CD与直线EF相交,∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8都是同位角,共有4对;∠5和∠3,∠6和∠4都是内错角,共有2对;∠3和∠6,∠4和∠5都是同旁内角,共2对.F12C D说明:同位角要注意位置上的两个“同”字,在截线的同旁,被截两直线的同方;内错角在被截两直线之间,在截线的两旁;同旁内角在截线同旁,在被截两直线之间。

〖探索1〗如图,直线AB 、CD 与直线EF 相交,图中哪几对角是同位角?哪几对角是内错角?哪几对角是同旁内角?〖探索2〗 如图,直线AB 、CD 与直线EF 相交,∠5和_____是同位角,和____是内错角,与______是同旁内角.教学过程 【练习】1.如图,BE 是AB 的延长线,指出下面的两个角是哪两条直线被哪一 条直线所截而成?它们是什么角? (1)∠A 和∠D;(2)∠A 和∠CBA;(3)∠C 和∠CBE.2.如图,∠1与∠2是哪两条直线被哪一条直线所截而成?它们是什么角? ∠1与∠3是哪两条直线被哪一条直线所截而成?它们是什么角?3.如图,∠A 与哪个角是内错角?它们是由哪两条直线被哪一条直线所截而成的?试用彩色笔画出这两个角.A BCD 1 234 5 FE 67 8 A B E D1 2 34 5 F C67 8 A BD CE A B EF 1 23D C A4.如图,∠A与哪个角是同旁内角?它们是由哪两条直线被哪一条截而成的?试用彩色笔验证答案.5.找出图中∠ DEC的同位角,内错角和同旁内角.6.找出图中∠ADE的同位角,内错角和同旁内角.〖探索3〗如图,直线AB、CD与直线EF相交,图中哪几对角是同位角?哪几对角是内错角?哪几对角是同旁内角?1EAB DCEAB DCEAB〖探索4〗如图,找出∠1的内错角,用红笔一笔画出它们,先观察这两个角是否像英文字母"N", 再指出它们是哪两条直线被哪一条直线所截而成. 〖探索5〗如图,已知四边形ABCD 是梯形,你能用红笔一笔画出图中任意一对同旁内角吗?图中一有几对同旁内角?〖探索6〗如图,直线EF 、CD 与直线AB 相交,任意找出一对同位角,分别记为∠1和∠2,你能用红笔一笔画出这两个角吗?〖复习 交流〗如图,已知直线AB 和直线外一点P,你能过点P 画一条直线与AB 平行吗?把你的画法与同伴交流,看谁的方法好.(画平行线是几何画图的基本技能之一,在以后的学习中,常常会遇到画平行线的问题。

相关文档
最新文档