七年级数学下册 同底数幂的乘法(一)教案 北师大版
北师大版七年级数学下册1.1《同底数幂的乘法》优秀教学案例

一、案例背景
本节内容是北师大版七年级数学下册的1.1《同底数幂的乘法》,这是幂的运算法则之一,对于学生来说是一个新的概念和运算规则。在之前的学习中,学生已经接触过有理数的乘除法和加减法,但对幂的运算还是相对陌生。因此,在教学本节内容时,我以学生的已有知识为基础,通过生活实例引入同底数幂的乘法概念,引导学生理解并掌握运算法则。
(四)反思与评价
1.引导学生进行自我反思,培养他们的自我评价和自我调整能力。例如,在学习同底数幂的乘法后,可以让学生回顾自己的学习过程,思考自己在学习中的优点和不足,以及如何改进和提高。
2.设计具有针对性和指导性的评价表,让学生对自己的学习进行评价。例如,可以设计一个关于同底数幂的乘法的评价表,包括对概念理解、运算能力、问题解决能力的评价。
(四)总结归纳
1.引导学生总结同底数幂的乘法法则和运算规则,加深他们对知识点的理解和记忆。
2.强调同底数幂的乘法在实际生活中的应用,让学生明白学习同底数幂的乘法的意义和价值。
3.对学生的学习进行评价和反馈,鼓励他们继续努力和改进。
(五)作业小结
1.布置具有针对性和挑战性的作业,让学生在课后巩固所学知识,提高解决问题的能力。
三、教学策略
(一)情景创设
1.利用生活实例引入同底数幂的乘法概念,如讲解化学实验中药品的配比问题,让学生感受到数学与实际生活的紧密联系。
2.通过多媒体展示同底数幂的乘法在生活中的应用场景,如楼层高度的计算、卫星发射的燃料配比等,让学生深刻理解数学的实际意义。
3.创设具有挑战性的问题情境,激发学生思考和解决问题的欲望,如设计一个关于科幻小说中星球探险的问题,需要学生运用同底数幂的乘法来解决。
《同底数幂的乘法》教学案例(5篇)

《同底数幂的乘法》教学案例(5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《同底数幂的乘法》教学案例(5篇)同底数幂的乘法(一)这次本店铺为您整理了5篇《《同底数幂的乘法》教学案例》,在大家参考的同时,也可以分享一下本店铺给您的好友哦。
北师大版数学七年级下册 1同底数幂的乘法

1.1同底数幂的乘法一、情景导入,初步认知1.乘方:2.光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年.一年以3×107秒计算,比邻星与地球的距离约为多少千米?二、思考探究,获取新知1.计算下列各式:(1)102×103;(2)105×108;(3)10m×10n(m,n都是正整数).你发现了什么?【教学说明】小组合作探究,对于有的同学可能会由上面的分析感觉到了规律的存在,可鼓励他们进行验证.请部分学生代表说出自己小组的观点,其他组同学则进行评价或发表不同的见解.2. 2m×2n等于什么?呢?(m,n都是正整数)【教学说明】猜想,交流,验证,口答.3.合作交流:a m·a n等于什么?(m,n都是正整数)4.引导学生剖析法则.(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)你能总结同底数幂的乘法的法则吗?【教学说明】猜想,交流,验证,口答.【归纳结论】am·an=am+n(m,n都是正整数)同底数幂相乘,底数不变,指数相加.三、运用新知,深化理解1.见教材P3例1、例2.2.计算:(1)-b3·b2(2) (-a)·a3(3)(-y)2·(-y)3(4)(-a)3·(-a)4(5)-34×32(6)(-5)7×(-5)6(7)(-q)2n·(-q)3(8)(-m)4·(-m)2(9)-23 (10)(-2)4×(-2)5(11)-b9·(-b)6 (12)(-a)3·(-a3)答案:(1)-b5 (2)-a4 (3)-y5 (4)-a7 (5)-729 (6)-513(7)-q2n+3 (8)m6 (9)-8 (10)-512 (11)-b15(12)a63.下面的计算对不对?如果不对,应怎样改正?(1)23×32=65;(2)a3+a3=a6;(3)y n·y n=2y2n;(4)m·m2=m2;(5)(-a)2·(-a2)=a4; (6)a3·a4=a12;(7)(-4)3=43;(8)7×72×73=76;(9)-22=-4;(10)n+n2=n3.4.计算:5.计算:(结果可以化成以(a+b)或(a-b)为底时幂的形式).(1)(a-b)2·(a-b)3·(a-b)4(2)(a+b)m+1·(a+b)+(a+b)m·(a+b)2答案:(1)(a-b)9(2)2(a+b)m+26.我国自行研制的“神威”计算机的峰值运算速度达到每秒3840亿次.如果按这个速度工作一整天,那么它能运算多少次(结果保留3个有效数字)?提示:3840亿次=3.84×103×108次、24时=24×3.6×103秒解:(3.84×103×108)×(24×3.6×103)=(3.84×24×3.6)×(103×108×103)=331.776×1014≈3.32×1016(次)答:它能运算约3.32×1016次.四、师生互动,课堂小结先小组内交流收获和感想再以小组为单位派代表进行总结,教师作以补充.五、教学板书1.布置作业:教材“习题1.1”中第1、2、3题.2.完成对应习题.。
北师大版七年级数学下册1.1同底数幂的乘法说课稿

一、教材分析
(一)内容概述
本节课选自北师大版七年级数学下册1.1节,同底数幂的乘法。这一节内容是整个课程体系中指数运算的基础,也是学生进一步学习幂的除法、乘方等运算的基础。同底数幂的乘法在解决实际问题时具有重要作用,例如在计算几何图形的面积、体积等方面。本节课的主要知识点包括:同底数幂的定义、同底数幂的乘法法则以及应用举例。
3.竞赛活动:设计数学竞赛,鼓励学生积极参与,激发学习兴趣,提高学生的数学素养。
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我将采用以下方式导入新课:
1.创设情境:通过展示一个与同底数幂的乘法相关的实际问题,如“计算一个正方体木块的表面积和体积”,让学生思考如何运用已学的数学知识解决该问题。
3.探究作业:鼓励学生自主探索同底数幂的其他运算规律,培养学生的探究精神和创新能力。
作业的目的是:巩固课堂所学知识,提高学生的运算技能和数学应用能力,激发学生的学习兴趣,培养探究和创新意识。
五、板书设计与教学反思
(一)板书设计
我的板书设计将采用以下布局和风格:
1.布局:板书分为三个部分,左侧为标题和定义,中间为法则推导和例题,右侧为练习和总结。
4.成功体验:及时反馈学生的学习成果,让学生在解决问题中体验到成功的喜悦,增强自信心;
5.激励评价:运用积极的评价语言,鼓励学生勇于尝试、积极思考,激发学生的学习兴趣和内在动机。
三、教学方法与手段
(一)教学策略
我将采用的主要教学方法包括启发式教学、情境教学和支架式教学。
1.启发式教学:通过提问、讨论等方式引导学生主动思考,激发学生的求知欲。理论依据是建构主义学习理论,认为学生是主动的信息建构者,而非被动的信息接受者。
北师大版七年级数学下册第一章同底数幂的乘法说课稿(公开课)

北师大版七年级数学下册第一章同底数幂的乘法说课稿(公开课)同底数幂的乘法说课稿各位老师:大家好!前面我已经将同底数幂的乘法这节课讲授完了,下面我将从教材分析,教学目标分析,教学方法分析,教学过程设计这四个方面对这节课进行阐述。
总体设计思想:本节课需要掌握“同底数幂的乘法”的运算性质,这个性质是整式乘法运算的基础,是在幂的基础上进行教学的,教师通过回顾旧知——情境引入——探究发现——巩固新知为教学主线,让学生感受探索发现的过程,使学生初步理解“从特殊到一般”的认知规律,培养学生的计算能力,加强学生的合作意识,从而在学生头脑中构建起幂运算的基础模型。
一、教材分析教材的地位及作用《同底数幂的乘法》是学生在七年级上册中学习了有理数的乘方和整式的加减法运算之后编排的,这为本课的学习奠定了基础,但这两个内容学过的时间过长,在教学过程中我将进行适当的复习,唤起学生对这部分知识的记忆。
同底数幂的乘法的性质是对幂的意义的理解、运用和深化,是幂的三个性质中最基本的一个性质,学好这个性质,对其他两个性质以及整式乘法和除法的学习能起到积极作用。
为此,根据课标的要求和教材的编排意图,结合学生的认知规律和素质教育的要求,我确定本课的教学目标和教学重难点如下:二、教学目标分析1、知识与技能目标:在推理判断中得出同底数幂乘法的法则,并能正确地运用法则进行有关计算以及解决一些实际问题。
2、过程与方法目标:经历探索同底数幂乘法运算性质的过程,在探索过程中,通过教师引导、学生自主探究,发展学生的数感和符号感,培养学生的观察、猜想、发现、归纳、概括等探究创新能力,发展推理能力和有条理表达能力。
使学生初步理解“特殊----一般------特殊”的认知规律。
体会具体到抽象再到具体、转化的数学思想3、情感、态度、价值观目标:通过本课的学习使学生在合作交流中体会数学的思想方法,接受数学文化的熏陶,激发学生探索创新的精神。
体验用数学知识解决问题的乐趣,培养学生热爱数学的情感。
北师大版数学七年级下册全套备课优秀教学案例:1.1同底数幂的乘法

1.让学生理解同底数幂的乘法概念,掌握同底数幂的乘法法则。
2.培养学生运用同底数幂的乘法解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
针对这些教学目标,我设计了以下教学活动和教学策略,以期达到良好的教学效果。
二、教学目标
(一)知识与技能
1.理解同底数幂的乘法概念,掌握同底数幂的乘法法则。
2.能够运用同底数幂的乘法法则进行计算,解决相关数学问题。
3.了解同底数幂的乘法在实际生活中的应用,提高运用数学知识解决实际问题的帮助学生掌握同底数幂的乘法法则。同时,我会设计一些实际问题,让学生在解决这些问题过程中,运用同底数幂的乘法知识,提高学生的应用能力。
三、教学策略
(一)情景创设
1.生活情境:设计一些与生活密切相关的问题,让学生在解决问题的过程中,自然引入同底数幂的乘法概念。
2.数学情境:通过展示一些数学问题或数学现象,引发学生的好奇心,激发学生探究同底数幂的乘法法则的兴趣。
3.实验情境:设计一些简单的实验,让学生直观地感受同底数幂的乘法过程,帮助学生理解乘法法则。
在导入环节,我会根据学生的实际情况,选择合适的导入方式。通过生活实例、数学情境和实验情境的创设,让学生在自然、有趣的环境中,接触和理解同底数幂的乘法概念。
(二)讲授新知
1.讲解同底数幂的乘法概念:通过讲解,让学生理解同底数幂的乘法是指指数相同或底数相同的幂相乘。
2.阐述同底数幂的乘法法则:讲解同底数幂的乘法法则,让学生掌握同底数幂的乘法运算方法。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
北师大版数学七年级下册1.1同底数幂的乘法教学设计

(四)课堂练习
1.练习题设计:设计具有梯度、覆盖不同知识点的练习题,让学生在练习中巩固所学知识。
2.学生练习:学生在规定时间内完成练习题,教师巡回检查,了解学生的掌握情况。
3.解题指导:针对学生练习中的共性问题,进行集中讲解,指导学生正确运用同底数幂乘法法则。
-内容要求:反映学生对同底数幂乘法的理解,以及在解决问题过程中的心得体会。
-形式要求:字数不限,力求真实、生动,体现学生的个性特点。
5.家长评价:请家长协助监督学生的作业完成情况,并对学生的学习态度、作业质量进行评价,共同促进学生的成长。
作业布置时,请注意以下事项:
1.作业量适中,避免过多增加学生的负担。
2.学会运用类比、迁移等方法,将同底数幂的乘法与之前所学的乘法知识进行联系。
3.培养学生的逻辑思维能力和解决问题的策略。
(三)情感态度与价值观
1.激发学生对数学学习的兴趣,培养其主动探究的精神。
2.培养学生合作交流的意识,使其在讨论、分享中体验到学习的快乐。
3.增强学生对数学美的感受,使其认识到数学在现实生活中的重要作用。
二、教学内容
1.同底数幂的概念及乘法法则
(1)引导学生通过实例认识同底数幂,如:2^3、2^4等。
(2)探索同底数幂的乘法法则,如:2^3 × 2^4 = 2^(3+4)。
(3)通过具体计算,让学生感受同底数幂乘法的简便性。
2.同底数幂乘法在实际问题中的应用
(1)将实际问题转化为同底数幂的形式,如:计算一个正方体的体积,可以表示为2^3 × 2^3 × 2^3。
(2)运用同底数幂的乘法法则解决问题,如:计算2^3 × 2^3 × 2^3 = 2^(3+3+3)。
初中数学同底数幂的乘法(01)精品教案

同底数幂的乘法(1)
教学目标
1、理解同底数幂的乘法法则的由来,掌握同底数幂相乘的乘法法则;
2、学会并熟练地运用同底数幂的乘法法则进行计算;
3、在探究“性质”的过程中,培养学习观察,概括与抽象的能力。
教学重点、难点
重点:同底数幂的乘法法则及其灵活应用。
难点:理解同底数幂的乘法法则是由乘法的概念加以具体到抽象的概括抽象过程。
教学过程
一.引入新知
1.回顾
2.填空
得到法则:a m·a n=a m+n(m,n都是正整数)即同底数幂相乘,底数不变,指数相加。
剖析法则:
(1)等号左边是什么运算?
(2)等号两边的底数有什么关系?
(3)等号两边的指数有什么关系?
(4)公式中的底数a可以表示什么?
(5)当三个以上同底数幂相乘时,上述法则成立吗?
二、例题讲
解
要求:板书,规范书写,步步有理有据;其中(1)(2)(3)(4)是底数相同的情形;(5)(6)(7)(8)是底数互为相反数的情形.转化为底数相同的情形.
三、课堂练习
完成书本作业题
四、课堂小结
1同底数的幂的乘法法则:
同底数的幂相乘,底数不变,指数相加。
n m n m a a a +=⋅.(m 、n 都是正整数) 三个或三个以上同底数的幂相乘,也符合上述法则。
9432a a a a =⋅⋅. p n m p n m a a a a ++=⋅⋅.
(m、n、p都是正整数)
注意:看清运算符号,分清是不是同底数的幂,正确运用运算法则。
五、作业布置
1.作业本3.1.1
2.课时
3.1.1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 同底数幂的乘法(一)
教学目标
1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;
2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力.
教学重点和难点
幂的运算性质.
课堂教学过程设计
一、运用实例导入新课
引例一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?
学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?
要解方程(x+3)(x+5)=x(x+2)+39必须将(x+3)(x+5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要用到整式的乘法.(写出课题:第七章整式的乘除) 本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.
为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1 同底数幂的乘法)在此我们先复习乘方、幂的意义.
二、复习提问
2.指出下列各式的底数与指数:
(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.
其中,(-2)3与-23的含义是否相同?结果是否相等?(-2)4与-24呢?
三、讲授新课
1.利用乘方的意义,提问学生,引出法则
计算103×102.
解:103×102=(10×10×10)×(10×10)(幂的意义)
=10×10×10×10×10 (乘法的结合律)
=105.
2.引导学生建立幂的运算法则
将上题中的底数改为a,则有
a3·a2=(aaa)·(aa)
=aaaaa
=a5,
即a3·a2=a5=a3+2.
用字母m,n表示正整数,则有
即a m·a n=a m+n.
3.引导学生剖析法则
(1)等号左边是什么运算?(2)等号两边的底数有什么关系?
(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么
(5)当三个以上同底数幂相乘时,上述法则是否成立?
要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.
四、应用举例变式练习
例1 计算:
(1)107×104; (2)x2·x5.
解:(1)107×104=107+4=1011;(2)x2·x5=x2+5=x7.
提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.
例2 计算:(1)-a2·a6; (2)(-x)·(-x)3 ;(3)y m·y m+1.
解:(1)-a2·a6=-(a2·a6)=-a2+6=-a8;
(2)(-x)·(-x)3=(-x)1+3=(-x)4=x4;
(3)y m·y m+1=y m+(m+1)=y2m+1.
师生共同解答,教师板演,并提醒学生注意:(1)中-a2与(-a)2的差别;(3)中的指数有字母,计算方法与数字相同,计算后指数要合并同类项.(2)中(-x)4=x4学生如不理解,可先引导学生回忆学过的有理数的乘方.
课堂练习
计算:(1)105·106;(2)a7·a3; (3)y3·y2;(4)b5·b;(5)a6·a6; (6)x5·x5.
对于第(2)小题,要指出y的指数是1,不能忽略.
计算:(1)y12·y6;(2)x10·x; (3)x3·x9;
(4)10·102·104; (5)y4·y3·y2·y;(6)x5·x6·x3.
(1)-b3·b3;(2)-a·(-a)3;(3)(-a)2·(-a)3·(-a);(4)(-x)·x2·(-x)4;
五、小结
1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”
这八个字.
2.解题时要注意a的指数是1.
3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.
4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4.
5.若底数是多项式时,要把底数看成一个整体进行计算
教后记:
教学时不要生硬地提出问题,应力求顺乎自然、水到渠成.讲课要注意联系过去尚不甚巩固的知识,将新旧知识有机地融合在一起.这节课就是以此为宗旨引入新课的.。