2021年湖南省中考数学复习题及答案 (93)

合集下载

2023年湖南省中考数学专练方程及其解法(含解析)

2023年湖南省中考数学专练方程及其解法(含解析)

2023年湖南省中考数学专练:4方程及其解法一.选择题(共12小题)1.(2021•安徽)设a ,b ,c 为互不相等的实数,且b =45a +15c ,则下列结论正确的是( ) A .a >b >c B .c >b >aC .a ﹣b =4(b ﹣c )D .a ﹣c =5(a ﹣b )2.(2022•定远县校级模拟)新冠肺炎传染性很强,曾有1人同时患上新冠肺炎,在一天内一人平均能传染x 人,经过两天传染后64人患上新冠肺炎,则x 的值为( ) A .4B .5C .6D .73.(2022•肥东县校级模拟)春节期间,阜阳市商务局组织举办了“皖美消费,乐享阜阳”﹣2022年跨年迎新购物季”列促销活动,某超市对一款原价位a 元的商品降价x %销售一段时间后,为了加大促销力度,再次降价x %,此时售价共降低了b 元,则( ) A .b =a (1﹣2x %) B .b =a ﹣a (1﹣x %)2 C .b =a (1﹣x %)2D .b =a ﹣a (1﹣2x %)4.(2022•蜀山区校级三模)当b +c =1时,关于x 的一元二次方程x 2+bx ﹣c =0的根的情况为( ) A .有两个实数根 B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根5.(2022•长丰县校级模拟)若关于x 的一元二次方程x 2﹣(a ﹣2)x +4=0有两个相等的实数根,则实数a 的值为( ) A .2B .﹣2C .﹣2或6D .﹣6或26.(2022•和县二模)已知三个实数a 、b 、c 满足a +b +c =0,ac +b +1=0(c ≠1),则( ) A .a =1,b 2﹣4ac >0 B .a ≠1,b 2﹣4ac ≥0C .a =1,b 2﹣4ac <0D .a ≠1,b 2﹣4ac ≤07.(2022•定远县校级模拟)已知关于x ,y 的方程组{4x −y =−5ax +by =−1和{3x +y =−93ax +4by =18有相同的解,那么√a +b 的平方根是( ) A .0B .±1C .±√2D .±28.(2022•南谯区校级模拟)把1~9这九个数填入3×3方格中,使其任意一行,任意一列及任意一条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则x y 的值为( )A .1B .8C .9D .﹣89.(2022•定远县二模)下列变形正确的是( ) A .若ac =bc ,则a =b B .若a =b ,则a c=bcC .若ca=cb ,则a =bD .若3﹣4b =3﹣4a ,则a =b10.(2022•合肥模拟)一种商品,先提价20%,再降价10%,这时的价格是2160元.则该商品原来的价格是( ) A .2400元B .2200元C .2000元D .1800元11.(2022•裕安区校级一模)一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?设要用x 天可以铺好这条管线,则可列方程为( ) A .12x +24x =1 B .(112+124)x =1C .12x+24x=1 D .(12+24)x =112.(2022•定远县模拟)方程(7﹣a )x 2+ax ﹣8=0是关于x 的一元一次方程,那么a 的值是( ) A .0B .7C .8D .10二.填空题(共8小题)13.(2022•安徽)若一元二次方程2x 2﹣4x +m =0有两个相等的实数根,则m = . 14.(2022•定远县模拟)一元二次方程x 2﹣px +q =0的两根分别为x 1=1和x 2=2,那么将x 2+px +q 分解因式的结果为 .15.(2022•合肥模拟)定义新运算“*”,规则:a *b ={a(a ≥b)b(a <b),如1*2=2,(−√5)*√2=√2.若x 2+x ﹣2=0的两根为x 1,x 2,则x 1*x 2= .16.(2022•肥西县模拟)设a、b是方程x2﹣x﹣2021=0的两实数根,则a3+2022b﹣2021=.17.(2022•凤阳县一模)已知关于x的方程x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是.18.(2022•芜湖一模)为推进“书香芜湖”建设,让市民在家门口即可享受阅读和休闲服务,某社区开办了社区书屋.2021年9月份书屋共接待了周边居民200人次,11月份共接待了648人次,假定9月至11月每月接待人次增长率相同设为x,则可列方程.19.(2022•镜湖区校级一模)关于x的方程kx2﹣2x﹣1=0有实数根,则k的取值范围是.20.(2022•安徽二模)一小船由A港到B港顺流需要6小时,由B港到A港逆流需要8小时,小船从上午7时由A港到B港时,发现一救生圈在中途落水,立即返航,1小时后找到救生圈,救生圈是时掉入水中的.三.解答题(共11小题)21.(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020x y5202021 1.25x 1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?22.(2022•定远县校级模拟)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根.(1)求k的取值范围;(2)若方程有一个根是1,求k的值及方程的另一个根.23.(2022•定远县校级模拟)如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.(1)在第n个图中,第一横行共块瓷砖,第一竖列共有块瓷砖;(均用含n的代数式表示)(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数;(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n的值;(4)是否存在黑瓷砖与白瓷砖块数相等的情形请通过计算说明理由.24.(2022•来安县二模)为进一步提高某届学生的阅读量,学校积极开展课外阅读活动,目标将该届学生人均阅读量从刚上七年级的80万字增加到八年级结束时的115.2万字.(1)求该届学生人均阅读量这两年中每年的平均增长率;(2)若按这两年中每年的平均增长率增长,学校能否实现九年级结束时该届学生人均阅读量达到140万字的目标,请计算说明.25.(2022•定远县模拟)如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x2+x=0的两个根是x1=0,x2=﹣1,则方程x2+x=0是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”:①x2﹣x﹣6=0;②2x2−2√3x+1=0.(2)已知关于x的方程x2﹣(m﹣1)x﹣m=0(m是常数)是“邻根方程”,求m的值;(3)若关于x的方程mx2+nx+2=0(m,n是常数,m>0)是“邻根方程”,令t=n2﹣4m2,试求t的最大值.26.(2022•蜀山区校级模拟)我国南宋数学教杨辉曾经提出这样的一个问题,“直田积,八百六十四,只云阔不及长十二步,问阔及长各几步”.大意:矩形田地的面积为864平方步,宽比长少12步,问矩形田地的长与宽各几步?(请你利用所学知识解决以上问题)27.(2022•博望区校级一模)已知实数a1,a2,…,a n,(其中n是正整数)满足:{ a 1=13(1×2×3)=2a 1+a 2=13(2×3×4)=8a 1+a 2+a 3=13(3×4×5)=20⋯⋯a 1+a 2+⋯⋯+a n−1=13(n −1)n(n +1)a 1+a 2+⋯⋯+a n−1+a n =13n(n +1)(n +2) (1)求a 3,的值;(2)求a n 的值(用含n 的代数式表示); (3)求2022a1+2022a2+2022a3+⋯+2022a2021的值.28.(2022•肥东县二模)《九章算术》是我国古代数学经典著作,书中记载着这个问题:“今有黄金九枚,白银一十一枚,称之重,适等,交易其一,金轻十三两,问金、银一枚各重几何?“大意是:甲袋中装有9枚重量相等的黄金,乙袋中装有11枚重量相等的白银,两袋重量相等.两袋互相交换一枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?29.(2022•肥东县校级模拟)《增删算法统宗》是清代珠算书,明程大位原编纂,清梅敏增删,共十卷,成书于1760年.其中有这样一道题,原文如下:有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,问他第一天读了多少个字? 请解答上述问题.30.(2022•埇桥区校级模拟)寒假期间,小亮同学想跟着父母一起从合肥乘坐高铁去宣城,已知普通快车从合肥站到宣城站全程的平均速度为70km /h ,刚开通的高铁从合肥站到宣城站全程的平均速度为140km /h ,行完全程高铁比普通快车节省了90min .求合肥站到宣城站的距离为多少千米?31.(2022•马鞍山二模)某奶茶店的一款主打奶茶分为线上和线下两种销售模式,消费者从线上下单,每次可使用“满30减28”消费券一张(线下下单没有该消费券),同规格的一杯奶茶,线上价格比线下高20%,外卖配送费为4元/次,订单显示用券后线上一次性购买6杯实际支付金额和线下购买6杯支付金额一样多,求该款奶茶线下销售价格.2023年湖南省中考数学专练:4方程及其解法参考答案与试题解析一.选择题(共12小题)1.(2021•安徽)设a,b,c为互不相等的实数,且b=45a+15c,则下列结论正确的是()A.a>b>c B.c>b>a C.a﹣b=4(b﹣c)D.a﹣c=5(a﹣b)【解答】解:∵b=45a+15c,∴5b=4a+c,在等式的两边同时减去5a,得到5(b﹣a)=c﹣a,在等式的两边同时乘﹣1,则5(a﹣b)=a﹣c.故选:D.2.(2022•定远县校级模拟)新冠肺炎传染性很强,曾有1人同时患上新冠肺炎,在一天内一人平均能传染x人,经过两天传染后64人患上新冠肺炎,则x的值为()A.4B.5C.6D.7【解答】解:依题意得:(1+x)2=64,解得:x1=7,x2=﹣9(不合题意,舍去).故选:D.3.(2022•肥东县校级模拟)春节期间,阜阳市商务局组织举办了“皖美消费,乐享阜阳”﹣2022年跨年迎新购物季”列促销活动,某超市对一款原价位a元的商品降价x%销售一段时间后,为了加大促销力度,再次降价x%,此时售价共降低了b元,则()A.b=a(1﹣2x%)B.b=a﹣a(1﹣x%)2C.b=a(1﹣x%)2D.b=a﹣a(1﹣2x%)【解答】解:根据题意得,b=a﹣a(1﹣x%)2,故选:B.4.(2022•蜀山区校级三模)当b+c=1时,关于x的一元二次方程x2+bx﹣c=0的根的情况为()A.有两个实数根B.有两个不相等的实数根C.有两个相等的实数根D.没有实数根【解答】解:∵b+c=1,∴c =1﹣b ,∴Δ=b 2﹣4×(﹣c )=b 2+4(1﹣b )=(b ﹣2)2≥0, ∴方程有两个实数解. 故选:A .5.(2022•长丰县校级模拟)若关于x 的一元二次方程x 2﹣(a ﹣2)x +4=0有两个相等的实数根,则实数a 的值为( ) A .2B .﹣2C .﹣2或6D .﹣6或2【解答】解:∵关于x 的一元二次方程x 2﹣(a ﹣2)x +4=0有两个相等的实数根, ∴Δ=(a ﹣2)2﹣16=0, 即(a ﹣2)2=16,开方得:a ﹣2=4或a ﹣2=﹣4, 解得:a =6或﹣2. 故选:C .6.(2022•和县二模)已知三个实数a 、b 、c 满足a +b +c =0,ac +b +1=0(c ≠1),则( ) A .a =1,b 2﹣4ac >0 B .a ≠1,b 2﹣4ac ≥0C .a =1,b 2﹣4ac <0D .a ≠1,b 2﹣4ac ≤0【解答】解:{a +b +c =0①ac +b +1=0②.由②﹣①,得ac ﹣a ﹣c +1=0, 整理,得(a ﹣1)(c ﹣1)=0. ∵c ≠1,∴a ﹣1=0,即a =1.由ac +b +1=0得到:b =﹣(ac +1).则:b 2﹣4ac =[﹣(ac +1)]²﹣4ac =(ac ﹣1)². 当b 2﹣4ac =0,即(ac ﹣1)²=0时,ac =1. 由a =1得到c =1,与c ≠1相矛盾, 故a =1,b 2﹣4ac >0.方法二:{a +b +c =0①ac +b +1=0②.由②﹣①,得ac ﹣a ﹣c +1=0,整理,得(a ﹣1)(c ﹣1)=0. ∵c ≠1,∴a ﹣1=0,即a =1.b 2﹣4ac =[﹣(ac +1)]²﹣4ac =(ac ﹣1)². ∵a =1,c ≠1,∴b 2﹣4ac =(ac ﹣1)2>0. 故选:A .7.(2022•定远县校级模拟)已知关于x ,y 的方程组{4x −y =−5ax +by =−1和{3x +y =−93ax +4by =18有相同的解,那么√a +b 的平方根是( ) A .0B .±1C .±√2D .±2【解答】解:根据题意得{4x −y =−53x +y =−9,解得{x =−2y =−3,把{x =−2y =−3代入含有a ,b 的两个方程得{−2a −3b =−1−6a −12b =18, 解得{a =11b =−7,则√a +b =2,2的平方根是±√2. 故选:C .8.(2022•南谯区校级模拟)把1~9这九个数填入3×3方格中,使其任意一行,任意一列及任意一条对角线上的数之和都相等,这样便构成了一个“九宫格”,它源于我国古代的“洛書”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则x y 的值为( )A .1B .8C .9D .﹣8【解答】解:依题意得,x +8=2+7,∴x =1∵1+y +5=8+2+5, ∴y =9, 解得:{x =1y =9,∴x y =19=1, 故选:A .9.(2022•定远县二模)下列变形正确的是( ) A .若ac =bc ,则a =b B .若a =b ,则a c=bcC .若ca=cb ,则a =bD .若3﹣4b =3﹣4a ,则a =b【解答】解:若ac =bc ,c ≠0,则a =b ,故A 错误,不符合题意; 若a =b ,c ≠0,则ac=bc ,故B 错误,不符合题意;若c a=cb,c ≠0,则a =b ,故C 错误,不符合题意;若3﹣4b =3﹣4a ,则a =b ,故D 正确,符合题意; 故选:D .10.(2022•合肥模拟)一种商品,先提价20%,再降价10%,这时的价格是2160元.则该商品原来的价格是( ) A .2400元B .2200元C .2000元D .1800元【解答】解:设该商品原来的价格是x 元,依题意有: (1+20%)×(1﹣10%)x =2160, 解得x =2000.故该商品原来的价格是2000元. 故选:C .11.(2022•裕安区校级一模)一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?设要用x 天可以铺好这条管线,则可列方程为( ) A .12x +24x =1 B .(112+124)x =1C .12x+24x=1 D .(12+24)x =1【解答】解:设要用x天可以铺好这条管线,则可列方程:(112+124)x=1.故选:B.12.(2022•定远县模拟)方程(7﹣a)x2+ax﹣8=0是关于x的一元一次方程,那么a的值是()A.0B.7C.8D.10【解答】解:∵方程(7﹣a)x2+ax﹣8=0是关于x的一元一次方程,∴7﹣a=0且a≠0,解得:a=7,故选:B.二.填空题(共8小题)13.(2022•安徽)若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m=2.【解答】解:∵一元二次方程2x2﹣4x+m=0有两个相等的实数根,∴Δ=16﹣8m=0,解得:m=2.∴m=2.故答案为:2.14.(2022•定远县模拟)一元二次方程x2﹣px+q=0的两根分别为x1=1和x2=2,那么将x2+px+q分解因式的结果为(x+1)(x+2).【解答】解:由根与系数的关系可知:x1+x2=p,x1•x2=q,即1+2=p,1×2=q,∴p=3,q=2,∴x2+px+q=x2+3x+2=(x+1)(x+2).故答案为(x+1)(x+2).15.(2022•合肥模拟)定义新运算“*”,规则:a*b={a(a≥b)b(a<b),如1*2=2,(−√5)*√2=√2.若x2+x﹣2=0的两根为x1,x2,则x1*x2=1.【解答】解:解方程x2+x﹣2=0得:x1=1,x2=﹣2.∵a*b={a(a≥b) b(a<b),∴x1*x2=1.故答案为:1.16.(2022•肥西县模拟)设a、b是方程x2﹣x﹣2021=0的两实数根,则a3+2022b﹣2021=2022.【解答】解:∵a,b是方程x2﹣x﹣2021=0的两实数根,∴a2=a+2021,a+b=1,∴a3+2022b﹣2021=a(a+2021)+2022b﹣2021=a2+2021a+2022b﹣2021=a+2021+2021a+2022b﹣2021=2022(a+b)=2022×1=2022.故答案为:2022.17.(2022•凤阳县一模)已知关于x的方程x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是k<94.【解答】解:根据题意得Δ=(﹣3)2﹣4k>0,解得k<9 4,即k的取值范围为k<9 4.故答案为:k<9 4,18.(2022•芜湖一模)为推进“书香芜湖”建设,让市民在家门口即可享受阅读和休闲服务,某社区开办了社区书屋.2021年9月份书屋共接待了周边居民200人次,11月份共接待了648人次,假定9月至11月每月接待人次增长率相同设为x,则可列方程200(1+x)2=648.【解答】解:依题意得:200(1+x)2=648.故答案为:200(1+x)2=648.19.(2022•镜湖区校级一模)关于x的方程kx2﹣2x﹣1=0有实数根,则k的取值范围是k≥﹣1 .【解答】解:①当k =0时,﹣2x ﹣1=0,解得x =−12;②当k ≠0时,此方程是一元二次方程,∵关于x 的方程kx 2+3x ﹣1=0有实数根,∴Δ=(﹣2)2﹣4×k ×(﹣1)≥0,解得k ≥﹣1;由①②得,k 的取值范围是k ≥﹣1.故答案为:k ≥﹣1.20.(2022•安徽二模)一小船由A 港到B 港顺流需要6小时,由B 港到A 港逆流需要8小时,小船从上午7时由A 港到B 港时,发现一救生圈在中途落水,立即返航,1小时后找到救生圈,救生圈是 12 时掉入水中的.【解答】解:设小船按水流速度由A 港漂流到B 港需要x 小时,由题意得:16−1x =18+1x , 解得:x =48.经检验,x =48是原方程的解,且符合题意.即小船按水流速度由A 港漂流到B 港需要48小时.设救生圈是在y 点钟落下水中的,救生圈每小时顺水漂流的距离等于全程的148, 由题意得:(7+6﹣y )(16−148)=1×(18+148),解得:y =12.即救生圈是在中午12点钟掉下水的,故答案为:12.三.解答题(共11小题)21.(2022•安徽)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x 亿元,出口额为y 亿元,请用含x ,y 的代数式填表: 年份 进口额/亿元 出口额/亿元 进出口总额/亿元2020x y 520 2021 1.25x 1.3y 1.25x +1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?【解答】解:(1)由表格可得,2021年进出口总额为:1.25x +1.3y ,故答案为:1.25x +1.3y ;(2)由题意可得,{x +y =5201.25x +1.3y =520+140, 解得{x =320y =200, ∴1.25x =400,1.3y =260,答:2021年进口额是400亿元,出口额是260亿元.22.(2022•定远县校级模拟)如果关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根.(1)求k 的取值范围;(2)若方程有一个根是1,求k 的值及方程的另一个根.【解答】解:(1)∵关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根, ∴Δ≥0,且k ≠0,∴(2k +1)2﹣4k 2≥0,∴k ≥−14,∴k 的取值范围k ≥−14且k ≠0;(2)把x =1代入k 2x 2﹣(2k +1)x +1=0中,可得k 2﹣(2k +1)+1=0解得:k =2,或k =0当k =0时方程为一元一次方程,不符合题意∴k =2∴原方程为4x 2﹣5x +1=0,解方程得:x 1=1,x 2=14综上所述k =2,x 2=14.23.(2022•定远县校级模拟)如图,用同样规格的黑白两色的正方形瓷砖铺设矩形地面,请观察下列图形并解答有关问题.(1)在第n个图中,第一横行共(n+3)块瓷砖,第一竖列共有(n+2)块瓷砖;(均用含n的代数式表示)(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数;(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n的值;(4)是否存在黑瓷砖与白瓷砖块数相等的情形请通过计算说明理由.【解答】解:(1)每﹣横行有(n+3)块,每﹣竖列有(n+2)块;故答案为:(n+3),(n+2)块;(2)y=(n+3)(n+2);(3)由题意,得(n+3)(n+2)=506,解之n1=20,n2=﹣25(舍去).答:此时n的值为20;(4)当黑白砖块数相等时,有方程n(n+1)=(n2+5n+6)﹣n(n+1).整理得n2﹣3n﹣6=0.解之得n1=3+√332,n2=3−√332.由于n1的值不是整数,n2的值是负数,故不存在黑砖白块数相等的情形.24.(2022•来安县二模)为进一步提高某届学生的阅读量,学校积极开展课外阅读活动,目标将该届学生人均阅读量从刚上七年级的80万字增加到八年级结束时的115.2万字.(1)求该届学生人均阅读量这两年中每年的平均增长率;(2)若按这两年中每年的平均增长率增长,学校能否实现九年级结束时该届学生人均阅读量达到140万字的目标,请计算说明.【解答】解:(1)设该届学生人均阅读量这两年中每年的平均增长率为x,依题意得:80(1+x )2=115.2,解得:x 1=﹣2.2(不符合题意,舍去),x 2=0.2=20%.∴该届学生人均阅读量这两年中每年的平均增长率为20%.(2)学校的目标不能实现,理由如下:按照(1)中的阅读量增长率,九年级结束时该届学生人均阅读量为115.2×(1+20%)=138.24(万字),∵140>138.24,∴学校的目标不能实现.答:(1)该届学生人均阅读量这两年中每年的平均增长率为20%;(2)学校的目标不能实现.25.(2022•定远县模拟)如果关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x 2+x =0的两个根是x 1=0,x 2=﹣1,则方程x 2+x =0是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”:①x 2﹣x ﹣6=0;②2x 2−2√3x +1=0.(2)已知关于x 的方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,求m 的值;(3)若关于x 的方程mx 2+nx +2=0(m ,n 是常数,m >0)是“邻根方程”,令t =n 2﹣4m 2,试求t 的最大值.【解答】解:(1)①解方程x 2﹣x ﹣6=0得:x =3或x =﹣2,∵3﹣(﹣2)=5,∴x 2﹣x ﹣6=0不是“邻根方程”;②解方程2x 2−2√3x +1=0得:x =2√3±√12−84=√3±12, ∵√3+12−√3−12=1, ∴x 2﹣x ﹣6=0是“邻根方程”;(2)由方程x 2﹣(m ﹣1)x ﹣m =0解得:x =m 或x =﹣1,由于方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“邻根方程”,则m ﹣(﹣1)=1或﹣1﹣m =1,解得m =0或﹣2;(3)解方程mx 2+nx +2=0得:x =−n±√n 2−8m 2m , ∵关于x 的方程mx 2+nx +2=0(m ,n 是常数,m >0)是“邻根方程”,∴−n+√n 2−8m 2m −−n−√n 2−8m 2m =1,∴n 2=m 2+8m ,∵t =n 2﹣4m 2,∴t =﹣3m 2+8m =−3(m −43)2+163, ∴当m =43时,t 有最大值163. 26.(2022•蜀山区校级模拟)我国南宋数学教杨辉曾经提出这样的一个问题,“直田积,八百六十四,只云阔不及长十二步,问阔及长各几步”.大意:矩形田地的面积为864平方步,宽比长少12步,问矩形田地的长与宽各几步?(请你利用所学知识解决以上问题)【解答】解:设矩形田地的宽为x 步,则长为(x +12)步,依题意得:(x +12)x =864,整理得:x 2+12x ﹣864=0,解得:x 1=24,x 2=﹣36(不合题意,舍去),∴x +12=24+12=36.答:矩形田地的长为36步,宽为24步.27.(2022•博望区校级一模)已知实数a 1,a 2,…,a n ,(其中n 是正整数)满足: { a 1=13(1×2×3)=2a 1+a 2=13(2×3×4)=8a 1+a 2+a 3=13(3×4×5)=20⋯⋯a 1+a 2+⋯⋯+a n−1=13(n −1)n(n +1)a 1+a 2+⋯⋯+a n−1+a n =13n(n +1)(n +2)(1)求a 3,的值;(2)求a n 的值(用含n 的代数式表示);(3)求2022a1+2022a2+2022a3+⋯+2022a2021的值.【解答】解:①∵a 1+a 2=8,a 1+a 2+a 3=20,∴(a 1+a 2+a 3)﹣(a 1+a 2)=20﹣8=12,∴a 3=12;②a n =13(a 1+a 2+a 3+…+a n )−13(a 1+a 2+a 3+…+a n ﹣1)=13n n (n +1)(n +2)−13(n ﹣1)n (n +1)=13n (n +1)[n +2﹣(n ﹣1)]=n (n +1),即a n =n (n +1);③2022a 1+2022a 2+2022a 3+•+2022a 2021 =2022×(11×2+12×3+13×4+⋯+12020×2021) =1−12+12−13+13−14+⋯+12020−12021=20202021.28.(2022•肥东县二模)《九章算术》是我国古代数学经典著作,书中记载着这个问题:“今有黄金九枚,白银一十一枚,称之重,适等,交易其一,金轻十三两,问金、银一枚各重几何?“大意是:甲袋中装有9枚重量相等的黄金,乙袋中装有11枚重量相等的白银,两袋重量相等.两袋互相交换一枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?【解答】解:设黄金每枚重a 两,白银每枚重b 两,根据题意列方程组:{9a =11b 8a +b =10b +a −13解得:{a =1434b =1174 答:黄金每枚重1434两,白银每枚重1174两.29.(2022•肥东县校级模拟)《增删算法统宗》是清代珠算书,明程大位原编纂,清梅敏增删,共十卷,成书于1760年.其中有这样一道题,原文如下:有个学生资性好,一部孟子三日了,每日增添一倍多,问君每日读多少?有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34685个字,问他第一天读了多少个字? 请解答上述问题.【解答】解:设他第一天读了x 个字,根据题意得x +2x +4x =34685,解得x =4955,答:他第一天读了4955个字.30.(2022•埇桥区校级模拟)寒假期间,小亮同学想跟着父母一起从合肥乘坐高铁去宣城,已知普通快车从合肥站到宣城站全程的平均速度为70km/h,刚开通的高铁从合肥站到宣城站全程的平均速度为140km/h,行完全程高铁比普通快车节省了90min.求合肥站到宣城站的距离为多少千米?【解答】解:设合肥站到宣城站的距离为x千米,依题意得:x70−x140=9060,解得:x=210.答:合肥站到宣城站的距离为210千米.31.(2022•马鞍山二模)某奶茶店的一款主打奶茶分为线上和线下两种销售模式,消费者从线上下单,每次可使用“满30减28”消费券一张(线下下单没有该消费券),同规格的一杯奶茶,线上价格比线下高20%,外卖配送费为4元/次,订单显示用券后线上一次性购买6杯实际支付金额和线下购买6杯支付金额一样多,求该款奶茶线下销售价格.【解答】解:设该款奶茶线下销售价格为x元/杯,则线上销售价格为(1+20%)x元/杯,依题意得:6×(1+20%)x﹣28+4=6x,解得:x=20.答:该款奶茶线下销售价格为20元/杯.。

2021年湖南省衡阳市中考数学试卷(附答案)

2021年湖南省衡阳市中考数学试卷(附答案)

2021年湖南省衡阳市中考数学试卷一、选择题(本题共12个小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)8的相反数是( )A .8-B .8C .18-D .8±2.(3分)2021年2月25日,习近平总书记庄严宣告,我国脱贫攻坚战取得全面胜利.现标准下,98990000农村贫困人口全部脱贫.数98990000用科学记数法表示为( )A .698.9910⨯B .79.89910⨯C .4989910⨯D .80.0989910⨯3.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .4.(3分)下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .32()aD .321()2a 5.(3分)下列计算正确的是( )A .164=±B .0(2)1-=C .257+=D .393=6.(3分)为了向建党一百周年献礼,我市中小学生开展了红色经典故事演讲比赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是( )A .众数是82B .中位数是84C .方差是84D .平均数是857.(3分)如图是由6个相同的正方体堆成的物体,它的左视图是( )A.B.C.D.8.(3分)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB的倾斜角为37︒,大厅两层之间的距离BC为6米,则自动扶梯AB的长约为(sin370.6︒≈,cos370.8︒≈,tan370.75)(︒≈)A.7.5米B.8米C.9米D.10米9.(3分)下列命题是真命题的是()A.正六边形的外角和大于正五边形的外角和B.正六边形的每一个内角为120︒C.有一个角是60︒的三角形是等边三角形D.对角线相等的四边形是矩形10.(3分)不等式组1026xx+<⎧⎨-⎩的解集在数轴上可表示为()A.B.C.D.11.(3分)下列说法正确的是( )A .为了解我国中学生课外阅读情况,应采取全面调查方式B .某彩票的中奖机会是1%,买100张一定会中奖C .从装有3个红球和4个黑球的袋子里摸出1个球是红球的概率是34D .某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人12.(3分)如图,矩形纸片ABCD ,4AB =,8BC =,点M 、N 分别在矩形的边AD 、BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .下列结论:①四边形CMPN 是菱形;②点P 与点A 重合时,5MN =;③PQM ∆的面积S 的取值范围是45S .其中所有正确结论的序号是( )A .①②③B .①②C .①③D .②③二、填空题(本大题共6小题,每小题3分,满分18分.)13.(33x -x 的取值范围是 .14.(3分)计算:11a a a-+= . 15.(3分)因式分解:239a ab -= .16.(3分)底面半径为3,母线长为4的圆锥的侧面积为 .(结果保留)π17.(3分)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树 棵.18.(3分)如图1,菱形ABCD 的对角线AC 与BD 相交于点O ,P 、Q 两点同时从O 点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O A D O ---,点Q 的运动路线为O C B O ---.设运动的时间为x 秒,P 、Q 间的距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,当点P在A D-段上运动且P、Q两点间的距离最短时,P、Q两点的运动路程之和为厘米.三、解答题(本大题共8个小题,19~20题每题6分,21~24题每题8分,25题10分,26题12分,满分66分.解答应写出文字说明、证明过程或盐酸步骤.)19.(6分)计算:2(2)(2)(2)(4)++-++-.x y x y x y x x y20.(6分)如图,点A、B、D、E在同一条直线上,AB DE=,//BC EF.求AC DF,//证:ABC DEF∆≅∆.21.(8分)“垃圾分类工作就是新时尚”,为了改善生态环境,有效利用垃圾剩余价值,2020年起,我市将生活垃圾分为四类:厨余垃圾、有害垃圾、可回收垃圾、其他垃圾.某学习研究小组在对我市垃圾分类实施情况的调查中,绘制了生活垃圾分类扇形统计图,如图所示.(1)图中其他垃圾所在的扇形的圆心角度数是度;(2)据统计,生活垃圾中可回收物每吨可创造经济总价值约为0.2万元.若我市某天生活垃圾清运总量为500吨,请估计该天可回收物所创造的经济总价值是多少万元?(3)为了调查学生对垃圾分类知识的了解情况,某校开展了相关知识竞赛,要求每班派2名学生参赛.甲班经选拔后,决定从2名男生和2名女生中随机抽取2名学生参加比赛,求所抽取的学生中恰好一男一女的概率.22.(8分)如图,点E为正方形ABCD外一点,90∆绕A点逆时针方AEB∠=︒,将Rt ABE向旋转90︒得到ADF∆,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知7BC=,求DH的长.BH=,1323.(8分)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为x cm,单层部分的长度为y cm.经测量,得到表中数据.双层部分长度()x cm281420单层部分长度()y cm148136124112(1)根据表中数据规律,求出y与x的函数关系式;(2)按小文的身高和习惯,背带的长度调为130cm时为最佳背带长.请计算此时双层部分的长度;(3)设背带长度为L cm,求L的取值范围.24.(8分)如图,AB 是O 的直径,D 为O 上一点,E 为BD 的中点,点C 在BA 的延长线上,且CDA B ∠=∠.(1)求证:CD 是O 的切线;(2)若2DE =,30BDE ∠=︒,求CD 的长.25.(10分)如图,OAB ∆的顶点坐标分别为(0,0)O ,(3,4)A ,(6,0)B ,动点P 、Q 同时从点O 出发,分别沿x 轴正方向和y 轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P 到达点B 时点P 、Q 同时停止运动.过点Q 作//MN OB 分别交AO 、AB 于点M 、N ,连接PM 、PN .设运动时间为t (秒).(1)求点M 的坐标(用含t 的式子表示);(2)求四边形MNBP 面积的最大值或最小值;(3)是否存在这样的直线l ,总能平分四边形MNBP 的面积?如果存在,请求出直线l 的解析式;如果不存在,请说明理由;(4)连接AP ,当OAP BPN ∠=∠时,求点N 到OA 的距离.26.(12分)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)⋯都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标; (2)若抛物线25y ax x c =++上有且只有一个“雁点” E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线223y x x =-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC ∆,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.2021年湖南省衡阳市中考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)8的相反数是( )A .8-B .8C .18-D .8±【解答】解:相反数指的是只有符号不同的两个数,因此8的相反数是8-. 故选:A .2.(3分)2021年2月25日,习近平总书记庄严宣告,我国脱贫攻坚战取得全面胜利.现标准下,98990000农村贫困人口全部脱贫.数98990000用科学记数法表示为( )A .698.9910⨯B .79.89910⨯C .4989910⨯D .80.0989910⨯【解答】解:7989900009.89910=⨯,故选:B .3.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .【解答】解:A .是轴对称图形,故本选项符合题意;B .不是轴对称图形,故本选项不合题意;C .不是轴对称图形,故本选项不合题意;D .不是轴对称图形,故本选项不合题意.故选:A .4.(3分)下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .32()aD .321()2a 【解答】解:A .235a a a ⋅=,故此选项不合题意;B .12210a a a ÷=,故此选项不合题意;C .326()a a =,故此选项符合题意;D .32611()24a a =,故此选项不合题意; 故选:C .5.(3分)下列计算正确的是( )A 4=±B .0(2)1-=CD 3=【解答】解:16的算术平方根为44,故A 不符合题意;根据公式01(0)a a =≠可得0(2)1-=,故B 符合题意;≠,故C 不符合题意;3,故D 不符合题意;故选:B .6.(3分)为了向建党一百周年献礼,我市中小学生开展了红色经典故事演讲比赛.某参赛小组6名同学的成绩(单位:分)分别为:85,82,86,82,83,92.关于这组数据,下列说法错误的是( )A .众数是82B .中位数是84C .方差是84D .平均数是85【解答】解:将数据重新排列为82,82,83,85,86,92,A 、数据的众数为82,此选项正确,不符合题意;B 、数据的中位数为8385842+=,此选项正确,不符合题意; C 、数据的平均数为828283858692856+++++=, 所以方差为222221[(8585)(8385)2(8285)(8685)(9285)]126⨯-+-+⨯-+-+-=,此选项错误,符合题意;D 、由C 选项知此选项正确;故选:C .7.(3分)如图是由6个相同的正方体堆成的物体,它的左视图是( )A .B .C .D .【解答】解:这个组合体的三视图如下:故选:A .8.(3分)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37︒,大厅两层之间的距离BC 为6米,则自动扶梯AB 的长约为(sin370.6︒≈,cos370.8︒≈,tan370.75)(︒≈ )A .7.5米B .8米C .9米D .10米【解答】解:在Rt ABC ∆中,90ACB ∠=︒,6BC =米,3sin sin370.65BC BAC AB ∠==︒≈=, 5561033AB BC ∴≈=⨯=(米), 故选:D .9.(3分)下列命题是真命题的是( )A .正六边形的外角和大于正五边形的外角和B .正六边形的每一个内角为120︒C .有一个角是60︒的三角形是等边三角形D .对角线相等的四边形是矩形【解答】解:A .每个多边形的外角和都是360︒,故错误,假命题;B .正六边形的内角和是720︒,每个内角是120︒,故正确,真命题;C .有一个角是60︒的等腰三角形是等边三角形,故错误,假命题;D .对角线相等的平行四边形是矩形,故错误,假命题.故选:B .10.(3分)不等式组1026x x +<⎧⎨-⎩的解集在数轴上可表示为( ) A .B .C .D .【解答】解:解不等式10x +<得,1x <-,解不等式26x -得,3x -, ∴不等式组的解集为:31x -<-,在数轴上表示为:故选:A .11.(3分)下列说法正确的是( )A .为了解我国中学生课外阅读情况,应采取全面调查方式B .某彩票的中奖机会是1%,买100张一定会中奖C .从装有3个红球和4个黑球的袋子里摸出1个球是红球的概率是34D .某校有3200名学生,为了解学生最喜欢的课外体育运动项目,随机抽取了200名学生,其中有85名学生表示最喜欢的项目是跳绳,估计该校最喜欢的课外体育运动项目为跳绳的有1360人【解答】解:全国中学生人数很大,应采用抽样调查方式,A ∴选项错误,彩票的中奖机会是1%说的是可能性,和买的数量无关,B ∴选项错误,根据概率的计算公式,C 选项中摸出红球的概率为37, C ∴选项错误, 200名学生中有85名学生喜欢跳绳,∴跳绳的占比为85100%42.5%200⨯=, 320042.5%1360∴⨯=(人),D ∴选项正确,故选:D .12.(3分)如图,矩形纸片ABCD ,4AB =,8BC =,点M 、N 分别在矩形的边AD 、BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .下列结论:①四边形CMPN 是菱形;②点P 与点A 重合时,5MN =;③PQM ∆的面积S 的取值范围是45S .其中所有正确结论的序号是( )A .①②③B .①②C .①③D .②③【解答】解://PM CN ,PMN MNC ∴∠=∠,MNC PNM ∠=∠,PMN PNM ∴∠=∠,PM PN ∴=,NC NP =,PM CN ∴=,//MP CN ,∴四边形CNPM 是平行四边形,CN NP =,∴四边形CNPM 是菱形,故①正确;如图1,当点P 与A 重合时,设BN x =,则8AN NC x ==-,在Rt ABN ∆中,222AB BN AN +=,即422(8)2x x +=-,解得3x =,835CN ∴=-=,4AB =,8BC =, 2245AC AB BC ∴=+=,1252CQ AC ∴==, 225QN CN CQ ∴=-=,225MN QN ∴==,故②不正确;由题知,当MN 过点D 时,CN 最短,如图2,四边形CMPN 的面积最小,此时1144444CMPN S S ==⨯⨯=菱形, 当P 点与A 点重合时,CN 最长,如图1,四边形CMPN 的面积最大,此时15454S =⨯⨯=, 45S ∴正确,故选:C .二、填空题(本大题共6小题,每小题3分,满分18分.)13.(33x -x 的取值范围是 3x .【解答】解:根据题意,得30x -,解得,3x ;故答案为:3x .14.(3分)计算:11a a a-+= 1 . 【解答】解:原式111a a -+==. 故答案为:1.15.(3分)因式分解:239a ab -= 3(3)a a b - .【解答】解:239a ab -3(3)a a b =-,故答案为:3(3)a a b -.16.(3分)底面半径为3,母线长为4的圆锥的侧面积为 12π .(结果保留)π【解答】解:圆锥的侧面积234212ππ=⨯⨯÷=.故答案为:12π.17.(3分)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树 500 棵.【解答】解:设原计划每天植树x 棵,则实际每天植树(125%)x +棵, 依题意得:600060003(125%)x x-=+,解得:400x =,经检验,400x =是原方程的解,且符合题意,(125%)500x ∴+=.故答案为:500.18.(3分)如图1,菱形ABCD 的对角线AC 与BD 相交于点O ,P 、Q 两点同时从O 点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O A D O ---,点Q 的运动路线为O C B O ---.设运动的时间为x 秒,P 、Q 间的距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,当点P 在A D -段上运动且P 、Q 两点间的距离最短时,P 、Q 两点的运动路程之和为 (233)+ 厘米.【解答】解:由图分析易知:当点P 从O A →运动时,点Q 从O C →运动时,y 不断增大, 当点P 运动到A 点,点Q 运动到C 点时,由图象知此时3y PQ cm ==,23AC cm ∴=,四边形ABCD 为菱形,AC BD ∴⊥,132OA OC AC cm ===, 当点P 运动到D 点,Q 运动到B 点,结合图象,易知此时,2y BD cm ==,112OD OB BD cm ∴===, 在Rt ADO ∆中,2222(3)12()AD OA OD cm ++,2AD AB BC DC cm ∴====,如图,当点P 在A D -段上运动,点P 运动到点E 处,点Q 在C B -段上运动,点Q 运动到点F 处时,P 、Q 两点的最短,此时,31322OA OD OE OF AD ⋅⨯====, 2233342AE AF OA OE ==-=-=, ∴当点P 在A D -段上运动且P 、Q 两点间的距离最短时,P 、Q 两点的运动路程之和为:3(3)2233()2cm +⨯=+ 故答案为:(233)+.三、解答题(本大题共8个小题,19~20题每题6分,21~24题每题8分,25题10分,26题12分,满分66分.解答应写出文字说明、证明过程或盐酸步骤.)19.(6分)计算:2(2)(2)(2)(4)x y x y x y x x y ++-++-.【解答】解:原式22222(44)(4)(4)x xy y x y x xy =+++-+-222224444x xy y x y x xy =+++-+-23x =.20.(6分)如图,点A 、B 、D 、E 在同一条直线上,AB DE =,//AC DF ,//BC EF .求证:ABC DEF ∆≅∆.【解答】证明://AC DF ,CAB FDE ∴∠=∠ (两直线平行,同位角相等),又//BC EF ,CBA FED ∴∠=∠ (两直线平行,同位角相等),在ABC ∆和DEF ∆中,CAB FDE AB DECBA FED ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ABC DEF ASA ∴∆≅∆.21.(8分)“垃圾分类工作就是新时尚”,为了改善生态环境,有效利用垃圾剩余价值,2020年起,我市将生活垃圾分为四类:厨余垃圾、有害垃圾、可回收垃圾、其他垃圾.某学习研究小组在对我市垃圾分类实施情况的调查中,绘制了生活垃圾分类扇形统计图,如图所示.(1)图中其他垃圾所在的扇形的圆心角度数是 64.8 度;(2)据统计,生活垃圾中可回收物每吨可创造经济总价值约为0.2万元.若我市某天生活垃圾清运总量为500吨,请估计该天可回收物所创造的经济总价值是多少万元?(3)为了调查学生对垃圾分类知识的了解情况,某校开展了相关知识竞赛,要求每班派2名学生参赛.甲班经选拔后,决定从2名男生和2名女生中随机抽取2名学生参加比赛,求所抽取的学生中恰好一男一女的概率.【解答】解:(1)由题意可知,其他垃圾所占的百分比为:120%7%55%18%---=, ∴其他垃圾所在的扇形的圆心角度数是:36018%64.8︒⨯=︒,故答案为:64.8;(2)50020%100⨯=(吨),1000.220⨯=(万元), 答:该天可回收物所创造的经济总价值是20万元;(3)由题意可列树状图:()82 123P∴==一男一女.22.(8分)如图,点E为正方形ABCD外一点,90AEB∠=︒,将Rt ABE∆绕A点逆时针方向旋转90︒得到ADF∆,DF的延长线交BE于H点.(1)试判定四边形AFHE的形状,并说明理由;(2)已知7BH=,13BC=,求DH的长.【解答】解:(1)四边形AFHE是正方形,理由如下:Rt ABE∆绕A点逆时针方向旋转90︒得到ADF∆,Rt ABE Rt ADF∴∆≅∆,90AEB AFD∴∠=∠=︒,90AFH∴∠=︒,Rt ABE Rt ADF∆≅∆,DAF BAE∴∠=∠,又90DAF FAB∠+∠=︒,90BAE FAB∴∠+∠=︒,90FAE∴∠=︒,在四边形AFHE中,90FAE∠=︒,90AEB∠=︒,90AFH∠=︒,∴四边形AFHE是矩形,又AE AF =,∴矩形AFHE 是正方形;(2)设AE x =.则由(1)以及题意可知:AE EH FH AF x ====,7BH =,13BC AB ==, 在Rt AEB ∆中,222AB AE BE =+,即22213(7)x x =++,解得:5x =,5712BE BH EH ∴=+=+=,12DF BE ∴==,又DH DF FH =+,12517DH ∴=+=.23.(8分)如图是一种单肩包,其背带由双层部分、单层部分和调节扣构成.小文购买时,售货员演示通过调节扣加长或缩短单层部分的长度,可以使背带的长度(单层部分与双层部分长度的和,其中调节扣所占长度忽略不计)加长或缩短,设双层部分的长度为x cm ,单层部分的长度为y cm .经测量,得到表中数据. 双层部分长度()x cm2 8 14 20 单层部分长度()y cm 148 136 124 112(1)根据表中数据规律,求出y 与x 的函数关系式;(2)按小文的身高和习惯,背带的长度调为130cm 时为最佳背带长.请计算此时双层部分的长度;(3)设背带长度为L cm ,求L 的取值范围.【解答】解:(1)设y 与x 的函数关系式为y kx b =+,由题知14821368k b k b=+⎧⎨=+⎩,解得2152k b =-⎧⎨=⎩, y ∴与x 的函数关系式为2152y x =-+;(2)根据题意知1302152x y y x +=⎧⎨=-+⎩, 解得22108x y =⎧⎨=⎩, ∴双层部分的长度为22cm ;(3)由题知,当0x =时,152y =, 当0y =时,76x =, 76152L ∴.24.(8分)如图,AB 是O 的直径,D 为O 上一点,E 为BD 的中点,点C 在BA 的延长线上,且CDA B ∠=∠.(1)求证:CD 是O 的切线;(2)若2DE =,30BDE ∠=︒,求CD 的长.【解答】(1)证明:连结OD ,如图所示:AB 是直径,90BDA ∴∠=︒,90BDO ADO ∴∠+∠=︒, 又OB OD =,CDA B ∠=∠, B BDO CDA ∴∠=∠=∠,90CDA ADO ∴∠+∠=︒,OD CD ∴⊥,且OD 为O 半径,CD ∴是O 的切线;(2)解:连结OE ,如图所示:30BDE ∠=︒,260BOE BDE ∴∠=∠=︒,又E 为BD 的中点,60EOD ∴∠=︒,EOD ∴∆为等边三角形,2ED EO OD ∴===,又120BOD BOE EOD ∠=∠+∠=︒,180********DOC BOD ∴∠=︒-∠=︒-︒=︒,在Rt DOC ∆中,60DOC ∠=︒,2OD =,tan tan6032CD CD DOC OD ∴∠=︒== 23CD ∴= 25.(10分)如图,OAB ∆的顶点坐标分别为(0,0)O ,(3,4)A ,(6,0)B ,动点P 、Q 同时从点O 出发,分别沿x 轴正方向和y 轴正方向运动,速度分别为每秒3个单位和每秒2个单位,点P 到达点B 时点P 、Q 同时停止运动.过点Q 作//MN OB 分别交AO 、AB 于点M 、N ,连接PM 、PN .设运动时间为t (秒).(1)求点M 的坐标(用含t 的式子表示);(2)求四边形MNBP 面积的最大值或最小值;(3)是否存在这样的直线l ,总能平分四边形MNBP 的面积?如果存在,请求出直线l 的解析式;如果不存在,请说明理由;(4)连接AP ,当OAP BPN ∠=∠时,求点N 到OA 的距离.【解答】解:(1)过点A 作x 轴的垂线,交MN 于点E ,交OB 于点F ,由题意得:2OQ t =,3OP t =,63PB t =-,(0,0)O ,(3,4)A ,(6,0)B ,3OF FB ∴==,4AF =,22345OA AB ==+,//MN OB ,OQM OFA ∴∠=∠,OMQ AOF ∠=∠,OQM AFO ∴∆∆∽, ∴OQ QM AF OF =, ∴243t QM =, 32QM t ∴=, ∴点M 的坐标是3(,2)2t t . (2)//MN OB ,∴四边形QEFO 是矩形,QE OF ∴=,332ME OF QM t ∴=-=-, OA AB =,ME NE ∴=,263MN ME t ∴==-,MNP BNP MNBP S S S ∆∆∴=+四边形1122MN OQ BP OQ =⋅+⋅⋅11(63)2(63)222t t t t =-⋅+⋅-⋅ 2612t t =-+26(1)6t =--+,点P 到达点B 时,P 、Q 同时停止,02t ∴,1t ∴=时,四边形MNBP 的最大面积为6.(3)63MN t =-,63BP t =-,MN BP ∴=,//MN BP ,∴四边形MNBP 是平行四边形,∴平分四边形MNBP 面积的直线经过四边形的中心,即MB 的中点,设中点为(,)H x y , 3(,2)2M t t ,(6,0)B , 133(6)3224x t t ∴=⋅+=+, 202t y t +==. 334x y ∴=+, 化简得:443y x =-, ∴直线l 的解析式为:443y x =-. (4)OA AB =,AOB PBN ∴∠=∠,又OAP BPN ∠=∠, AOP PBN ∴∆∆∽,∴OA OP BP BN=, ∴535632t t t =-, 解得:1118t =.63MN t =-,AE AF OQ =-,332ME t =-, 112563186MN ∴=-⨯=, 112542189AE =-⨯=, 31125321812ME =-⨯=, 22222525125()()12936AM ME AE ∴=+=+=. 设点N 到OA 得距离为h ,1122AMN S MN AE AM h ∆=⋅⋅=⋅⋅, ∴125251125269236h ⋅⋅=⋅⋅, 解得:103h =. ∴点N 到OA 得距离为103.26.(12分)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)⋯都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标; (2)若抛物线25y ax x c =++上有且只有一个“雁点” E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线223y x x =-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC ∆,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【解答】解:(1)由题意得:4x x=,解得2x =±, 当2x =±时,42y x ==±, 故“雁点”坐标为(2,2)或(2,2)--;(2)① “雁点”的横坐标与纵坐标相等, 故“雁点”的函数表达式为y x =,物线25y ax x c =++上有且只有一个“雁点” E , 则25ax x c x ++=,则△2540ac =-=,即4ac =,1a >,故4c <;②4ac =,则250ax x c ++=为2450ax x a++=, 解得4x a =-或1a -,即点M 的坐标为4(a-,0),由25ax x c x ++=,4ac =, 解得2x a =-,即点E 的坐标为2(a -,2)a-, 故点E 作EH x ⊥轴于点H ,则2HE a =,242()E M MH x x HE a a a =-=---==, 故EMN ∠的度数为45︒;(3)存在,理由:由题意知,点C 在直线y x =上,故设点C 的坐标为(,)t t , 过点P 作x 轴的平行线交过点C 与y 轴的平行线于点M ,交过点B 与y 轴的平行线于点N ,设点P 的坐标为2(,23)m m m -++,则223BN m m =-++,3PN m =-,PM m t =-,223CM m m t =-++-, 90NPB MPC ∠+∠=︒,90MPC CPM ∠+∠=︒, NPB CPM ∴∠=∠,90CMP PNB ∠=∠=︒,PC PB =,()CMP PNB AAS ∴∆≅∆,PM BN ∴=,CM PN =,即2|23|m t m m -=-++,223|3|m m t m -++-=-,解得1m =1-或32,故点P 的坐标为,3)2或3(2,15)4或(1+,3)2.。

2021年中考数学复习-新定义型(解析版)

2021年中考数学复习-新定义型(解析版)

新定义型【典例1】对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b=2a+b .例如3⊗4=2×3+4=10.(1)求2⊗(-5)的值;(2)若x ⊗(-y )=2,且2y ⊗x=-1,求x+y 的值.【解析】(1)依据关于“⊗”的一种运算:a ⊗b=2a+b ,即可得到2⊗(﹣5)的值; (2)依据x ⊗(﹣y )=2,且2y ⊗x=﹣1,可得方程组,即可得到x+y 的值. 【典例2】对于实数x ,规定[]x 表示不小于x 的最小整数,例如[]1.2=2,[]3=3,[]-2.5=-2,则(1)填空:①[]-=π ;②若[]x =-2,则x 的取值范围是 .(2)已知x 为正整数,且x 132+⎡⎤=⎢⎥⎣⎦,求x 的值.【解析】(1)①[﹣π]=﹣3;②x 的取值范围是﹣3<x ≤﹣2; (2)由x 132+⎡⎤=⎢⎥⎣⎦知2<x 12+ ≤3,解得:3<x ≤5,∵x 取正整数, ∴x 的值为4或5.【典例3】在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”. (1)任意一对“互换点”能否都在一个反比例函数的图象上?为什么? 【解析】(1)设这一对“互换点”的坐标为M(m ,n) 和N(n ,m) . ① 当mn=0时,它们不可能在反比例函数的图像上; ② 当mn ≠0 时,M 、N 两点均在反比例函数的图像上. 于是得到结论“不一定”.(2)M ,N 是一对“互换点”,若点M 的坐标为(m ,n),求直线MN 的表达式(用含m ,n 的代数式表示);【解析】(2)设直线 MN 的表达式为 y = kx + b( k ≠0) . 把 M( m,n) ,N( n ,m) 代入 y = kx + b ,解得 k=-1,b=m + n ,∴ 直线 MN 的表达式为y=-x+m+n . (3)在抛物线y =x 2+bx +c 的图象上有一对“互换点”A ,B ,其中点A 在反比例函数2y x=-的图象上,直线AB 经过点P1122⎛⎫ ⎪⎝⎭,,求此抛物线的表达式.【解析】 ( 3)因为点A 在反比例函数2y x=-的图象上, 故设A(m ,2m -) ,则B(2m-,m) .由(2)的结论可得,直线AB 的表达式为y=-x+m2m-.将P 点坐标1122⎛⎫ ⎪⎝⎭,代入可得2m 10m--=, 解得m=2或-1. 【典例4】对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6. (1)计算:F (243),F (617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =F (s )F (t ),当F (s )+F (t )=18时,求k 的最大值. 【解析】解:(1)F (243)=(423+342+234)÷111=9;F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6. ∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18,∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数, ∴⎩⎨⎧x =1y =6或⎩⎨⎧x =2y =5或⎩⎨⎧x =3y =4或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2或⎩⎨⎧x =6y =1. ∵s 是“相异数”, ∴x ≠2,x ≠3. ∵t 是“相异数”, ∴y ≠1,y ≠5. ∴⎩⎨⎧x =1y =6或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2, ∴⎩⎨⎧F (s )=6F (t )=12或⎩⎨⎧F (s )=9F (t )=9或⎩⎨⎧F (s )=10F (t )=8,∴k =F (s )F (t )=12或k =F (s )F (t )=1或k =F (s )F (t )=54, ∴k 的最大值为54.【解析】 (1)322x y x -+=+,是 “奇特函数”;(2)①296x y x -=-;②(7,5)或53,3⎛⎫- ⎪⎝⎭或715,3⎛⎫ ⎪⎝⎭或(5,1)-.试题分析:(1)根据题意列式并化为322x y x -+=+,根据定义作出判断. (2)①求出点B ,D 的坐标,应用待定系数法求出直线OB 解析式和直线CD 解析式,二者联立即可得点E 的坐标,将B (9,3),E (3,1)代入函数6ax ky x +=-即可求得这个“奇特函数”的解析式.②根据题意可知,以B 、E 、P 、Q 为顶点组成的四边形是平行四边形BPEQ 或BQEP ,据此求出点P 的坐标.试题解析:(1)根据题意,得,∵,∴.∴.根据定义,是 “奇特函数”.(2)①由题意得,.易得直线OB 解析式为,直线CD 解析式为,由解得.∴点E (3,1).将B(9,3),E(3,1)代入函数,得,整理得,解得.∴这个“奇特函数”的解析式为.②∵可化为,∴根据平移的性质,把反比例函数的图象向右平移6个单位,再向上平移2个单位就可得到.∴关于点(6,2)对称.∵B(9,3),E(3,1),∴BE中点M(6,2),即点M是的对称中心.∴以B、E、P、Q为顶点组成的四边形是平行四边形BPEQ或BQEP.由勾股定理得,.设点P到EB的距离为m,∵以B、E、P、Q为顶点组成的四边形面积为,∴.∴点P在平行于EB的直线上.∵点P在上,∴或.解得.∴点P的坐标为或或或.考点:1.新定义和阅读理解型问题;2.平移问题;3.反比例函数的性质;4.曲线上点的坐标与方程的关系;5.勾股定理;6.中心对称的性质;7.平行四边形的判定和性质;8.分类思想的应用.【典例6】定义[a,b,c]为函数y=a x2+bx c+的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论:①当m=﹣3时,函数图象的顶点坐标是(18,33);②当m>0时,函数图象截x轴所得的线段长度大于32;③当m<0时,函数在x>14时,y随x的增大而减小;④当m≠0时,函数图象经过同一个点.其中正确的结论有___________【解析】解:根据定义可得函数y=2m x2+(1﹣m)x+(﹣1﹣m),①当m=﹣3时,函数解析式为y=﹣6x2+4x+2,∴224144(6)248,22(6)344(6)3b ac ba a-⨯-⨯--=-===⨯-⨯-,∴顶点坐标是(18,33),正确;②函数y=2m x2+(1﹣m)x+(﹣1﹣m)与x轴两交点坐标为(1,0),(﹣12mm+,0),当m>0时,1﹣(﹣12mm+)=313222m+>,正确;③当m<0时,函数y=2m x2+(1﹣m)x+(﹣1﹣m)开口向下,对称轴111444xm=->,错误;④当m≠0时,x=1代入解析式y=0,则函数一定经过点(1,0),正确.故选:①②④【典例7】通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化。

2021年中考数学复习——几何探究型问题(有答案)

2021年中考数学复习——几何探究型问题(有答案)

2021年中考数学复习——几何探究型问题班级姓名1. (2020年湖南长沙中考)如图,点P在以MN为直径的半圆上运动(点P不与M、N重合),PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F。

(1)=+PMPEPQPF(2)若MNPMPN•=2,则=NQMQ2.(2020年湖南岳阳中考)如图,AB为半⊙O的直径,M,C是半圆上的三等分点,8AB=,BD与半⊙O相切于点B,点P为AM上一动点(不与点A,M重合),直线PC交BD于点D,BE OC⊥于点E,延长BE交PC于点F,则下列结论正确的是______________.(写出所有正确结论的序号)①PB PD=;②BC的长为43π;③45DBE∠=︒;④BCF PFB△∽△;⑤CF CP⋅为定值.3.(2020年湖南湘西中考)问题背景:如图1,在四边形ABCD中,90BAD∠=︒,90BCD∠=︒,BA BC=,120ABC∠=︒,60MBN∠=︒,MBN∠绕B点旋转,它的两边分别交AD、DC于E、F.探究图中线段AE,CF,EF之间的数量关系.小李同学探究此问题的方法是:延长FC到G,使CG AE=,连接BG,先证明BCG BAE△≌△,再证明BFC BFE△≌△,可得出结论,他的结论就是_______________;探究延伸1:如图2,在四边形ABCD中,90BAD∠=︒,90BCD∠=︒,BA BC=,2ABC MBN∠=∠,MBN∠绕B点旋转,它的两边分别交AD、DC于E、F.上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由.探究延伸2:如图3,在四边形ABCD中,BA BC=,180BAD BCD∠+∠=︒,2ABC MBN∠=∠,MBN∠绕B点旋转,它的两边分别交AD、DC于E、F.上述结论是否仍然成立?并说明理由.实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30的A处舰艇乙在指挥中心南偏东70︒的B处,并且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东50︒的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且指挥中心观测两舰艇视线之间的夹角为70 ,试求此时两舰艇之间的距离.4.(2020年湖南常德中考)已知D是Rt△ABC斜边AB的中点,∠ACB=90°,∠ABC=30°,过点D作Rt△DEF使∠DEF=90°,∠DFE=30°,连接CE并延长CE到P,使EP=CE,连接BE,FP,BP,设BC与DE 交于M,PB与EF交于N.(1)如图1,当D,B,F共线时,求证:①EB=EP;②∠EFP=30°;(2)如图2,当D,B,F不共线时,连接BF,求证:∠BFD+∠EFP=30°.5.(2020年湖南湘潭中考)算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图:表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.示例如下:67286708,则表示的数是________.6. 2020年湖南怀化中考)定义:对角线互相垂直且相等的四边形叫做垂等四边形. (1)下面四边形是垂等四边形的是____________(填序号) ①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD 中,AD ∥BC ,AC BD ⊥,过点D 作BD 垂线交BC 的延长线于点E ,且45DBC ∠=︒,证明:四边形ABCD 是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD 内接于⊙O 中,60BCD ∠=︒.求⊙O 的半径.7. (2020年湖南省衡阳市中考)如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =?若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒位的速度沿OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.8. (2020年湖南岳阳中考)如图1,在矩形ABCD 中,6,8AB BC ==,动点P ,Q 分别从C 点,A 点同时以每秒1个单位长度的速度出发,且分别在边,CA AB 上沿C A →,A B →的方向运动,当点Q 运动到点B 时,,P Q 两点同时停止运动,设点P 运动的时间为()t s ,连接PQ ,过点P 作PE PQ ⊥,PE 与边BC 相交于点E ,连接QE .(1)如图2,当5t s =时,延长EP 交边AD 于点F .求证:AF CE =;(2)在(1)的条件下,试探究线段,,AQ QE CE 三者之间的等量关系,并加以证明; (3)如图3,当94t s >时,延长EP 交边AD 于点F ,连接FQ ,若FQ 平分AFP ∠,求AF CE的值.9. (2020年湖南株洲中考)如图所示,BEF 的顶点E 在正方形ABCD 对角线AC 的延长线上,AE 与BF 交于点G ,连接AF 、CF ,满足ABF CBE △≌△.(1)求证:90EBF ∠=︒.(2)若正方形ABCD 的边长为1,2CE =,求tan AFC ∠的值.教师用:2021年中考数学——几何探究型问题1. (2020年湖南长沙中考)如图,点P 在以MN 为直径的半圆上运动(点P 不与M 、N 重合),PQ ⊥MN ,NE 平分∠MNP ,交PM 于点E ,交PQ 于点F 。

2021年湖南省永州市中考数学试卷及答案(Word解析版)

2021年湖南省永州市中考数学试卷及答案(Word解析版)

2021年湖南省永州市中考数学试卷及答案(Word解析版)湖南省永州市2021年中考数学试卷一、多项选择题(每个子题3分,共24分)。

1.(3分)(2022?永州)A.B.的倒数是()2021c.d.2021考点:倒数.分析:根据乘积是1的两个数叫做互为倒数解答.解答:解:∵()×(2021)=1,∴的倒数为2021.故选d.点评:本题考查了倒数的定义,熟记概念是解题的关键.2.(3分)(2021?永州)运用湘教版初中数学教材上使用的某种电子计算器求键顺序正确的是()a.c..考点:计算器―数的开方分析:根据计算器上的键的功能,是先按最后按6,即可得出答案.解答:解:是先按,再按8,是先按2nd 键,再按则+的顺序先按,最后按6,,再按8,按+,按2nd键,按,最后按6,+的近似值b.,再按8,是先按2nd键,再按,故选a.点评:此题主要考查了计算器的使用方法,由于计算器的类型很多,可根据计算器的说明书使用.3.(3分)(2021?永州)下列几何体中,其主视图不是中心对称图形的是()a、 B.c.d.试验场地:中心对称图;简单几何的三视图分析:首先判断每个图形的主视图,然后结合中心对称性的定义进行判断;b、主视图是一个三角形,它不是一个中心对称的图形,所以这个选项是正确的;c、主视图是一个圆形,是一个中心对称的图形,所以这个选项是错误的;d、主视图是一个正方形,而正方形是一个中心对称的图形,所以这个选项是错误的;所以选择B.评论:这个问题考察了三个视图的知识和简单几何的中心对称性。

判断中心对称图形就是找到对称中心,旋转180度后与原始图形重合。

4.(3点)(2022?永州)如图所示,在以下条件下可以确定L1‖L2线为()∠1=∠2∠1+∠3=180°∠3=∠5a.c.d.考点:平行线的判定.分析:平行线的判定定理有①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行,根据以上内容判断即可.解答:解:a、根据∠1=∠2不能推出l1∥l2,故本选项错误;b、∵∠5=∠3,∠1=∠5,∴∠1=∠3,即根据∠1=∠5不能推出l1∥l2,故本选项错误;c、∵∠1+∠3=180°,∴l1∥l2,故本选项正确;d、根据∠3=∠5不能推出l1∥l2,故本选项错误;故选c.点评:本题考查了平行线的判定的应用,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.5.(3分)(2021?永州)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()∠1=∠5b。

湖南省2021年中考数学真题分项汇编—专题05 一元二次方程(含答案解析)

湖南省2021年中考数学真题分项汇编—专题05 一元二次方程(含答案解析)

专题05 一元二次方程一、单选题1.(2021·湖南怀化市·中考真题)对于一元二次方程22340x x -+=,则它根的情况为( ) A .没有实数根B .两根之和是3C .两根之积是2-D .有两个不相等的实数根 【答案】A【分析】先找出2,3,4a b c ==-=,再利用根的判别式判断根的情况即可.【详解】解:22340x x -+=∵2,3,4a b c ==-=∴2=4932230b ac ∆-=-=-<∴这个一元二次方程没有实数根,故A 正确、D 错误. ∵122c x x a==,故C 错误. 123+-2b x x a ==,故B 错误. 故选:A .【点睛】本题考查一元二次方程根的情况、根的判别式、根与系数的关系、熟练掌握∆<0,一元二次方程没有实数根是关键.2.(2021·湖南张家界市·中考真题)对于实数,a b 定义运算“☆”如下:2a b ab ab =-☆,例如23336222⨯-⨯==☆,则方程12x =☆的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 【答案】D【分析】本题根据题目所给新定义将方程12x =☆变形为一元二次方程的一般形式,即20ax bx c ++=的形式,再根据根的判别式24b ac ∆=-的值来判断根的情况即可.【详解】解:根据题意由方程12x =☆得:22x x -=整理得:220x x --=根据根的判别式2141(2)90∆=-⨯⨯-=>可知该方程有两个不相等实数根.故选D .【点睛】本题主要考查了根的判别式,根据题目所给的定义对方程进行变形后依据∆的值来判断根的情况,注意0∆>时有两个不相等的实数根;0∆=时有一个实数根或两个相等的实数根;∆<0时没有实数根. 3.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( )A .0个B .1个C .2个D .1或2个【答案】D【分析】直线y x m =-+不经过第一象限,则m =0或m <0,分这两种情形判断方程的根.【详解】∵直线y x m =-+不经过第一象限,∴m =0或m <0,当m =0时,方程变形为x +1=0,是一元一次方程,故有一个实数根;当m <0时,方程210mx x ++=是一元二次方程,且△=2414b ac m -=-,∵m <0,∴-4m >0,∴1-4m >1>0,∴△>0,故方程有两个不相等的实数根,综上所述,方程有一个实数根或两个不相等的实数根,故选D .【点睛】本题考查了一次函数图像的分布,一元一次方程的根,一元二次方程的根的判别式,准确判断图像不过第一象限的条件,灵活运用根的判别式是解题的关键.二、填空题4.(2021·湖南中考真题)一元二次方程2x 3x 0-=的根是_______.【答案】12x 0,?x 3== 【详解】四种解一元二次方程的解法即:直接开平方法,配方法,公式法,因式分解法.注意识别使用简单的方法进行求解,此题应用因式分解法较为简捷,因此,212x 3x 0x(x 3)0x 0x 30x 0,?x 3-=⇒-=⇒=-=⇒==,.5.(2021·湖南长沙市·中考真题)若关于x 的方程2120x kx --=的一个根为3,则k 的值为______.【答案】1-【分析】将3x =代入方程可得一个关于k 的一元一次方程,解方程即可得.【详解】解:由题意,将3x =代入方程2120x kx --=得:233120k --=,解得1k =-,故答案为:1-.【点睛】本题考查了一元二次方程的根、解一元一次方程,熟练掌握一元二次方程根的定义是解题关键. 6.(2021·湖南娄底市·中考真题)已知2310t t -+=,则1t t+=________.【答案】3.【分析】先将要求解的式子进行改写整理再利用已知方程进行求解即可.【详解】 解:22111t t t t t t t++=+=,又∵2310t t -+=,∴213t t +=, 则2113=3t t t t t t++==, 故答案为:3.【点睛】本题是一元二次方程求对应解的题目,解题的关键是将求解式子进行变形再利用已知方程进行简便运算. 7.(2021·湖南中考真题)关于x 的一元二次方程250x x m -+=有两个相等的实数根,则m =________.【答案】254 【分析】根据一元二次方程根与判别式的关系,列出关于m 的方程,即可求解.【详解】解:∵关于x 的一元二次方程250x x m -+=有两个相等的实数根,∴()2540m ∆=--=,解得:254m =, 故答案是:254. 【点睛】本题主要考查一元二次方程根与判别式的关系,掌握一元二次方程有两个实数根,则0∆=,是解题的关键. 8.(2021·湖南岳阳市·中考真题)已知关于x 的一元二次方程260x x k ++=有两个相等的实数根,则实数k 的值为_______.【答案】9【分析】直接利用根的判别式进行判断即可.【详解】解:由题可知:“△=0”,即2640k -=;∴9k =;故答案为:9.【点睛】本题考查了用根的判别式判断一元二次方程根的情况,解决本题的关键是牢记:△>0时,该方程有两个不相等的实数根;△=0时,该方程有两个相等的实数根;△<0时,该方程无实数根.三、解答题9.(2021·湖南常德市·中考真题)解方程:220x x --=【答案】12x =,21x =-【详解】分析:利用十字相乘法对等式的左边进行因式分解,然后解方程.详解:由原方程,得:(x +1)(x ﹣2)=0,解得:x 1=2,x 2=﹣1.点睛:本题考查了解一元二次方程.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想). 10.(2021·湖南永州市·中考真题)若12,x x 是关于x 的一元二次方程20ax bx c ++=的两个根,则1212,b c x x x x a a+=-⋅=.现已知一元二次方程220px x q ++=的两根分别为m ,n . (1)若2,4m n ==-,求,p q 的值;(2)若3,1p q ==-,求m mn n ++的值.【答案】(1)1,8p q ==-;(2)-1.【分析】 根据一元二次方程根与系数的关系得到2,q mn p m n p+=-=. (1)把2,4m n ==-,代入2,q mn p m n p+=-=,即可求出,p q 的值; (2)把3,1p q ==-,代入2,q mn p m n p +=-=,得到,2133m n mn +=-=-.利用整体代入即可求解. 【详解】 解:∵已知一元二次方程220px x q ++=的两根分别为m ,n ,∴2,q mn p m n p+=-=. (1)当2,4m n ==-时,2,28q p p-=-=-, 解得1,8p q ==-,经检验,1,8p q ==-是方程的根,∴1,8p q ==-;(2)当3,1p q ==-时,,2133m n mn +=-=-. ∴21133m mn n m n mn ++=++=--=-. 【点睛】 本题考查了一元二次方程根与系数的关系,根据题意得到2,q mn p m n p+=-=是解题关键. 11.(2021·湖南张家界市·中考真题)2021年是中国共产党建党100周年,全国各地积极开展“弘扬红色文化,重走长征路”主题教育学习活动,我市“红二方面军长征出发地纪念馆”成为重要的活动基地.据了解,今年3月份该基地接待参观人数10万人,5月份接待参观人数增加到12.1万人.(1)求这两个月参观人数的月平均增长率;(2)按照这个增长率,预计6月份的参观人数是多少?【答案】(1)10%;(2)13.31万【分析】(1)设这两个月参观人数的月平均增长率为x ,根据题意列出等式解出x 即可;(2)直接利用(1)中求出的月平均增长率计算即可.【详解】(1)解:设这两个月参观人数的月平均增长率为x ,由题意得:210(1)12.1x +=,解得:110%x=,221 10x=-(不合题意,舍去),答:这两个月参观人数的月平均增长率为10%.(2)12.1(110%)13.31⨯+=(万人),答:六月份的参观人数为13.31万人.【点睛】本题考查了二次函数和增长率问题,解题的关键是:根据题目条件列出等式,求出增长率,再利用增长率来预测.。

湖南省常德市2021年中考数学真题试卷(Word版,含答案与解析)

湖南省常德市2021年中考数学真题试卷(Word版,含答案与解析)

湖南省常德市2021年中考数学试卷一、单选题(共7题;共14分)1.若a>b,下列不等式不一定成立的是()A. a−5>b−5B. −5a<−5bC. ac >bcD. a+c>b+c【答案】C【考点】不等式及其性质【解析】【解答】解:A.在不等式a>b两边同时减去5,不等式仍然成立,即a−5>b−5,故答案为:A不符合题意;B. 在不等式a>b两边同时除以-5,不等号方向改变,即−5a<−5b,故答案为:B不符合题意;C.当c≤0时,不等得到ac >bc,故答案为:C符合题意;D. 在不等式a>b两边同时加上c,不等式仍然成立,即a+c>b+c,故答案为:D不符合题意;故答案为:C.【分析】利用不等式的性质1,可对A作出判断;利用不等式的性质3,可对B作出判断;利用不等式的性质2,可对C作出判断;利用不等式的性质1,可对D作出判断.2.一个多边形的内角和是1800°,则这个多边形是()边形.A. 9B. 10C. 11D. 12【答案】 D【考点】多边形内角与外角【解析】【解答】根据题意得:(n﹣2)×180 °=1800 °,解得:n=12.故答案为:D.【分析】利用n边形的内角和定理,可得到关于n的方程,解方程求出n的值.3.下列计算正确的是()A. a3⋅a2=a6B. a2+a2=a4C. (a3)2=a5D. a3a2=a(a≠0)【答案】 D【考点】同底数幂的乘法,同底数幂的除法,幂的乘方【解析】【解答】A、a3⋅a2=a5原计算错误,该选项不符合题意;B、a2+a2=2a2原计算错误,该选项不符合题意;C、(a3)2=a6原计算错误,该选项不符合题意;D、a3a2=a(a≠0)正确,该选项符合题意;故答案为:D.【分析】利用同底数幂相乘,底数不变,指数相加,可对A作出判断;利用合并同类项的法则,可对B 作出判断;利用幂的乘方法则,可对C作出判断;利用同底数幂相乘的法则,可对D作出判断.4.舒青是一名观鸟爱好者,他想要用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况,以下是排乱的统计步骤:①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;③按统计表的数据绘制折线统计图;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.正确统计步骤的顺序是()A. ②→③→①→④ B. ③→④→①→②C. ①→②→④→③D. ②→④→③→①【答案】 D【考点】折线统计图,收集数据的过程与方法【解析】【解答】解:将用折线统计图来反映中华秋沙鸭每年秋季到当地避寒越冬的数量变化情况的步骤如下:②从当地自然保护区管理部门收集中华秋沙鸭每年来当地避寒越冬的数量记录;④整理中华秋沙鸭每年来当地避寒越冬的数量并制作统计表.③按统计表的数据绘制折线统计图;①从折线统计图中分析出中华秋沙鸭每年来当地避寒越冬的变化趋势;所以,正确统计步骤的顺序是②→④→③→①故答案为:D.【分析】利用折线统计图的制作步骤,可得答案.5.计算:(√5+12−1)⋅√5+12=()A. 0B. 1C. 2D. √5−12【答案】C【考点】二次根式的混合运算【解析】【解答】解:(√5+12−1)⋅√5+12= √5−12⋅√5+12= 5−12=2.故答案为:C.【分析】先算括号里的运算,再利用二次根式的乘法法则进行化简.6.如图,已知F、E分别是正方形ABCD的边AB与BC的中点,AE与DF交于P.则下列结论成立的是()A. BE=12AE B. PC=PD C. ∠EAF+∠AFD=90° D. PE=EC 【答案】C【考点】正方形的性质,三角形全等的判定(SAS)【解析】【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=CA,∠ABC=∠BCD=∠CDA=∠DAB=90°,∵已知F、E分别是正方形ABCD的边AB与BC的中点,∴BE= 12BC= 12AB< 12AE,故A选项错误,不符合题意;在△ABE和△DAF中,{AB=DA∠ABE=∠DAF=90°BE=FA,∴△ABE≌△DAF(SAS),∴∠BAE=∠ADF,∵∠ADF+∠AFD=90°,∴∠BAE+∠AFD =90°,∴∠APF=90°,∴∠EAF+∠AFD=90°,故C选项正确,符合题意;连接FC,同理可证得△CBF≌△DAF(SAS),∴∠BCF=∠ADF,∴∠BCD-∠BCF=∠ADC-∠ADF,即90°-∠BCF=90°-∠ADF,∴∠PDC=∠FCD>∠PCD,∴PC>PD,故B选项错误,不符合题意;∵AD>PD,∴CD>PD,∴∠DPC>∠DCP,∴90°-∠DPC<90°-∠DCP,∴∠CPE<∠PCE,∴PE> CE,故D选项错误,不符合题意;故答案为:C.【分析】利用正方形的性质可证得AB=BC=CD=CA,∠ABC=∠BCD=∠CDA=∠DAB=90°,;利用线段中点的定义可对A作出判断;再利用SAS证明△ABE≌△DAF,利用全等三角形的性质可证得∠BAE=∠ADF,由此可证得∠EAF+∠AFD=90°,可对C作出判断;连接FC,利用SAS证明△CBF≌△DAF,利用全等三角形的性质可得到∠BCF=∠ADF,由此可推出∠PDC=∠FCD>∠PCD,可得到PC>PD,可对B作出判断;然后证明∠CPE<∠PCE,利用大角对大边,可对D作出判断.7.阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数.则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A. ②④B. ①②④C. ①②D. ①④【答案】C【考点】勾股数【解析】【解答】∵7=1+6或2+5或3+4∴7不是广义勾股数,即①正确;∵13=4+9=22+32∴13是广义勾股数,即②正确;∵5=12+22,10=12+32,15不是广义勾股数∴③错误;∵5=12+22,13=22+32,65=5×13,且65不是广义勾股数∴④错误;故答案为:C.【分析】如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数,再对各选项逐一判断即可.二、填空题(共8题;共8分)8.求不等式2x−3>x的解集________.【答案】x>3【考点】解一元一次不等式【解析】【解答】解:2x−3>x,移项解得:x>3,故答案是:x>3.【分析】先移项,再合并同类项,可求出不等式的解集.9.今年5月11日,国家统计局公布了第七次全国人口普查的结果,我国现有人口141178万人.用科学计数法表示此数为________人.【答案】1.41178×109【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:141178万=1411780000=1.41178×109.故答案为:1.41178×109.【分析】根据科学记数法的表示形式为:a×10n,其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1.10.在某次体育测试中,甲、乙两班成绩的平均数、中位数、方差如下表所示,规定学生个人成绩大于90分为优秀,则甲、乙两班中优秀人数更多的是________班.【答案】甲【考点】分析数据的波动程度,分析数据的集中趋势【解析】【解答】解:甲、乙两个班参赛人数都为45人,由甲、乙两班成绩的中位数可知,甲班的优生人数大于等于23 人,乙班的小于等于22人,则甲班的优生人数较多,故答案为:甲.【分析】利用中位数的意义及甲乙两班的中位数,可作出判断.11.分式方程1x +1x−1=x+2x(x−1)的解为________.【答案】x=3【考点】解分式方程【解析】【解答】解:1x+1x−1=x+2x(x−1)通分得:2x−1x(x−1)=x+2x(x−1),移项得:x−3x(x−1)=0,∴x−3=0,解得:x=3,经检验,x=3时,x(x−1)=6≠0,∴x=3是分式方程的解,故答案是:x=3.【分析】将分式方程转化为整式方程,求出整式方程的解,再进行检验,可得方程的解.12.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=80°,则∠BCD的度数是________.【答案】140°【考点】圆周角定理,圆内接四边形的性质【解析】【解答】解:∵∠BOD=80°,∴∠A=40°,∵四边形ABCD是⊙O的内接四边形,∴∠BCD=180°-40°=140°,故答案为140°.【分析】利用一条弧所对圆周角等于圆心角的一半,可求出∠A的度数;再利用圆内接四边形的对角互补,可求出∠BCD的度数.13.如图.在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若CD=3,BD=5,则BE的长为________.【答案】4【考点】勾股定理,三角形全等的判定(AAS)【解析】【解答】解:由题意:AD平分∠CAB,DE⊥AB于E,∴∠CAD=∠EAD,∠AED=90°,又∵AD为公共边,△ACD≌△AED(AAS),∴CD=DE=3,在Rt△DEB中,BD=5,由勾股定理得:BE=√BD2−DE2=√52−32=4,故答案是:4.【分析】利用角平分线的定义及垂直的定义可证得∠CAD=∠EAD,∠AED=∠C=90°,利用AAS证明△ACD≌△AED,利用全等三角形的性质可求出DE的长;再利用勾股定理求出BE的长.14.刘凯有蓝、红、绿、黑四种颜色的弹珠,总数不超过50个,其中16为红珠,14为绿珠,有8个黑珠.问刘凯的蓝珠最多有________个.【答案】21【考点】简单事件概率的计算【解析】【解答】解:设弹珠的总数为x个, 蓝珠有y个,根据题意得,{16x +14x +8+y =x ①x ≤50②, 由①得, x =96+12y 7 , 结合②得, 96+12y 7≤50 解得, y ≤2116所以,刘凯的蓝珠最多有21个.故答案为:21.【分析】设弹珠的总数为x 个, 蓝珠有y 个,根据题意列出关于x ,y 的方程,根据总数不超过50个,可知x≤50,由此可求出y 的最大整数解.15.如图中的三个图形都是边长为1的小正方形组成的网格,其中第一个图形有 1×1 个正方形,所有线段的和为4,第二个图形有 2×2 个小正方形,所有线段的和为12,第三个图形有 3×3 个小正方形,所有线段的和为24,按此规律,则第n 个网格所有线段的和为________.(用含n 的代数式表示)【答案】 2n 2+2n【考点】探索图形规律【解析】【解答】解:观察图形可知:第1个图案由1个小正方形组成,共用的木条根数 S 1=4×1=2×2×1,第2个图案由4个小正方形组成,共用的木条根数 S 2=6×2=2×3×2,第3个图案由9个小正方形组成,共用的木条根数 S 3=8×3=2×4×3,第4个图案由16个小正方形组成,共用的木条根数 S 4=10×4=2×5×4,…由此发现规律是:第n 个图案由n 2个小正方形组成,共用的木条根数 S n =2(n +1)·n =2n 2+2n,故答案为:2n 2+2n.【分析】观察图形,分别求出第1个图案共用的木条根数 ;第2个图案共用的木条根数 ;第3个图案共用的木条根数 ;第4个图案共用的木条根数 … , 由此可得到第n 个网格所有线段的和.三、解答题(共10题;共95分)16.计算: 20210+3−1⋅√9−√2sin45° .【答案】 解: 20210+3−1⋅√9−√2sin45°=1+33−√2×√22=1+1−1=1【考点】实数的运算,0指数幂的运算性质,负整数指数幂的运算性质,特殊角的三角函数值【解析】【分析】先算乘方和开方运算,同时代入特殊角的三角函数值;再算乘法运算,然后利用有理数的加减法法则进行计算.17.解方程:x2−x−2=0【答案】解:由原方程,得:(x+1)(x﹣2)=0,解得:x1=2,x2=﹣1【考点】因式分解法解一元二次方程【解析】【分析】观察方程的特点:右边为0,左边可以分解因式,因此利用因式分解法求出方程的解.18.化简:(aa−1+5a+9a2−1)÷a+3a−1【答案】解:(aa−1+5a+9a2−1)÷a+3a−1=(a2+aa2−1+5a+9a2−1)×a−1a+3=a2+6a+9(a+1)(a−1)×a−1a+3=(a+3)2(a+1)(a−1)×a−1a+3=a+3a+1【考点】分式的混合运算【解析】【分析】将括号里的分式通分计算,再将分式除法转化为乘法运算;然后约分化简.19.如图,在Rt△AOB中,AO⊥BO. AB⊥y轴,O为坐标原点,A的坐标为(n,√3),反比例函数y1=k1x 的图象的一支过A点,反比例函数y2=k2x的图象的一支过B点,过A作AH⊥x轴于H,若△AOH的面积为√32.(1)求n的值;(2)求反比例函数y2的解析式.【答案】(1)解:∵A (n,√3),且AH⊥x轴∴AH= √3,OH=n又△AOH的面积为√32.∴12AH·OH=√32,即12×√3×n=√32解得,n=1(2)解:由(1)得,AH= √3,OH=1∴AO=2如图,∵AO⊥BO,AB⊥y轴,∴∠AEO=∠AOB=90°,四边形AHOE是矩形,∴AE=OH=1又∠BAO=∠OAE∴ΔAOE∼ΔABO∴AOAB =AEAO,即:2BE+1=12解得,BE=3∴B(-3,1)∵B在反比例函数y2=k2x的图象上,∴k2=−3×1=−3∴y2=−3x【考点】待定系数法求反比例函数解析式,相似三角形的判定与性质,反比例函数图象上点的坐标特征【解析】【分析】(1)利用点A的坐标可得到AH,OH的长,利用三角形的面积公式建立关于n的方程,解方程可求出n的值.(2)利用已知条件可证得四边形AHOE是矩形,利用矩形的性质可证得AE=OH,再利用有两组对应角相等的两个三角形相似,可得到△AOE∽△ABO,利用相似三角形的对应边成比例可求出BE的长,即可得到点B的坐标;再利用待定系数法求出反比例函数y2的解析式.20.某汽车贸易公司销售A、B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用不超过300万元资金,采购A、B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?【答案】(1)解:设每台A型车的利润为x万元,每台B型车的利润为y万元,根据题意得,{2x +5y =3.1x +2y =1.3解得, {x =0.3y =0.5答:销售每台A 型车的利润为0.3万元,每台B 型车的利润为0.5万元(2)解:因为每台A 型车的采购价为:12万元,每台B 型车的采购价为:15万元,设最少需要采购A 型新能源汽车m 台,则需要采购B 型新能源汽车(22-m)台,根据题意得,12m +15×(22−m)≤300∴−3m ≤−30,解得, m ≥10∵m 是整数,∴m 的最小整数值为10,即,最少需要采购A 型新能源汽车10台.【考点】一元一次不等式的应用,二元一次方程组的实际应用-销售问题【解析】【分析】(1)2×每一辆A 型车的利润+5×每一辆A 型车的利润=3.1;1×每一辆A 型车的利润+2×每一辆A 型车的利润=1.3;再设未知数,列方程组,然后求出方程组的解.(2)此题的等量关系为:A 新能源汽车的数量+B 两种新能源汽车的数量=22;不等关系为:该公司准备的资金≤300;设未知数,列出不等式,然后求出不等式的最小整数解.21.今年是建党100周年,学校新装了国旗旗杆(如图所示),星期一该校全体学生在国旗前举行了升旗仪式.仪式结束后,站在国旗正前方的小明在A 处测得国旗D 处的仰角为 45° ,站在同一队列B 处的小刚测得国旗C 处的仰角为 23° ,已知小明目高 AE =1.4 米,距旗杆 CG 的距离为15.8米,小刚目高 BF =1.8 米,距小明24.2米,求国旗的宽度 CD 是多少米?(最后结果保留一位小数)(参考数据: sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245 )【答案】 解:由题意得,四边形GAEM 、GBFN 是矩形,∴ME=GA=15.8(米),FN=GB=GA+BA=15.8+24.2=40(米),MG=AE=1.4(米),NG=BF=1.8(米), 在Rt △DME 中, ∠DME =90°,∠DEF =45°∴ ∠EDM =45°∴ DM =ME =15.8 (米),∴DG=DM+MG=15.8+1.4=17.2(米);在Rt△CNF中,∠CNF=90°,∠CFN=23°∴tan23°=CN,即CN=FN·tan23°=40×0.4245≈17.0(米),FN∴CG=CN+NG=17.0+1.8=18.8(米),∴CD=CG−DG=18.8−17.2=1.6(米)答:国旗的宽度CD是1.6米。

2021年湖南省中考数学真题分类汇编专题5四边形(解析版)

2021年湖南省中考数学真题分类汇编专题5四边形(解析版)

2021湖南省11地市中考数学7大专题分类解析汇编专题5 四边形一、选择题1.(2019湖南张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)【答案】A.【解析】解:∵四边形OABC是正方形,且OA=1,∴A(0,1),∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,∴A1(,),A2(1,0),A3(,﹣),…,发现是8次一循环,所以2019÷8=252 (3)∴点A2019的坐标为(,﹣)故选:A.二、填空题2.(2019湖南娄底)如图,要使平行四边形ABCD是矩形,则应添加的条件是(添加一个条件即可).【答案】∠ABC =90°或 AC=BD .【解析】解:根据矩形的判定定理:对角线相等的平行四边形是矩形,有一个角是直角的平行四边形是矩形;故添加条件:∠ABC =90°或 AC=BD .故答案为:∠ABC =90°或 AC=BD .3.(2019湖南娄底)如图,平行四边形ABCD 的对角线 AC 、BD 交于点 O ,点 E 是 AD 的中点,△BCD 的周长为 18,则△DEO 的周长是 .【答案】9.【解析】解:∵E 为 AD 中点,四边形 ABCD 是平行四边形,∴DE = 12AD = 12BC ,DO =12BD ,AO=CO , ∴OE =12CD , ∵△BCD 的周长为 18,∴BD +DC +B=18,∴△DEO 的周长是 DE +OE +DO =12(BC +DC +BD )=12×18=9, 故答案为:9. 4.(2019湖南邵阳)公元3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图”.如图,设勾a =6,弦c =10,则小正方形ABCD 的面积是 .【答案】4.【解析】解:∵勾a =6,弦c =10,∴股==8,∴小正方形的边长=8﹣6=2,∴小正方形的面积=22=4.故答案是:4.5.(2019湖南张家界)如图:正方形ABCD的边长为1,点E,F分别为BC,CD边的中点,连接AE,BF交于点P,连接PD,则tan∠APD=.【答案】2.【解析】解:连接AF,∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BPE=∠APF=90°,∵∠ADF=90°,∴∠ADF+∠APF=180°,∴A、P、F、D四点共圆,∴∠AFD=∠APD,∴tan∠APD=tan∠AFD==2,故答案为:2.6.(2019湖南常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N 的坐标分别为(0,1),(0,﹣1),P是二次函数y=x2的图象上在第一象限内的任意一点,PQ垂直直线y=﹣1于点Q,则四边形PMNQ是广义菱形.其中正确的是.(填序号)【答案】①②④.【解析】解:①根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,①正确;②平行四边形有一组对边平行,没有一组邻边相等,②错误;③由给出条件无法得到一组对边平行,③错误;④设点P(m,m2),则Q(m,﹣1),∴MP==,PQ=+1,∵点P在第一象限,∴m>0,∴MP=+1,∴MP=PQ,又∵MN∥PQ,∴四边形PMNQ是广义菱形.④正确;故答案为①②④.三、解答题7.(2019湖南郴州)如图,平行四边形ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.【答案】见解析.【解析】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠F AE=∠CDE,∵E是AD的中点,∴AE=DE,又∵∠FEA=∠CED,∴△F AE≌△CDE(ASA),∴CD=F A,又∵CD∥AF,∴四边形ACDF是平行四边形.8.(2019湖南岳阳)如图,在菱形ABCD中,点E、F分别为AD、CD边上的点,DE=DF,求证:∠1=∠2.【答案】见解析.【解析】证明:∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠1=∠2.9.(2019湖南怀化)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,E,F分别为垂足.(1)求证:△ABE≌△CDF;(2)求证:四边形AECF是矩形.【答案】(1)见解析;(2)见解析.【解析】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,AD∥BC,∵AE⊥BC,CF⊥AD,∴∠AEB=∠AEC=∠CFD=∠AFC=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS);(2)证明:∵AD∥BC,∴∠EAF=∠AEB=90°,∴∠EAF=∠AEC=∠AFC=90°,∴四边形AECF是矩形.10.(2019湖南湘西州)如图,在正方形ABCD中,点E,F分别在边CD,AD上,且AF =CE.(1)求证:△ABF≌△CBE;(2)若AB=4,AF=1,求四边形BEDF的面积.【答案】(1)见解析;(2)12.【解答】解:(1)在△ABF和△CBE中,∴△ABF≌△CBE(SAS);(2)由已知可得正方形ABCD面积为16,△ABF面积=△CBE面积=12×4×1=2.所以四边形BEDF的面积为16﹣2×2=12.11.(2019湖南张家界)如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.【答案】(1)见解析;(2)2.【解析】(1)证明:∵四边形ABCD是平行四边形,∴AD∥CD,AD=BC,∴△EBF∽△EAD,∴==12,∴BF=12AD=12BC,∴BF=CF;(2)解:∵四边形ABCD是平行四边形,∴AD∥CD,∴△FGC∽△DGA,∴=,即=12,解得,FG=2.12.(2019湖南株洲)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=12,求正方形OEFG的边长.【答案】(1)见解析;(2)2.【解析】解:(1)∵正方形ABCD与正方形OEFG,对角线AC、BD ∴DO=OC∵DB⊥AC,∴∠DOA=∠DOC=90°∵∠GOE=90°∴∠GOD+∠DOE=∠DOE+∠COE=90°∴∠GOD=∠COE∵GO=OE∴在△DOG和△COE中∴△DOG≌△COE(SAS)(2)如图,过点M作MH⊥DO交DO于点H∵AM=12,DA=2∴DM=∵∠MDB=45°∴MH=DH=sin45°•DM=,DO=cos45°•DA=∴HO=DO﹣DH=﹣=∴在Rt△MHO中,由勾股定理得MO===∵DG⊥BD,MH⊥DO∴MH∥DG∴易证△OHM∽△ODG∴===,得GO=2则正方形OEFG的边长为2.13.(2019湖南郴州)如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把△ADE沿DE翻折,点A的对应点为A1,延长EA1交直线DC于点F,再把∠BEF折叠,使点B的对应点B1落在EF上,折痕EH交直线BC于点H.(1)求证:△A1DE∽△B1EH;(2)如图2,直线MN是矩形ABCD的对称轴,若点A1恰好落在直线MN上,试判断△DEF 的形状,并说明理由;(3)如图3,在(2)的条件下,点G为△DEF内一点,且∠DGF=150°,试探究DG,EG,FG的数量关系.【答案】(1)见解析;(2)△DEF是等边三角形,理由见解析;(3)DG2+GF2=GE2.【解析】解:(1)证明:由折叠的性质可知:∠DAE=∠DA1E=90°,∠EBH=∠EB1H=90°,∠AED=∠A1ED,∠BEH=∠B1EH,∴∠DEA1+∠HEB1=90°.又∵∠HEB1+∠EHB1=90°,∴∠DEA1=∠EHB1,∴△A1DE∽△B1EH;(2)结论:△DEF是等边三角形;理由如下:∵直线MN是矩形ABCD的对称轴,∴点A1是EF的中点,即A1E=A1F,∴△A1DE≌△A1DF(SAS),∴DE=DF,∠FDA1=∠EDA1,又∵△ADE≌△A1DE,∠ADF=90°.∴∠ADE=∠EDA1=∠FDA1=30°,∴∠EDF=60°,∴△DEF是等边三角形;(3)DG,EG,FG的数量关系是DG2+GF2=GE2,理由如下:由(2)可知△DEF是等边三角形;将△DGE逆时针旋转60°到△DG'F位置,如解图(1),∴G'F=GE,DG'=DG,∠GDG'=60°,∴△DGG'是等边三角形,∴GG'=DG,∠DGG'=60°,∵∠DGF=150°,∴∠G'GF=90°,∴G'G2+GF2=G'F2,∴DG2+GF2=GE2,14.(2019湖南益阳)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.【答案】(1)(2,3+2);(2)OA=3;(3)当O、M、C三点在同一直线时,OC有最大值8,cos∠OAD=.【解析】解:(1)如图1,过点C作CE⊥y轴于点E,∵矩形ABCD中,CD⊥AD,∴∠CDE+∠ADO=90°,又∵∠OAD+∠ADO=90°,∴∠CDE=∠OAD=30°,∴在Rt△CED中,CE=CD=2,DE==2,在Rt△OAD中,∠OAD=30°,∴OD=AD=3,∴点C的坐标为(2,3+2);(2)∵M为AD的中点,∴DM=3,S△DCM=6,又S四边形OMCD=,∴S△ODM=,∴S△OAD=9,设OA=x、OD=y,则x2+y2=36,12xy=9,∴x2+y2=2xy,即x=y,将x=y代入x2+y2=36得x2=18,解得x=3(负值舍去),∴OA=3;(3)OC的最大值为8,如图2,M为AD的中点,∴OM=3,CM==5,∴OC≤OM+CM=8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,过点O作ON⊥AD,垂足为N,∵∠CDM =∠ONM =90°,∠CMD =∠OMN ,∴△CMD ∽△OMN ,∴==,即==, 解得MN =,ON =,∴AN =AM ﹣MN =,在Rt △OAN 中,OA ==, ∴cos ∠OAD ==. 15.(2019湖南岳阳)操作体验:如图,在矩形ABCD 中,点E 、F 分别在边AD 、BC 上,将矩形ABCD 沿直线EF 折叠,使点D 恰好与点B 重合,点C 落在点C ′处.点P 为直线EF 上一动点(不与E 、F 重合),过点P 分别作直线BE 、BF 的垂线,垂足分别为点M 和N ,以PM 、PN 为邻边构造平行四边形PMQN .(1)如图1,求证:BE =BF ;(2)特例感知:如图2,若DE =5,CF =2,当点P 在线段EF 上运动时,求平行四边形PMQN 的周长;(3)类比探究:若DE =a ,CF =b .①如图3,当点P 在线段EF 的延长线上运动时,试用含a 、b 的式子表示QM 与QN 之间的数量关系,并证明;②如图4,当点P 在线段FE 的延长线上运动时,请直接用含a 、b 的式子表示QM 与QN 之间的数量关系.(不要求写证明过程)【答案】(1)见解析;(2)2;(3)①QN ﹣QM =22a b -,证明见解析;②QM ﹣QN =22a b -.【解析】(1)证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠EFB,由翻折可知:∠DEF=∠BEF,∴∠BEF=∠EFB,∴BE=BF.(2)解:如图2中,连接BP,作EH⊥BC于H,则四边形ABHE是矩形,EH=AB.∵DE=EB=BF=5,CF=2,∴AD=BC=7,AE=2,在Rt△ABE中,∵∠A=90°,BE=5,AE=2,∴AB==,∵S△BEF=S△PBE+S△PBF,PM⊥BE,PN⊥BF,∴12•BF•EH=12•BE•PM+12•BF•PN,∵BE=BF,∴PM+PN=EH=,∵四边形PMQN是平行四边形,∴四边形PMQN的周长=2(PM+PN)=2.(3)①证明:如图3中,连接BP,作EH⊥BC于H.∵ED=EB=BF=a,CF=b,∴AD=BC=a+b,∴AE=AD﹣DE=b,∴EH=AB∵S△EBP﹣S△BFP=S△EBF,∴12BE•PM﹣12•BF•PN=12•BF•EH,∵BE=BF,∴PM﹣PN=EH∵四边形PMQN是平行四边形,∴QN﹣QM=(PM﹣PN②如图4,当点P在线段FE的延长线上运动时,同法可证:QM﹣QN=PN﹣PM。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年中考数学复习题
21.(8分)一个角的余角比它的补角的13大10°,求这个角的度数. 【解答】解:设这个角的度数是x °,根据题意,
得(90°﹣x )=13(180°﹣x )+10°,
解这个方程得x =30,
答:这个角的度数是30°.
22.(8分)已知:A =2x 2+3xy ﹣5x +1,B =﹣x 2+xy +2.
(1)求A +2B .
(2)若A +2B 的值与x 的值无关,求y 的值.
【解答】解:(1)∵A =2x 2+3xy ﹣5x +1,B =﹣x 2+xy +2,
∴A +2B =(2x 2+3xy ﹣5x +1)+2(﹣x 2+xy +2)
=2x 2+3xy ﹣5x +1﹣2x 2+2xy +4
=5xy ﹣5x +5;
(2)∵A +2B 的值与x 的值无关,且A +2B =(5y ﹣5)x +5,
∴5y ﹣5=0,
解得:y =1,
则y 的值是1.
23.(8分)已知,如图,点C 在线段AB 上,且AC =6cm ,BC =14cm ,点M 、N 分别是AC 、BC 的中点.
(1)求线段MN 的长度;
(2)在(1)中,如果AC =acm ,BC =bcm ,其它条件不变,你能猜测出MN 的长度吗?请说出你发现的结论,并说明理由.
【解答】解:(1)∵AC =6cm ,BC =14cm ,
点M 、N 分别是AC 、BC 的中点,
∴MC =3cm ,NC =7cm ,
∴MN =MC +NC =10cm ;
(2)MN=1
2(a+b)cm.理由是:
∵AC=acm,BC=bcm,
点M、N分别是AC、BC的中点,
∴MC=1
2
a cm,NC=12
b cm,
∴MN=MC+NC=1
2(a+b)cm.。

相关文档
最新文档