(易错题精选)初中数学数据分析基础测试题含答案解析(1)
(易错题精选)初中数学因式分解经典测试题附解析

(易错题精选)初中数学因式分解经典测试题附解析一、选择题1.下列因式分解正确的是()A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2C.xy﹣x=x(y﹣1)D.2x+y=2(x+y)【答案】C【解析】【分析】【详解】解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;B、a2+a+1无法因式分解,故此选项错误;C、xy﹣x=x(y﹣1),故此选项正确;D、2x+y无法因式分解,故此选项错误.故选C.【点睛】本题考查因式分解.2.下列各式中不能用平方差公式进行计算的是( )A.(m-n)(m+n) B.(-x-y)(-x-y)C.(x4-y4)(x4+y4) D.(a3-b3)(b3+a3)【答案】B【解析】A.(m-n)(m+n),能用平方差公式计算;B.(-x-y)(-x-y),不能用平方差公式计算;C.(x4-y4)(x4+y4),能用平方差公式计算;D. (a3-b3)(b3+a3),能用平方差公式计算.故选B.3.已知a﹣b=2,则a2﹣b2﹣4b的值为()A.2 B.4 C.6 D.8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a﹣b=2,∴原式=(a+b)(a﹣b)﹣4b=2(a+b)﹣4b=2a+2b﹣4b=2(a﹣b)=4.故选:B.【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.4.下列等式从左边到右边的变形,属于因式分解的是( )A .2ab(a-b)=2a 2b-2ab 2B .x 2+1=x(x+1x )C .x 2-4x+3=(x-2)2-1D .a 2-b 2=(a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x 是取任意实数,而等式右边的x ≠0C.不是因式分解,原式=(x -3)(x -1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.5.下列运算结果正确的是( )A .321x x -=B .32x x x ÷=C .326x x x ⋅=D .222()x y x y +=+【答案】B【解析】【分析】根据合并同类项法则、同底数幂乘除法法则、公式法分解因式逐项进行计算即可得.【详解】A 、3x ﹣2x =x ,故A 选项错误;B 、x 3÷x 2=x ,正确;C 、x 3•x 2=x 5,故C 选项错误;D 、x 2+2xy+y 2=(x+y)2,故D 选项错误,故选B.【点睛】本题考查了合并同类项、同底数幂乘除、公式法分解因式,熟练掌握相关的运算法则以及完全平方公式的结构特征是解题的关键.6.把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)【答案】C【解析】 试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.7.若()()21553x kx x x --=-+,则k 的值为( )A .-2B .2C .8D .-8【答案】B【解析】【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.【详解】∵()()253215x x x x -+=--∴2k -=-解得2k =故答案为:B .【点睛】本题考查了因式分解的问题,掌握十字相乘法是解题的关键.8.下列各式中,由等式的左边到右边的变形是因式分解的是( )A .(x +3)(x -3)=x 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab(a +b)D .x 2+1=x 1()x x+ 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没有把一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成了几个整式积的形式,故C 正确;D 、没有把一个多项式转化成几个整式积的形式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.9.多项式2()()()x y a b xy b a y a b ---+-提公因式后,另一个因式为( ) A .21x x --B .21x x ++C .21x x --D .21x x +-【答案】B【解析】【分析】各项都有因式y (a-b ),根据因式分解法则提公因式解答.【详解】 2()()()x y a b xy b a y a b ---+-=2()()()x y a b xy a b y a b -+-+-=2()(1)y a b x x -++,故提公因式后,另一个因式为:21x x ++,故选:B.【点睛】此题考查多项式的因式分解,掌握因式分解的方法是解题的关键.10.将2x 2a -6xab +2x 分解因式,下面是四位同学分解的结果:①2x (xa -3ab ), ②2xa (x -3b +1), ③2x (xa -3ab +1), ④2x (-xa +3ab -1). 其中,正确的是( )A .①B .②C .③D .④【答案】C【解析】【分析】直接找出公因式进而提取得出答案.【详解】2x 2a-6xab+2x=2x (xa-3ab+1).故选:C .【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.11.若a b +=1ab =,则33a b ab -的值为( )A .±B .C .±D .【答案】C【解析】【分析】将原式进行变形,3322()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的变形22()()4a b a b ab -=+-求得a-b 的值,从而求解.【详解】解:∵3322()()()a b ab ab a b ab a b a b -=-=+-∴33)a b b ab a =--又∵22()()4a b a b ab -=+-∴22()414a b -=-⨯=∴2a b -=±∴33(2)a b ab =±=±-故选:C .【点睛】本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键.12.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c 或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形.故选D .13.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 【答案】C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.故选C.【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.14.下列式子从左到右变形是因式分解的是()A.12xy2=3xy•4y B.(x+1)(x﹣3)=x2﹣2x﹣3C.x2﹣4x+1=x(x﹣4)+1 D.x3﹣x=x(x+1)(x﹣1)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.15.下列各式由左到右的变形中,属于分解因式的是()A.x2﹣16+6x=(x+4)(x﹣4)+6xB.10x2﹣5x=5x(2x﹣1)C.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2D.a(m+n)=am+an【答案】B【解析】【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A、变形的结果不是几个整式的积,不是因式分解;B、把多项式10x2﹣5x变形为5x与2x﹣1的积,是因式分解;C、变形的结果不是几个整式的积,不是因式分解;D、变形的结果不是几个整式的积,不是因式分解;故选:B.【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.16.若a b c 、、为ABC ∆三边,且满足222244a c b c a b -=-,则ABC ∆的形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均有可能 【答案】D【解析】【分析】把已知等式左边分解得到()()()2220a b a b c a b ⎡⎤+--+=⎣⎦,-a b =0或()222c a b -+=0,即a=b 或222c a b =+,然后根据等腰三角形和直角三角形的判定方法判断.【详解】因为a b c 、、为ABC ∆三边,222244a c b c a b -=-所以()()()2220a b a b c a b ⎡⎤+--+=⎣⎦ 所以-a b =0或()222c a b -+=0,即a=b 或222c a b =+所以ABC ∆的形状是等腰三角形、等腰三角形、等腰直角三角形故选:D【点睛】本题考查因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.17.下列等式从左到右的变形,属于因式分解的是A .8a 2b=2a ·4abB .-ab 3-2ab 2-ab=-ab (b 2+2b )C .4x 2+8x-4=4x 12-x x ⎛⎫+ ⎪⎝⎭ D .4my-2=2(2my-1) 【答案】D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、把一个多项式转化成几个整式积的形式,故D 符合题意;故选D .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.18.把代数式322363x x y xy -+分解因式,结果正确的是( )A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D【解析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.解答:解:322363x x y xy -+,=3x (x 2-2xy+y 2),=3x (x-y )2.故选D .19.下列不是多项式32633x x x +-的因式的是( )A .1x -B .21x -C .xD .3+3x【答案】A【解析】【分析】将多项式32633x x x +-分解因式,即可得出答案.【详解】解:∵32633x x x +-=23(21)3(21)(1)x x x x x x +-=-+又∵3+3x =3(x+1)∴21x -,x ,3+3x 都是32633x x x +-的因式,1x -不是32633x x x +-的因式. 故选:A【点睛】此题主要考查了提公因式法与十字相乘法的综合运用,熟练应用十字相乘法分解因式是解题关键.20.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=--【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C.左边不是多项式,不是因式分解,故C错误;D.右边不是整式积的形式,故D错误.故选B.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.。
(易错题精选)初中数学有理数经典测试题及答案解析(1)

(易错题精选)初中数学有理数经典测试题及答案解析(1)一、选择题1.已知a b 、两数在数轴上的位置如图所示,则化简代数式|||1||1|a b a b ---++的结果是( )A .2b -B .2aC .2D .22a -【答案】A【解析】【分析】根据数轴判断出绝对值符号内式子的正负,然后去绝对值合并同类项即可.【详解】解:由数轴可得,b <−1<1<a ,∴a −b >0,1−a <0,b +1<0,∴|||1||1|a b a b ---++,()()11a b a b =-+--+,11a b a b =-+---,2b =-,故选:A .【点睛】本题考查数轴,绝对值的性质,解答此题的关键是确定绝对值内部代数式的符号.2.数轴上表示数a 和数b 的两点之间的距离为6,若a 的相反数为2,则b 为( )A .4B .4-C .8-D .4或8-【答案】D【解析】【分析】根据相反数的性质求出a 的值,再根据两点距离公式求出b 的值即可.【详解】∵a 的相反数为2∴20a +=解得2a =-∵数轴上表示数a 和数b 的两点之间的距离为6 ∴6a b -=解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.3.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】 解:由题意可得:03282a +-=,则23a +=,解得:1a =, Q 3tan 60︒=()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.4.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,f 的算术平方根是8,求23125c d ab e f ++++( ) A .922B .922C .922+922-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,2=±e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.5.-6的绝对值是( )A .-6B .6C .- 16D .16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6故选B【点睛】考点:绝对值.6.已知整数1a ,2a ,3a ,4a ⋯满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+⋯依此类推,则2017a 的值为( )A .1007-B .1008-C .1009-D .2016- 【答案】B【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -;然后把n 的值代入进行计算即可得解. 【详解】解:10a =,21|1|011a a =-+=-+=-,32|2|121a a =-+=--+=-,43|3|132=-+=--+=-a a , 54|4|242=-+=--+=-a a ,…… ∴n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -; ∴20172017110082a -=-=-; 故选:B .【点睛】此题考查数字的变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.7.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b < 【答案】C【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.8.如图数轴所示,下列结论正确的是( )A .a >0B .b >0C .b >aD .a >b【答案】A【解析】【分析】根据数轴,可判断出a 为正,b 为负,且a 距0点的位置较近,根据这些特点,判定求解【详解】∵a 在原点右侧,∴a >0,A 正确;∵b 在原点左侧,∴b <0,B 错误;∵a 在b 的右侧,∴a >b ,C 错误;∵b 距离0点的位置远,∴a <b ,D 错误【点睛】本题是对数轴的考查,需要注意3点:(1)在0点右侧的数为正数,0点左侧的数为负数;(2)数轴上的数,从左到右依次增大;(3)离0点越远,则绝对值越大9.2019-的倒数是( )A .2019B .-2019C .12019D .12019- 【答案】C【解析】【分析】 先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.【详解】 2019-=2019,2019的倒数为12019故选C【点睛】 本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.10.下列各组数中,互为相反数的组是( )A .2-B .2-C .12-与2D . 【答案】A【解析】【分析】根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2=2,符合相反数的定义,故选项正确;B 、-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.11.已知整数01234,,,,,L a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+L a a a a a a a 以此类推,2019a 的值为( ) A .1007-B .1008-C .1009-D .1010-【答案】D【解析】【分析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:00a =, 101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a =-+=--+=-,545253a a =-+=--+=-,656363a a =-+=--+=-,767374a a =-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a =-,故选:D .【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.12.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( )A .6B .﹣6C .9D .﹣9【答案】C【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n ﹣2)2互为相反数,∴|m+3|+(n ﹣2)2=0,∴m+3=0,n ﹣2=0,解得m=﹣3,n=2,所以,m n =(﹣3)2=9.故选C .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.若2(21)12a a -=-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】【分析】 根据二次根式的性质得2(21)a -=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】解:∵2(21)a -=|2a-1|,∴|2a-1|=1-2a ,∴2a-1≤0,∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.14.如图,数轴上每相邻两点距离表示1个单位,点A ,B 互为相反数,则点C 表示的数可能是( )A .0B .1C .3D .5【答案】C【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C 表示的数.【详解】∵点A ,B 互为相反数,∴AB 的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C 在正半轴距原点3个单位长度, ∴点C 表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键.15.已知有理数a 、b 在数轴上的位置如图所示,则下列代数式的值最大的是( )A .a +bB .a ﹣bC .|a +b |D .|a ﹣b | 【答案】D【解析】【分析】根据数轴确定出a 是负数,b 是正数,并且b 的绝对值大于a 的绝对值,然后对各选项分析判断,再根据有理数的大小比较,正数大于一切负数,然后利用作差法求出两个正数的大小,再选择答案即可.【详解】由图可知,a<0,b>0,且|b|>|a|,∴−a<b ,A. a+b>0,B. a−b<0,C. |a+b|>0,D. |a−b|>0,因为|a−b|>|a+b|=a+b ,所以,代数式的值最大的是|a−b|.故选:D.【点睛】此题考查有理数的大小比较,数轴,解题关键在于利用绝对值的非负性进行解答.16.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b ,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】 利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立;若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.17.下列各组数中互为相反数的是( )A .5B .-和(-C .D .﹣5和15 【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A 、5,两数相等,故此选项错误;B 、和-()互为相反数,故此选项正确;C 、=-2,两数相等,故此选项错误;D 、-5和15,不互为相反数,故此选项错误. 故选B .【点睛】 本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.18.实数,a b ||a b + )A .2a -B .2b -C .2a b +D .2a b -【答案】A【解析】【分析】 2,a a = 再根据去绝对值的法则去掉绝对值,合并同类项即可.【详解】 解:0,,a b a b Q <<> 0,a b ∴+<22||a a b b a a b b ∴++=+++()a a b b =--++a ab b =---+2.a =-故选A .【点睛】本题考查的是二次根式与绝对值的化简运算,掌握化简的法则是解题关键.19.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2 【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.20.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤ 【答案】D【解析】【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【详解】如果||a a =-,即一个数的绝对值等于它的相反数,则0a ≤.故选D .【点睛】本题考查绝对值,熟练掌握绝对值的性质是解题关键.。
(易错题精选)初中数学函数基础知识基础测试题含答案解析

(易错题精选)初中数学函数基础知识基础测试题含答案解析一、选择题1.如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为v,由于v分为三个阶段,①小正方形向右未完成穿入大正方形,=⨯-⨯=-≤.S vt vt vt2214(1)②小正方形穿入大正方形但未穿出大正方形,22113S=⨯-⨯=,③小正方形穿出大正方形,=⨯-⨯-=+≤,22(11)3(1)S vt vt vt∴符合变化趋势的是A和C,但C中面积减小太多不符合实际情况,∴只有A中的符合实际情况.故选A.2.如图1,在矩形ABCD中,动点P从点A出发,以相同的速度,沿A→B→C→D→A方向运动到点A处停止.设点P运动的路程为x,△PAB的面积为y,如果y与x的函数图象如图2所示,则矩形ABCD 的面积为( )A .24B .40C .56D .60【答案】A【解析】【分析】 由点P 的运动路径可得△PAB 面积的变化,根据图2得出AB 、BC 的长,进而求出矩形ABCD 的面积即可得答案.【详解】∵点P 在AB 边运动时,△PAB 的面积为0,在BC 边运动时,△PAB 的面积逐渐增大, ∴由图2可知:AB=4,BC=10-4=6,∴矩形ABCD 的面积为AB·BC=24, 故选:A .【点睛】本题考查分段函数的图象,根据△PAB 面积的变化,正确从图象中得出所需信息是解题关键.3.如图,在Rt ABC ∆中,点D 为AC 边中点,动点P 从点D 出发,沿着D A B →→的路径以每秒1个单位长度的速度运动到B 点,在此过程中线段CP 的长度y 随着运动时间x 的函数关系如图2所示,则BC 的长为( )A .1323B .3C 455D 145 【答案】C【解析】【分析】根据图象和图形的对应关系即可求出CD 的长,从而求出AD 和AC ,然后根据图象和图形的对应关系和垂线段最短即可求出CP ⊥AB 时AP 的长,然后证出△APC ∽△ACB ,列出比例式即可求出AB ,最后用勾股定理即可求出BC .【详解】解:∵动点P 从点D 出发,线段CP 的长度为y ,运动时间为x 的,根据图象可知,当x =0时,y=2∴CD=2∵点D 为AC 边中点,∴AD=CD=2,CA=2CD=4由图象可知,当运动时间x=()211s +时,y 最小,即CP 最小 根据垂线段最短∴此时CP ⊥AB ,如下图所示,此时点P 运动的路程DA +AP=()()1211211⨯+=+所以此时AP=(21111AD -=∵∠A=∠A ,∠APC=∠ACB=90°∴△APC ∽△ACB ∴AP AC AC AB = 即1144AB= 解得:1611在Rt △ABC 中,225511AB AC -= 故选C .【点睛】此题考查的是根据函数图象解决问题,掌握图象和图形的对应关系、相似三角形的判定及性质和勾股定理是解决此题的关键.4.函数1x -中,自变量x 的取值范围是( ) A .x≠1B .x >0C .x≥1D .x >1【答案】D【解析】【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】由题意得,x-1≥0且x-1≠0,解得x >1.故选D.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.【详解】解:A、距离越来越大,选项错误;B、距离越来越小,但前后变化快慢一样,选项错误;C、距离越来越大,选项错误;D、距离越来越小,且距离先变化慢,后变化快,选项正确;故选:D.【点睛】本题考查了函数图象,观察距离随时间的变化是解题关键.6.小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()A .B .C .D .【答案】C【解析】【分析】根据题意可对每个选项逐一分析判断图象得正误.【详解】解:A 、从图象上看小亮的路程走平路不变是不正确的,故不是.B 、从图象上看小亮走的路程随时间有一段更少了,不正确,故不是.C 、小亮走的路程应随时间的增大而增大,两次平路的两条直线互相平行,此图象符合,故正确.D 、因为平路和上坡路及下坡路的速度不一样,所以不应是一条直线,不正确,故不是. 故选C .7.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( )A .13B .16C .12D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.8.小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟【答案】B【解析】【分析】 先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间【详解】根据图形得,从家到学校:上坡距离为1km ,用时5min ,下坡距离为2km ,用时为4min 故上坡速度115V =(km/min),下坡速度22142V ==(km/min) 从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km ,下坡1km故上坡时间12t15==10(min),下坡时间21t12==2(min)∴总用时为:10+2=12(min)故选:B【点睛】本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应9.如图,矩形ABCD中,6cmAB=,3cmBC=,动点P从A点出发以1cm/秒向终点B运动,动点Q同时从A点出发以2cm/秒按A D C→→B→的方向在边AD,DC,CB上运动,设运动时间为x(秒),那么APQ∆的面积()2cmy随着时间x (秒)变化的函数图象大致为()A.B.C.D.【答案】A【解析】【分析】根据题意分三种情况讨论△APQ面积的变化,进而得出△APQ的面积y(cm2)随着时间x (秒)变化的函数图象大致情况.【详解】解:根据题意可知:AP=x,Q点运动路程为2x,①当点Q在AD上运动时,y=12AP•AQ=12x•2x=x2,图象为开口向上的二次函数;②当点Q在DC上运动时,y=12AP•DA=12x×3=32x,是一次函数;③当点Q在BC上运动时,y=12AP•BQ=12x•(12−2x)=−x2+6x,为开口向下的二次函数,结合图象可知A选项函数关系图正确,故选:A.【点睛】本题考查了动点问题的函数图象,解决本题的关键是分三种情况讨论三角形APQ的面积变化.10.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离S(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km;乙在途中停留了0.5h;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选B.考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.11.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()A.y=x+2 B.y=x2+2 C.2x+D.y=12 x+【答案】C 【解析】试题分析:A .2y x =+,x 为任意实数,故错误;B .22y x =+,x 为任意实数,故错误;C .2y x =+,20x +≥,即2x ≥-,故正确;D .12y x =+,20x +≠,即2x ≠-,故错误; 故选C . 考点:1.函数自变量的取值范围;2.在数轴上表示不等式的解集.12.某市在创建文明城市工作中,围绕重点,精准发力,进一步净化了城市环境,美化了市容市貌,如图1,园林队正在迎春公园进行绿化,图2为绿化面积S (单位:2m )与工作时间t (单位:h )之间的关系图象,工作期间有1小时休息,由图可知,休息后每小时绿化面积为( )A .250mB .280mC .2100mD .240m【答案】A【解析】【分析】 由图象可知休息1小时后,园林队工作了2个小时,绿化了216060100m -=,即可求出答案.【详解】解:由图象可知,园林队休息后继续工作了:422h -=,绿化面积为216060100m -=,∴休息后每小时绿化面积为:2100250m ÷=故选:A .【点睛】本题考查的知识点是函数的图象,从图象中找出与所求内容相关的信息是解此题的关键.13.如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s 与t 的大致图象应为( )A .AB .BC .CD .D【答案】D【解析】 根据题意,设小正方形运动的速度为v ,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt ,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,D 符合,故选D .【点睛】本题考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.14.当实数x 2x -41y x =+中y 的取值范围是( ) A .7y ≥-B .9y ≥C .9y <-D .7y <-【答案】B【解析】【分析】根据二次根式有意义易得x 的取值范围,代入所给函数可得y 的取值范围.【详解】解:由题意得20x -≥,解得2x ≥, 419x ∴+≥,即9y ≥.故选:B .【点睛】本题考查了函数值的取值的求法;根据二次根式被开方数为非负数得到x 的取值是解决本题的关键.15.如图1,点F 从菱形ABCD 的项点A 出发,沿A -D -B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (m 2)随时间x (s)变化的关系图象,则a 的值为( )A .5B .2C .52D .25【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =,进而求出BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴==∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中,2222(5)21BE BD DE =-=-=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+-解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.16.按如图所示的运算程序,能使输出k的值为1的是()A.x=1,y=2 B.x=2,y=1 C.x=2,y=0 D.x=1,y=3【答案】B【解析】【分析】把各项中x与y的值代入运算程序中计算即可.【详解】解:A、把x=1,y=2代入y=kx,得:k=2,不符合题意;B、把x=2,y=1代入y=kx-1,得:1=2k﹣1,即k=1,符合题意;C、把x=2,y=0代入y=kx-1,得:0=2k﹣1,即k=12,不符合题意;D、把x=1,y=3代入y=kx,得:k=3,不符合题意,故选:B.【点睛】此题考查了待定系数法求一次函数解析式,以及程序图的计算,熟练掌握待定系数法是解本题的关键.17.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A.B.C.D.【答案】C【解析】【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。
2021-2022学年北师大版八年级数学上册《第6章数据的分析》期末复习易错题型专题测试(附答案)

2021-2022学年北师大版八年级数学上册《第6章数据的分析》期末复习易错题型专题测试(附答案)一.选择题(共10小题,满分40分)1.某校四个绿化小组一天植树的棵数如下:9,9,m,7,已知这组数据的众数和平均数相等,那么这组数据的中位数是()A.8B.9C.10D.122.在一次体检中,甲、乙、丙、丁四位同学的平均体重为52.5kg,而甲、乙、丙三位同学的平均体重为52.3kg.下列说法正确的是()A.四位同学体重的中位数一定是其中一位同学的体重B.丁同学的体重一定高于其他三位同学的体重C.丁同学的体重为53.1kgD.四位同学体重的众数一定是52.5kg3.若一组数据x1+1,x2+1,x3+1…x n+1的平均数为18,方差为2,则数据x1+2,x2+2,x3+2……,x n+2的平均数和方差分别是()A.18,2B.19,3C.19,2D.20,44.x1,x2,...,x10的平均数为a,x11,x12,...,x50的平均数为b,则x1,x2, (x50)平均数为()A.a+b B.C.D.5.若一组数据a1,a2,……,a n的平均数为10,方差为4,那么数据2a1+3,2a2+3,…,2a n+3的平均数和方差分别是()A.13,4B.23,8C.23,16D.23,196.某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是()A.平均数B.中位数C.方差D.极差7.一家鞋店在一段时间内销售某种女鞋50双,各种尺码的销售量如表所示:尺码(厘米)2222.52323.52424.525销售量(双)12315731如果你是店长,为了增加销售量,你最关注哪个统计量()A.平均数B.众数C.中位数D.方差8.小明对居住在某小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图,这组数据的众数和中位数分别是()A.6,4B.6,6C.4,4D.4,69.某人上山的平均速度为3km/h,沿原路下山的平均速度为5km/h,上山用1h,则此人上下山的平均速度为()A.4km/h B.3.75km/h C.3.5km/h D.4.5km/h10.10个人围成一圈每人想一个自然数,并告诉在他两边的人,然后每人将他两边的人告诉他的数的平均数报出来,报的结果如图,则报13的人心想的数是()A.12B.14C.16D.18二.填空题(共9小题,满分36分)11.学校足球队5名队员的年龄分别是15,13,15,14,13,其方差为.12.已知一个样本0,﹣1,x,1,3它们的平均数是2,则这个样本的中位数是.13.有11个正整数,平均数是10,中位数是9,众数只有一个8,问最大的正整数最大为.14.某班学生在希望工程献爱心的捐献活动中,将省下的零用钱为贫困山区失学儿童捐款,有15位同学捐了20元,20位同学捐了10元,3位同学捐了8元,10位同学间了5元捐了,2位同学捐了3元,则该班学生共捐款元,平均捐款元,其中众数是元.15.一个样本为1、3、2、2、a,b,c.已知这个样本的众数为3,平均数为2,那么这个样本的方差为.16.已知数据x1,x2,x3,x4,x5的标准差为4,平均数为,则各数据与的差的平方和是.17.小明去商场买作业本,第一次买了4本不同类型的作业本,平均价格是0.85元,第二次买了6本,平均价格是0.95元,则他两次所买练习本的平均价格为.18.小明家去年的饮食、教育和其他支出分别为3600元,1200元,7200元,小亮家去年的饮食、教育和其他支出分别为3600元,1200元,7200元.小明家今年的这三项支出依次比去年增长了10%,20%,30%,小亮家今年的这三项支出依次比去年增长了20%,30%,10%.小明和小亮家今年的总支出比去年增长的百分数分别为和.19.已知数据x1,x2,x3,…,x n,的平均数是m,中位数是n,那么数据3x1+7,3x2+7,3x3+7,…,3x n+7的平均数等于,中位数是.三.解答题(共5小题,满分44分)20.为了发展学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩记录如表:射击次序(次)12345678910甲的成绩(环)8979867a108乙的成绩(环)679791087710(1)经计算甲和乙的平均成绩是8(环),请求出表中的a=;(2)甲成绩的中位数是环,乙成绩的众数是环;(3)若甲成绩的方差是1.2,请求出乙成绩的方差,判断甲、乙两人谁的成绩更为稳定?21.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m).绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图①中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定10人能进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.22.图1是某城市三月份1至8日的日最高气温随时间变化的折线统计图,小刚根据图1将数据统计整理后制成了图2.根据图中信息,解答下列问题:(1)将图2补充完整;(2)这8天的日最高气温的平均气温是℃;(3)计算这8天的日最高气温的方差.23.某市为了解学生数学学业水平,对八年级学生进行质量监测.甲、乙两个学校八年级各有300名学生参加了质量监测,分别从这两所学校个随机抽取了20名学生的本次测试成绩如下(满分100分)甲:75 86 74 81 76 75 70 95 70 79 81 74 70 80 86 69 83 75 86 75乙:73 93 88 81 40 72 81 94 83 77 83 80 70 81 73 78 82 80 70 81将收集的数据进行整理,制成如下条形统计图:注:60分以下为不及格,60~69分为及格,70~79分为良好,80分及以上为优秀.通过对两组数据的分析制成上面的统计表,请根据以上信息回答下列问题:(1)补全条形统计图,并估计本次监测乙校达到优秀的学生总共约有多少人?(2)求出统计表中的a,b的值;(3)请判断哪个学校的数学学业水平较好,说说你的理由.24.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表:平均数(分)中位数(分)众数(分)初中部85高中部85100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.友情提示:一组数据的方差计算公式是S2=,其中为n个数据x1,x2,…,x n的平均数.参考答案一.选择题(共10小题,满分40分)1.解:∵众数为9,平均数等于众数,∴(9+9+m+7)=9,解得m=11,∴数据按从小到大排列为:7,9,9,11,∴这组数据的中位数=(9+9)÷2=9.故选:B.2.解:A、四位同学体重的中位数一定是其中两位同学的体重的平均数,本选项说法错误;B、丁同学的体重一定高于其他三位同学的体重的平均数,但不一定高于其他三位同学的体重,本选项说法错误;C、设丁同学的体重为xkg,由题意得,=52.5,解得,x=53.1,∴丁同学的体重为53.1kg,本选项说法正确;D、四位同学体重的众数不一定是52.5kg,本选项说法错误;故选:C.3.解:∵数据x1+1,x2+1,x3+1…x n+1的平均数为18,∴数据x1+2,x2+2,x3+2……,x n+2的平均数为18+1=19;∵数据x1+1,x2+1,x3+1…x n+1的方差是2,∴数据x1+2,x2+2,x3+2……,x n+2的方差是2;故选:C.4.解:前10个数的和为10a,后40个数的和为40b,50个数的平均数为.故选:D.5.解:数据a1,a2,……,a n的平均数为10,那么数据2a1+3,2a2+3,…,2a n+3的平均数为2×10+3=23,数据a1,a2,……,a n,方差为4,那么数据2a1+3,2a2+3,…,2a n+3的方差为4×22=16,故选:C.6.解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最低成绩写得更低了,计算结果不受影响的是中位数,故选:B.7.解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:B.8.解:6小时出现了20次,出现的次数最多,则众数为6;因为共有50个人,按大小顺序排列在中间的两个人的锻炼时间都为6小时,则中位数为6.故选:B.9.解:根据题意得,路程s=上山的平均速度v1×上山时间t1=3km/h×1h=3km,∴下山时间t2===0.6h,∴平均速度v==3.75km/h,故选:B.10.解:设报13的人心想的数是x,报5的人心想的数是28﹣x,报7的人心想的数是x﹣16,报9的人心想的数是32﹣x,报11的人心想的数是x﹣12,所以有x﹣12+x=2×12,解得x=18.故选:D.二.填空题(共9小题,满分36分)11.解:5名队员的平均年龄为(15+13+15+14+13)=14,所以数据的方差为S2=[(15﹣14)2+(13﹣14)2+(15﹣14)2+(14﹣14)2+(13﹣14)2]=0.8.故答案为0.8.12.解:∵0,﹣1,x,1,3的平均数是2,∴x=7,把0,﹣1,7,1,3按大小顺序排列为﹣1,0,1,3,7,∴个样本的中位数是1,故答案为1.13.解:∵11个正整数,平均数是10,∴和为110,∵中位数是9,众数只有一个8,∴当11个正整数为1,1,8,8,8,9,9,10,10,11,35时,最大的正整数最大为35,故答案为:35.14.解:该班学生共15+20+3+10+2=50人,共捐款20×15+10×20+3×8+10×5+2×3=580元,平均捐款=11.6;10出现的次数最多,所以众数是10.故填580;11.6;10.15.解:因为众数为3,可设a=3,b=3,c未知平均数=(1+3+2+2+3+3+c)=2,解得c=0根据方差公式S2=[(1﹣2)2+(3﹣2)2+(2﹣2)2+(2﹣2)2+(3﹣2)2+(3﹣2)2+(0﹣2)2]=故填.16.解:由题意知,方差S2=[(x1﹣)2+(x2﹣)2+(x3﹣)2+(x4﹣)2+(x5﹣)2]=42=16∴(x1﹣)2+(x2﹣)2+(x3﹣)2+(x4﹣)2+(x5﹣)2=16×5=80.故填80.17.解:两次所买练习本的平均价格=(0.85×4+0.95×6)÷10=0.91元.故填0.91元.18.解:去年的支出总数=3600+1200+7200=12000元,小明家今年的增加的支出=3600×10%+1200×20%+7200×30%=2760元,∴小明家今年的总支出比去年增长的百分数=2760÷12000=23%.小亮家今年的增加的支出=3600×20%+1200×30%+7200×10%=1800元,∴小亮家今年的总支出比去年增长的百分数=1800÷12000=15%.故填23%,15%.19.解:已知数据x1,x2,x3,…,x n的平均数是m,中位数是n,即n为最中间的那个数,那么数据3x1+7,3x2+7,3x3+7,…,3x n+7的中位数为3n+7;其平均数为3[(x1+x2+x3,…+x n)]+7=3m+7.三.解答题(共5小题,满分44分)20.解:(1)∵甲的平均成绩是8(环),∴(8+9+7+9+8+6+7+a+10+8)=8,解得a=8,故答案为:8;(2)甲成绩排序后最中间的两个数据为8和8,∴甲成绩的中位数是(8+8)=8;乙成绩中出现次数最多的为7,故乙成绩的众数是7,故答案为:8,7;(3)乙成绩的方差为[(﹣1)2×4+12×2+22×2+(﹣2)2+02]=1.8,∵甲和乙的平均成绩是8(环),而甲成绩的方差小于乙成绩的方差,∴甲的成绩更为稳定.21.解:(1)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图,∵=1.61,∴这组数据的平均数是1.61.∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数为1.65,∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.60,有∴这组数据的中位数为1.60,(Ⅲ)能.∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前10名;∵1.65m>1.60m,∴能进入复赛.22.解:(1)由题可得,3℃的有2天.如图所示:(2)平均气温为:(2×1+2×2+2×3+4)=2(℃);故答案为:2;(3)这8天的日最高气温的方差为:[(0﹣2)2+(3﹣2)2+(1﹣2)2+(3﹣2)2+(2﹣2)2+(1﹣2)2+(2﹣2)2+(4﹣2)2]=.23.解:(1)补全条形统计图:本次监测乙校达到优秀的学生总共约有300×=180(人);(2)乙班的中位数a=(80+81)=80.5;甲班的众数b为75;(3)两组数据的平均数相同,而两组数据良好以上的人数相同,但是乙组数据优秀的人数较多,故乙校的数学学业水平较好.(答案不唯一)24.解:(1)填表:初中平均数为:(75+80+85+85+100)=85(分),众数85(分);高中部中位数80(分).故答案为:85,85,80;(2)初中部成绩好些.因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩好些.(3)∵=[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,=[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴<,因此,初中代表队选手成绩较为稳定.。
(易错题精选)初中数学数据的收集与整理知识点总复习附答案(1)

(易错题精选)初中数学数据的收集与整理知识点总复习附答案(1)一、选择题1.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数,“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少,如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是( )A.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多B.以低于80 km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少C.以高于80 km/h的速度行驶时,行驶相同路程,丙车比乙车省油D.以80 km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升【答案】D【解析】【分析】【详解】解:A. 以相同速度行驶相同路程,三辆车中,甲车燃油效率最高,甲车消耗汽油最少,此选项错误;B. 以低于80km/h的速度行驶时,行驶相同路程,三辆车中,甲车燃油效率最高,甲车消耗汽油最少,此选项错误;C. 以高于80km/h的速度行驶时,行驶相同路程,乙车燃油效率大于丙车燃油效率,乙车比丙车省油,此选项错误;D. 由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1L,行驶100km时耗油10L,此选项正确;故选D.【点睛】本题主要考查折线统计图,理解燃油效率的定义并从折线统计图中得出解题所需要的数据时解题的关键.2.下列判断正确的是()A.高铁站对旅客的行李的检查应采取抽样调查B.一组数据5、3、4、5、3的众数是5C.“掷一枚硬币正面朝上的概率是12”表示每抛掷硬币2次就必有1次反面朝上D.甲,乙组数据的平均数相同,方差分别是S甲2=4.3,S乙2=4.1,则乙组数据更稳定【答案】D【解析】A,高铁站对旅客的行李的检查应采用普查,故错误;B,数据5、3、4、5、3的众数是5和3,故错误;C,“掷一枚硬币正面朝上的概率是12”表示每掷硬币2次不一定有1次正面朝上,故错误;D,甲、乙两组数据的平均数相同,方差分别是S甲2=4.3,S乙2=4.1,则乙组数据稳定,故正确;故选D.3.下列调查中,适宜用全面调查方式的是()A.飞机起飞前,对其零部件进行检查B.调查一个条河流的水污染情况C.调查一批新型节能灯的使用寿命D.调查湖南省2015~2016学年度七年级学生的身高情况【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】A、飞机起飞前,对其零部件进行检查,意义重大,用全面调查,故此选项正确;B、调查一个条河流的水污染情况,意义不大,应采用抽样调查,故此选项错误;C、调查一批新型节能灯的使用寿命,破坏性较强,应采用抽样调查,故此选项错误;D、调查湖南省2015~2016学年度七年级学生的身高情况,人数众多,应采用抽样调查,故此选项错误;故选:A.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.为估计某池塘中鱼的数量,先捕100只鱼,做上标记后再放回池塘,一段时间后,再从从中随机捕500只,其中有标记的鱼有5只,请估计这方池塘中鱼的数量约有()只A.8000 B.10000 C.11000 D.12000【答案】B【解析】【分析】首先由题意可知:重新捕获500条,其中带标记的有5只,可以知道,在样本中,有标记的占到5500;接下来再根据在总体中,有标记的共有100只,根据比例进行解答,即可得到题目的结论.【详解】由题意可知在样本中有标记的占到5 500,又∵先总共有100只鱼做上标记,∴100÷5500=10000只.故选B.【点睛】此题考查用样本估计总体,解题关键在于掌握运算法则.5.体育委员对七(5)班的立定跳远成绩作全面调查,绘成如下统计图,如果把高于0.8米的成绩视为合格,再绘制一张扇形图,“不合格”部分对应的圆心角是().A.50°B.60°C.90°D.80°【答案】C【解析】由题意得35351284+++++×360°=90°;故选C .点睛:本题主要考查条形统计图和扇形统计图,计算扇形统计图中某一部分所对圆心角的度数,需要先求出占总体的百分比,然后用360°乘以这个百分比就可得.6.随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是()A.90万元B.450万元C.3万元D.15万元【答案】A【解析】1(3.4 2.9 3.0 3.1 2.6)35x=++++=.所以4月份营业额约为3×30=90(万元).7.下列调查适合作普查的是()A.了解“嫦娥三号”卫星零部件的状况B.了解在校大学生的主要娱乐方式C.日光灯管厂要检测一批灯管的使用寿命D.了解某市居民对废电池的处理情况【答案】A【解析】【分析】【详解】解:A、了解“嫦娥三号”卫星零部件的状况调查需要精确,适合普查,故本选项正确;B、了解在校大学生的主要娱乐方式适合抽样调查,故本选项错误;C、日光灯管厂要检测一批灯管的使用寿命适合抽样调查,故本选项错误;D、了解某市居民对废电池的处理情况适合抽样调查,故本选项错误;故选A.【点睛】本题考查全面调查与抽样调查.8.为了解一批产品的质量,从中抽取300个产品进行检验,在这个问题中,被抽取的300个产品叫做()A.总体B.个体C.总体的一个样本D.调查方式【答案】C【解析】【分析】根据总体、个体、样本、样本容量的含义:我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;被抽取的300个产品叫做总体的一个样本,据此解答即可.【详解】解:根据总体、个体、样本、样本容量的含义,可得被抽取的300个产品叫做总体的一个样本.故选C【点睛】此题主要考查了总体、个体、样本、样本容量,要熟练掌握,解答此题的关键是要明确:①总体:我们把所要考察的对象的全体叫做总体;②个体:把组成总体的每一个考察对象叫做个体;③样本:从总体中取出的一部分个体叫做这个总体的一个样本;④样本容量:一个样本包括的个体数量叫做样本容量.9.老师布置10道题作为课堂练习,学习委员将全班同学的答题情况绘制成右图,问答对8道题同学频率是( )A.0.8 B.0.4 C.0.25 D.0.08【答案】B【解析】【分析】根据条形统计图,求出答对题的总人数,再求出答对8道题的同学人数,然后利用答对8道题的同学人数÷答对题的总人数即可得出答案.【详解】解:答对题的总人数:4+20+18+8=50(人)答对8道题的人数: 20人∴答对8道题的同学的频率:20÷50=0.4故选:B【点睛】本题主要考查了条形统计图的应用,利用条形统计图得出答对题的总人数与答对8道题的人数是解题的关键.10.随机抽取某校八年级60名女生测试一分钟仰卧数,依据数据绘制成如图所示的数分布直方图,则这60名女生仰卧起坐达到优良(次数不低于41次)频率为().A.0.65 B.0.35 C.0.25 D.0.1【答案】B【解析】【分析】根据1分钟仰卧起坐的次数在40.5~60.5的频数除以总数60,得出结果即可.【详解】这60名女生仰卧起坐达到优良(次数不低于41次)的频率为1560.35 60+=.故选:B.【点睛】本题考查了频数分布直方图,学会观看频数分布直方图,频率等于频数除以总数.11.下列关于统计与概率的知识说法正确的是()A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数【答案】B【解析】【分析】根据事件发生的可能性的大小,可判断A,根据调查事物的特点,可判断B;根据调查事物的特点,可判断C;根据方差的性质,可判断D.【详解】解:A、武大靖在2018年平昌冬奥会短道速滑500米项目上可能获得获得金牌,也可能不获得金牌,是随机事件,故A说法不正确;B、灯泡的调查具有破坏性,只能适合抽样调查,故检测100只灯泡的质量情况适宜采用抽样调查,故B符合题意;C、了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C说法错误;D、甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故D说法错误;故选B.【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.方差越小波动越小.12.如图是某班一次数学测试成绩的频数直方图,则成绩在69.5~89.5分范围内的学生共有()A.24人B.10人C.14人D.29人【答案】A【分析】根据直方图给出的数据,把成绩在69.589.5~分范围内的学生人数相加即可得出答案. 【详解】解:成绩在69.589.5~分范围内的学生共有:101424(+=人), 故选A . 【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13.下列说法正确的是 ( )A .为了了解某中学800名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50名学生的视力B .若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C .了解无锡市每天的流动人口数,采用抽查方式D .“掷一枚硬币,正面朝上”是必然事件 【答案】C 【解析】 【分析】 【详解】A .为了了解某中学800名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50,故错误;B .若一个游戏的中奖率是1%,则做100次这样的游戏有可能中奖,故错误;C .了解无锡市每天的流动人口数,采用抽查方式,正确;D .因为一枚硬币有正反两面,所以“掷一枚硬币,正面朝上”是随机事件,故错误; 故选C .14.统计得到的一组数据有80个,其中最大值为141,最小值为50,取组距为10,可以分成( )A .10组B .9组C .8组D .7组 【答案】A 【解析】 【分析】分析题意求组数,根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位. 【详解】解:在样本数据中最大值为141,最小值为50,它们的差是141-50=91,已知组距为10,那么由于91÷10=9.1, 故可以分成10组. 故选:A .本题考查的是组数的计算,属于基础题,掌握组数的计算方法是解答此题的关键,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.15.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多【答案】C【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.【详解】解:A、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;B、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;C、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确;D、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误.故选C.【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.16.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市【答案】D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.17.下列调查中,最适合采用抽样调查的是()A.调查我市居民对汽车废气污染环境的看法B.对全班同学的身高情况进行调查C.乘坐高铁对旅客的行李的检查D.对学校的卫生死角进行调查【答案】A【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、调查我市居民对汽车废气污染环境的看法,适宜抽样调查;B、对全班同学的身高情况进行调查,调查范围小,适宜普查;C、乘坐高铁对旅客的行李的检查,调查范围小,适宜普查;D、对学校的卫生死角进行调查,必须普查,故选:A . 【点睛】本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.18.下列说法正确的是( )A .了解全国中学生最喜爱哪位歌手,适合全面调查.B .甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C .某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D .一组数据:3,2,5,5,4,6的众数是5. 【答案】D 【解析】 【分析】根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断. 【详解】A 、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用 抽样调查的调查方式,故本选项错误;B 、甲乙两种麦种连续3年的平均亩产量的方差为:25S =甲,20.5S =乙,因方差越小越稳定,则乙麦种产量比较稳,故本选项错误;C 、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道这次成绩的中位数,故本选项错误;D 、.一组数据:3,2,5,5,4,6的众数是5,故本选项正确;. 故选D . 【点睛】本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念和求解方法是解题关键.19.某市为了解旅游人数的变化情况,收集并整理了2017年1月至2019年12月期间的月接待旅游量(单位:万人次)的数据并绘制了统计图如下:根据统计图提供的信息,下列推断不合理...的是( )A.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份B.2019年的月接待旅游量的平均值超过300万人次C.2017年至2019年,年接待旅游量逐年增加D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性更小,变化比较平稳【答案】D【解析】【分析】根据折线统计图的反映数据的增减变化情况,这个进行判断即可.【详解】解:A、2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份,故选项不符合题意;B、从2019年3月起,每个月的人数均超过300万人,并且整体超出的还很多,故选项不符合题意;C、从折线统计图的整体变化情况可得2017年至2019年,年接待旅游量逐年增加,故选项不符合题意;D、从统计图中可以看出2017年至2019年,各年下半年(7月至12月)的月接待旅游量相对于上半年(1月至6月)波动性要大,故选项符合题意;故选:D.【点睛】本题考查折线统计图的意义和反映数据的增减变化情况,正确的识图是正确判断的前提.20.下列调查中,适宜采用全面调查方式的是()A.了解全国中学生的视力情况 B.调查某批次日光灯的使用情况C.调查市场上矿泉水的质量情况 D.调查机场乘坐飞机的旅客是否携带了违禁物品【答案】D【解析】解:A.人数太多,不适合全面调查,此选项错误;B.是具有破坏性的调查,因而不适用全面调查方式,此选项错误;C.市场上矿泉水数量太大,不适合全面调查,此选项错误;D.违禁物品必须全面调查,此选项正确.故选D.。
(易错题精选)初中数学有理数解析含答案(1)

(易错题精选)初中数学有理数解析含答案(1)一、选择题1.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a >C .ad bc >D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a<0,故B 不符合题意; C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.2.如图,a 、b 在数轴上的位置如图,则下列各式正确的是( )A .ab >0B .a ﹣b >0C .a+b >0D .﹣b <a【答案】B【解析】解:A 、由图可得:a >0,b <0,且﹣b >a ,a >b∴ab <0,故本选项错误;B 、由图可得:a >0,b <0,a ﹣b >0,且a >b∴a+b <0,故本选项正确;C 、由图可得:a >0,b <0,a ﹣b >0,且﹣b >a∴a+b <0;D 、由图可得:﹣b >a ,故本选项错误.故选B .3.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b > 【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案. 【详解】 A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.4.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数,且m <n ,|m|<|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选:C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.5.如果a 是实数,下列说法正确的是( )A.2a和a都是正数B.(-a+2,2a)可能在x轴上C.a的倒数是1aD.a的相反数的绝对值是它本身【答案】B【解析】【分析】A、根据平方和绝对值的意义即可作出判断;B、根据算术平方根的意义即可作出判断;C、根据倒数的定义即可作出判断;D、根据绝对值的意义即可作出判断.【详解】A、2a和a都是非负数,故错误;B、当a=0时,(-a+2,2a)在x轴上,故正确;C、当a=0时,a没有倒数,故错误;D、当a≥0时,a的相反数的绝对值是它本身,故错误;故答案为:B.【点睛】本题考查了算术平方根,绝对值,倒数,乘方等知识点的应用,比较简单.6.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是()A.B.C.D.【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答.【详解】解:,原点在a,b的中间,如图,由图可得:,,,,,故选项A错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.7.在有理数2,-1,0,-5中,最大的数是()A.2 B.C.0 D.【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.8.在数轴上,点A,B在原点O的两侧,分别表示数a和3,将点A向左平移1个单位=,则a的值为().长度,得到点C.若OC OBA.3-B.2-C.1-D.2【答案】B【解析】【分析】先用含a的式子表示出点C,根据CO=BO列出方程,求解即可.【详解】解:由题意知:A点表示的数为a,B点表示的数为3, C点表示的数为a-1.因为CO=BO,所以|a-1| =3, 解得a=-2或4,∵a<0,∴a=-2.故选B.【点睛】本题主要考查了数轴和绝对值方程的解法,用含a的式子表示出点C,是解决本题的关键.9.实数a、b在数轴上的位置如图所示用下列结论正确的是( )A.a+b>a>b>a−b B.a>a+b>b>a−bC.a−b>a>b>a+b D.a−b>a>a+b>b【答案】D【解析】【分析】首先根据实数a,b在数轴上的位置可以确定a、b的取值范围,然后利用有理数的加减运算即可比较数的大小.【详解】解:由数轴上a,b两点的位置可知,∵b<0,a>0,|b|<|a|,设a=6,b=-2,则a+b=6-2=4,a-b=6+2=8,又∵-2<4<6<8,∴a-b>a>a+b>b.故选:D.【点睛】此题主要考查了实数与数轴之间的对应关系,解答此题的关键是根据数轴上a,b的位置估算其大小,再取特殊值进行计算即可比较数的大小.10.如图所示,数轴上点P所表示的数可能是()A30B15C10D8【答案】B【解析】【分析】点P在3与4之间,满足条件的为B、C两项,点P与4比较靠近,进而选出正确答案.【详解】∵点P在3与4之间,∴3<P<49P16∴满足条件的为B、C图中,点P比较靠近4,∴P应选B、C中较大的一个故选:B.【点睛】本题考查对数轴的理解,数轴上的点,从左到右依次增大,解题过程中需紧把握这点.11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc +++的所有可能的值有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】 根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.13.若(x +y ﹣1)2+|x ﹣y +5|=0,则x =( )A .﹣2B .2C .1D .﹣1【答案】A【解析】【分析】由已知等式,利用非负数的性质列出方程组,求出方程组的解得到x 即可.【详解】解:∵(x+y﹣1)2+|x﹣y+5|=0,∴1050 x yx y+-=⎧⎨-+=⎩,解得:23xy=-⎧⎨=⎩,故选:A.【点睛】本题主要考查了非负数的性质和二元一次方程组的解法,根据两个非负数的和为零则这两个数均为零得出方程组是解决此题的的关键.14.12a=-,则a的取值范围是()A.12a≥B.12a>C.12a≤D.无解【答案】C【解析】【分析】=|2a-1|,则|2a-1|=1-2a,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】=|2a-1|,∴|2a-1|=1-2a,∴2a-1≤0,∴12a≤.故选:C.【点睛】此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质. 15.2-的相反数是()A.2-B.2 C.12D.12-【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .16.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,3),且|a ﹣c|+7b -=0,将线段PQ 向右平移a 个单位长度,其扫过的面积为20,那么a+b+c 的值为( )A .12B .15C .17D .20 【答案】C【解析】【分析】由非负数的性质得到a =c ,b =7,P (a ,7),故有PQ ∥y 轴,PQ =7-3=4,由于其扫过的图形是矩形可求得a ,代入即可求得结论.【详解】∵且|a -c |++7b -=0,∴a =c ,b =7,∴P (a ,7),PQ ∥y 轴,∴PQ =7-3=4,∴将线段PQ 向右平移a 个单位长度,其扫过的图形是边长为a 和4的矩形,∴4a =20,∴a=5,∴c =5,∴a +b +c =5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ ∥y 轴,进而求得PQ 是解题的关键.17.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误; ∵a c >,∴C 错误; ∵d c >,c>0,∴c <D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.18.小麦做这样一道题“计算()3-+W ”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A .5B .-5C .11D .-5或11【答案】D【解析】【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x ,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D .【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.19.不论a 取什么值,下列代数式的值总是正数的是( )A .1a +B .1a +C .2aD .2(1)a +【答案】B【解析】【分析】直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a+1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C、a2≥0,故此选项错误;D、(a+1)2≥0,故此选项错误;故选B.【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.20.在-3,-1,0,3这四个数中,比-2小的数是()A.-3 B.-1 C.0 D.3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】<-<-<<解:∵-32103∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.。
(易错题精选)初中数学有理数的运算易错题汇编及答案解析(1)

(易错题精选)初中数学有理数的运算易错题汇编及答案解析(1)一、选择题1.现规定一种运算,a*b=ab-a+b,计算(-3*5)等于多少?()A.-7 B.-15 C.2 D.7【答案】A【解析】【分析】根据题目所给的运算法则,代入具体数进行计算即可.【详解】解:(-3*5)=(-3×5)-(-3)+5=-7,故选:A.【点睛】此题主要考查了有理数的混合运算,关键是掌握有理数的加法、减法法则.2.9万亿1388900000000008.8910==⨯,故选A.【点睛】本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为正整数.)3.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.10099【答案】B【解析】分析:直接利用分数的性质将原式变形进而得出答案.详解:原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100 -+-+-+⋯+-,=1-1 100=99 100.故选B.点睛:此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.4.23+23+23+23=2n,则n=()【答案】C【解析】【分析】 原式可化为:23+23+23+23=4×23235222=⨯=,之后按照有理数乘方运算进一步求解即可.【详解】∵23+23+23+23=4×23235222=⨯=∴5n =,所以答案为C 选项.【点睛】本题主要考查了有理数的乘方运算,熟练掌握相关概念是解题关键.5.在运算速度上,已连续多次取得世界第一的神威太湖之光超级计算机,其峰值性能为12.5亿亿次/秒.这个数据以亿次/秒为单位用科学计数法可以表示为( )亿次/秒 A .81.2510⨯B .91.2510⨯C .101.2510⨯D .812.510⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:12.5亿亿次/秒=1.25×109亿次/秒,故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.0000084=8.4×10-6故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.现有若干张卡片,分别是正方形卡片A 、B 和长方形卡片C ,卡片大小如图所示.如果要拼一个长为(a +2b ),宽为(a +b )的大长方形,则需要C 类卡片张数为( )【答案】C【解析】 试题分析:(a+2b )(a+b )=2232a ab b ++,则C 类卡片需要3张.考点:整式的乘法公式.8.地球上海洋面积约为361000000平方公里,361000000用科学记数法可表示为( ) A .90.36110⨯B .73.6110⨯C .83.6110⨯D .736110⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】 361000000=83.6110⨯,故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.2017年常州市实现地区生产总值约6622亿元,将6622用科学记数法表示为( ) A .40.662210⨯B .36.62210⨯C .266.2210⨯D .116.62210⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将6622用科学记数法表示为:36.62210⨯.故选B.【点睛】本题考查科学计数法的表示方法. 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值及n 的值.10.2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km ,把 384 000km 用科学记数法可以表示为( )A .38.4 ×10 4 kmB .3.84×10 5 kmC .0.384× 10 6 kmD .3.84 ×10 6 km【答案】B【解析】【分析】 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】科学记数法表示:384 000=3.84×105km故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.2019年3月5日,第十三届全国人民代表大会第二次会议的《政府工作报告》中指出,我国经济运行保持在合理区间.城镇新增就业13610000、调查失业率稳定在5%左右的较低水平,数字13610000科学记数法表示为( )A .1.361×104B .1.361×105C .1.361×106D .1.361×107【答案】D【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:13610000用科学记数法表示为1.361×107,故选D .【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.13.随着垃圾数量的不断增加,宁波从2013年开始启动生活废弃物收集循环利用示范目,总投资约为15.26亿元,以下用科学记数法表示15.26亿正确的是()A .815.2610⨯B .81.52610⨯C .90.152610⨯D .91.52610⨯【答案】D【解析】【分析】先把15.26亿写成1526000000的形式,再根据科学记数法的法则,把15.26亿用科学计数法表示成10n a ⨯的形式即可.【详解】解:15.26=1526000000∵1526000000有10位整数,∴可以确定指数n=10-1=9,即用科学记数法表示为91.52610⨯,故答案为D.【点睛】本题主要考查了科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当原数的绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.14.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.15.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。
(易错题)初中数学八年级数学下册第五单元《数据的分析》检测(包含答案解析)

(1)求A酒店12月份的营业额a的值.
(2)已知B酒店去年下半年的月平均营业额为2.3百万元,求8月份的月营业额,并补全折线统计图.
(3)完成下面的表格(单位:百万元)
(4)综合以上分析,你认为哪一些数据更能较为准确的反映酒店的经营业绩?你认为哪家酒店的经营状况较好?请简述理由.
(3)计算两班复赛成绩的方差,并说明哪个班五名选手的成绩较稳定.
24.在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;
(1)这次调查获取的样本容量是________;
(2)由统计图可知,这次调查获取的样本数据的众数是________;中位数是________;
上述结论中,所有正确结论的序号是()
A.①B.①③C.②③D.①②③
8.下列说法正确的是( )
A.为了解我国中学生课外阅读的情况,应采取全面调查的方式
B.一组数据1、2、5、5、5、3、3的中位数和众数都是5
C.若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定
D.抛掷一枚硬币100次,一定有50次“正面朝上”
4.A
解析:A
【解析】
试题分析:根据平均数、方差的计算公式即可判断.
由题意得该数组的平均数改变,方差不变,故选A.
考点:本题考查的是平均数,方差
点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.
5.B
解析:B
【分析】
本题首先可通过四位同学的平均分比较,择高选取;继而根据方差的比较,择低选取求解本题.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数和方差分别是.( )
A.3,2
B.3,4
C.5,2
D.5,4
【答案】B
【解析】
试题分析:平均数为 (a−2 + b−2 + c−2 )= (3×5-6)=3;原来的方差:
;新的方差:
B. 考点: 平均数;方差.
,故选
11.若数据 4,x,2,8 ,的平均数是 4,则这组数据的中位数和众数是( )
∴a-2,b-2,c-2 的方差= 1 [(a-2-3)2+(b-2-3)2+(c--2-3)2] 3
= 1 [(a-5)2+(b-5)2+(c-5)2]=4, 3
故选 B. 【点睛】
本题考查了平均数、方差,熟练掌握平均数以及方差的计算公式是解题的关键.
3.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按 6 : 4 记入总
A.3 和 2
B.2 和 3
C.2 和 2
D.2 和 4
【答案】A
【解析】
【分析】
根据平均数的计算公式先求出 x 的值,再根据中位数和众数的概念进行求解即可. 【详解】
∵数据 2,x,4,8 的平均数是 4,∴这组数的平均数为 2 x 4 8 4,解得:x=2; 4
所以这组数据是:2,2,4,8,则中位数是 2 4 3. 2
A.8,9
B.8,8
C.8,10
D.9,8
【答案】B
【解析】
分析:中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最
中间的两个数)即可,本题是最中间的那个数;对于众数可由条形统计图中出现频数最大
或条形最高的数据写出.
详解:由条形统计图知 8 环的人数最多,
所以众数为 8 环,
由于共有 11 个数据,
成绩,若小李笔试成绩为 80 分,面试成绩为 90 分,则他的总成绩为( )
A.84 分
B.85 分
C.86 分
D.87 分
【答案】A
【解析】
【分析】
按照笔试与面试所占比例求出总成绩即可. 【详解】
根据题意,按照笔试与面试所占比例求出总成绩:
80 6 90 4 84 (分)
10
10
故选 A
【点睛】
【解析】
【分析】
根据数据整理与分析中的抽样调查,方差,中位数,众数的定义和求法即可判断.
【详解】
A、了解全国中学生最喜爱的歌手情况时,调查对象是全国中学生,人数太多,应选用 抽样调查的调查方式,故本选项错误;
B
、甲乙两种麦种连续
3
年的平均亩产量的方差为:
S
2 甲
5,
S
2 乙
0.5
,因方差越小越
稳定,则乙麦种产量比较稳,故本选项错误;
14.一组数据,6、4、 a 、 3 、 2 的平均数是 5,这组数据的方差为( )
A.8
B.5
C.6
D.3
【答案】A
【解析】
【分析】
先由平均数的公式计算出 a 的值,再根据方差的公式计算即可.
【详解】
∵数据 6、4、a、3、2 平均数为 5,
∴(6+4+2+3+a)÷5=5,
解得:a=10,
∴这组数据的方差是 1 [(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8. 5
故选:A.
【点睛】
此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波
动性越大,反之也成立.
15.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:
班级
参加人数 中位数
方差
平均数
甲
55
149
1.91
135
乙
55
151
1.10
135
某同学分析上表后得到如下结论:
∴甲班优秀的人数最多有 13 人,乙班优秀的人数最少有 14 人,
∴甲优<乙优,
故选:A.
【点睛】
本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.
6.分析题中数据,将 15 名运动员的成绩按从小到大的顺序依次排列,处在中间位置的一 个数即为运动员跳高成绩的中位数;
7.某校在中国学生核心素养知识竞赛中,通过激烈角逐,甲、乙、丙、丁四名同学胜出, 他们的成绩如表:
数的意义.
8.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数 和众数分别是( )
A.中位数 31,众数是 22
B.中位数是 22,众数是 31
C.中位数是 26,众数是 22
D.中位数是 22,众数是 26
【答案】C
【解析】
【分析】
根据中位数,众数的定义即可判断.
【详解】
①甲、乙两班学生平均成绩相同;
②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数 150 为优秀)
③甲班成绩的波动比乙班大.
上述结论中正确的是( )
A.①②③
B.①②
C.①③
D.②③
【答案】A
【解析】
【分析】
平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较
方差的大小.
C 、某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,
还需要知道这次成绩的中位数,故本选项错误;
D 、.一组数据:3,2,5,5,4,6 的众数是 5,故本选项正确;. 故选 D .
【点睛】
本题考查了数据整理与分析中的抽样调查,方差,中位数,众数,明确这些知识点的概念
和求解方法是解题关键.
(易错题精选)初中数学数据分析基础测试题含答案解析(1)
一、选择题
1.(11·大连)某农科院对甲、乙两种甜玉米各用 10 块相同条件的试验田进行试验,
得到两个品种每公顷产量的两组数据,其方差分别为 s 甲 2=0.002、s 乙 2=0.03,则 ( )
A.甲比乙的产量稳定
B.乙比甲的产量稳定
C.甲、乙的产量一样稳定
布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
13.下列说法正确的是( ) A.了解全国中学生最喜爱哪位歌手,适合全面调查. B.甲乙两种麦种,连续 3 年的平均亩产量相同,它们的方差为:S 甲 2=5,S 乙 2=0.5,则 甲麦种产量比较稳. C.某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还 需要知道平均成绩. D.一组数据:3,2,5,5,4,6 的众数是 5. 【答案】D
D.无法确定哪一品种的产量更稳定
【答案】A
【解析】
【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去
估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好.
【详解】因为
s
2 甲
=0.002<s
2 乙
=0.03,
所以,甲比乙的产量稳定.
故选 A
【点睛】本题考核知识点:方差. 解题关键点:理解方差意义.
2.已知一组数据 a、b、c 的平均数为 5,方差为 4,那么数据 a+2、b+2、c+2 的平均数和 方差分别为( )
A.7,6 【答案】B 【解析】
B.7,4
C.5,4
D.以上都不对【分析】根据数据 a,b,c 的平均数为 5 可知 a+b+c=5×3,据此可得出 1 (-2+b-2+c-2)的值;再由 3
6
6
6
6
36
则甲、乙两人的平均成绩不相同、中位数和众数均相同,而方差不相同, 故选 D. 【点睛】本题考查了中位数、方差以及众数的定义等知识,熟练掌握相关定义以及求解方 法是解题的关键.
5.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取 27 名女生进行一 分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数≥105 次的为优秀,那 么甲、乙两班的优秀率的关系是( )
度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中
间两个数的平均数);方差是用来衡量一组数据波动大小的量.
16.某中学篮球队 12 名队员的年龄如表:
年龄(岁)
13
14
15
16
人数
1
5
4
2
关于这 12 名队员年龄的数据,下列说法正确的是( )
所以中位数为第 6 个数据,即中位数为 8 环,
故选 B.
点睛:本题主要考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要
先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数
字即为所求.如果是偶数个,则找中间两个数的平均数.
10.已知一组数据 a,b,c 的平均数为 5,方差为 4,那么数据 a﹣2,b﹣2,c﹣2 的平均
6
2
方差为 1 ×[(6﹣8)2+(7﹣8)2+2×(8﹣8)2+(9﹣8)2+(10﹣8)2]= 5 ,
6
3
∵乙 6 次射击的成绩从小到大排列为:7、7、8、8、8、9,
∴乙成绩的平均数为 7 7 8 8 8 9 = 47 ,中位数为 8 8 =8、众数为 8,
6
6
2
方差为 1 ×[2×(7﹣ 47 )2+3×(8﹣ 47 )2+(9﹣ 47 )2]= 17 ,
本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.
4.甲、乙两名同学分别进行 6 次射击训练,训练成绩(单位:环)如下表