第15章 厌氧生物处理

合集下载

第15章 水处理厌氧生物处理

第15章  水处理厌氧生物处理

均匀地 加以收集,排出反应器。
(5)气室 也称集气罩,其作用是收集沼气。 (6)浮渣清除系统 其功能是清除沉淀区液面和气 室表面的浮渣,根据需要设置。 (7)排泥系统 其功能是均匀地排除反应区的剩余
污泥。
2.4.4 厌氧颗粒污泥

厌氧污泥的主要聚集形式包括颗粒
(granules)、 团体(pellets)、絮体(flocs)、
2.1普通厌氧消化池
普通消化池又称传统或常规消化池 (conventional digester) 消化池常用密闭的圆柱形池,废水定期 或连续进入池中,经消化的污泥和废水分别 由消化池底和上部排出,所产沼气从顶部排 出。 池径从几米至三、四十米,柱体部分的 高度约为直径的1/2,池底呈圆锥形,以利排 泥。 为使进水与微生物尽快接触,需要一定 的搅拌。常用搅拌方式有三种:(a)池内机械 搅拌;(b)沼气搅拌;(c)循环消化液搅拌。

上流式厌氧污泥床反应器(upflow anaerobic sludge blanket reactor),简称 UASB反应器,是由荷兰的G. L
污泥床反应器内没有人工载体,反应器内微
生物以自身聚集生长,为颗粒污泥状态存在,
因而能达到高生物量和高效高负荷。


3)产乙酸阶段
上一阶段的产物被进一步转化为乙酸、氢气、碳
酸以及新的细胞物质,这一阶段的主导细菌是乙
酸菌。同时水中有硫酸盐时,还会有硫酸盐还原 菌参与产乙酸过程。

4)产甲烷阶段 乙酸、氢气、碳酸、甲酸和甲醇等被甲烷菌利用
被转化为甲烷和以及甲烷菌细胞物质。

经过这些阶段大分子的有机物就被转化为甲烷、
2.4上流式厌氧污泥床反应器UASB
2.4.1 概述 2.4.2 基本特点(优点、缺点) 2.4.3 UASB的构造和组成 2.4.4 颗粒污泥 2.4.5 UASB的设计

高廷耀《水污染控制工程》第4版下册名校考研真题(污水的厌氧生物处理)【圣才出品】

高廷耀《水污染控制工程》第4版下册名校考研真题(污水的厌氧生物处理)【圣才出品】

高廷耀《水污染控制工程》第4版下册名校考研真题第十五章污水的厌氧生物处理一、填空题1.methanogenesis的中文翻译为:______;堆肥的英文为:______。

[中国科学技术大学2012年研]【答案】产甲烷作用;compost【解析】methanogenesis的中文翻译是产甲烷作用,是厌氧消化的最后阶段。

在该阶段中,产甲烷菌把第一阶段和第二阶段产生的乙酸、H2和CO2等转化为甲烷。

堆肥的英文是compost,堆肥是利用含有肥料成分的动植物遗体和排泄物,加上泥土和矿物质混合堆积,在高温、多湿的条件下,经过发酵腐熟、微生物分解而制成的一种有机肥料。

2.列举3种厌氧生物处理装置:______、______和______。

[宁波大学2015年研]【答案】化粪池;普通厌氧消化池;厌氧生物滤池【解析】在没有分子氧及化合态氧存在的条件下,兼性细菌与厌氧细菌降解和稳定有机物的生物处理方法称为厌氧生物处理。

处理工艺包括化粪池、普通厌氧消化池、厌氧生物滤池、厌氧接触法、升流式厌氧污泥床反应器、厌氧流化床和颗粒污泥膨胀床、厌氧内循环反应器、厌氧折流板反应器、厌氧生物转盘、厌氧序批式反应器、两相厌氧法和分段厌氧处理法等。

3.厌氧消化过程划分为三个连续的阶段,即______、______和______。

[中国科学技术大学2015年研]【答案】水解发酵阶段;产氢产乙酸阶段;产甲烷阶段【解析】厌氧消化分为三个阶段,包括:①水解发酵阶段,在该阶段,复杂的有机物在厌氧菌胞外酶的作用下,首先被分解成简单的有机物,参与这个阶段的水解发酵菌主要是专性厌氧菌和兼性厌氧菌;②产氢产乙酸阶段,在该阶段,产氢产乙酸菌把除乙酸、甲烷、甲醇以外的第一阶段产生的中间产物,如丙酸、丁酸等脂肪酸和醇类等转化成乙酸和氢,并有CO2产生;③产甲烷阶段,在该阶段,产甲烷菌把第一阶段和第二阶段产生的乙酸、H2和CO2等转化为甲烷。

4.厌氧消化通过搅拌使污泥和底物充分混合,搅拌方式有______、______、______。

第15章污水的厌氧生物处理ppt课件

第15章污水的厌氧生物处理ppt课件
水污染控制工程(下)
2、pH 值每种微生物可在一定的pH值范围内活动,产酸细
菌对酸碱度不及甲烷细菌敏感,其适宜的pH值范围 较广,在4.5-8.0之间。
产甲烷菌要求环境介质pH值在中性附近,最适宜 pH值为7.0-7.2,pH6.6-7.4较为适宜。
在厌氧法处理废水的应用中,由于产酸和产甲烷大 多在同一构筑物内进行,故为了维持平衡,避免过多 的酸积累,常保持反应器内的pH值在6.5-7.5(最好 在6.8-7.2)的范围内。
水污染控制工程(下)
§15-2 厌氧生物处理活性污泥法(anaerobic activated 厌slu氧d生ge物) 膜法(anaerobic slime)
厌氧活性污泥法包括:普通消化池、厌氧接触工艺、上流 式厌氧污泥床反应器等。
厌氧生物膜法包括:厌氧生物滤池、厌氧流化床、厌氧生 物转盘等。
§15-1 概述
水污染控制工程(下)
一、厌氧生物处理的对象
1、有机污泥 有机污泥包括废水好氧生物处理过程生成的大量活性污泥
和生物膜,初沉池可沉淀的有机固体,以及人畜的粪便等。
2、有机废水
食品工业,如酒精、味精、制糖、淀粉、屠宰和啤酒等工 业排出的废水,不仅数量多,而且浓度也很高。
3、生物质 以专门利用生物质转化为新能源为主要目的的厌氧发酵法,
温度的急剧变化和上下波动不利于厌氧消化作用。短 时内温度升降5℃,沼气产量明显下降,波动的幅度过 大时,甚至停止产气。
温度的波动,不仅影响沼气产量,还影响沼气中甲烷 的含量,尤其高温消化对温度变化更为敏感。
温度的暂时性突然降低不会使厌氧消化系统遭受根本 性的破坏,温度一经恢复到原来水平时,处理效率和 产气量也随之恢复。
水污染控制工程(下)

厌氧生物处理ppt

厌氧生物处理ppt

微生物种群的影响
厌氧生物处理中的微生物种群是影响 处理效果的重要因素之一。厌氧生物 处理中的微生物种群包括产酸菌、产 甲烷菌等,这些微生物在适宜的环境 条件下协同作用,完成有机物的分解 和沼气的生成。
VS
微生物种群的影响因素包括温度、 pH值、有机负荷率、营养物质等。 在实际操作中,需要控制这些因素, 以保证微生物种群的适宜生长和代谢, 从而提高厌氧生物处理的效果。同时, 还需要注意防止有毒物质的进入,以 避免对微生物种群产生不利影响。
厌氧消化阶段
酸化反应
在厌氧条件下,废水中的复杂有机物被厌氧微生物转化为挥发性 脂肪酸等易降解物质。
产氢产乙酸反应
部分有机物被转化为氢气和乙酸,为甲烷菌提供营养物质。
甲烷化反应
甲烷菌将氢气和乙酸转化为甲烷气体,释放能量并合成细胞物质。
后处理阶段
沉淀
去除经过厌氧处理后废水中的悬浮物和生物污泥。
过滤
通过砂滤池、活性炭过滤等手段进一步去除废水 中的微量有机物、重金属等有害物质。
它通过厌氧微生物的代谢作用,将有 机物转化为甲烷、二氧化碳等无机物。
厌氧生物处理和醇类物质。
产氢产乙酸阶段
02
小分子有机物进一步转化为乙酸和氢气。
甲烷化阶段
03
乙酸和氢气被转化为甲烷。
厌氧生物处理的应用领域
01
废水处理
厌氧生物处理广泛应用于城市污 水、工业废水、高浓度有机废水 等处理领域。
厌氧活性污泥法
厌氧活性污泥法是一种利用活性污泥去除废水中的有机物 和氮、磷等营养物质的技术。
厌氧活性污泥法的原理是利用活性污泥中的微生物将废水 中的有机物转化为沼气和二氧化碳,同时将氮、磷等营养 物质转化为细胞物质或沉淀物。

水污染控制工程第15章答案

水污染控制工程第15章答案

第十五章污水的厌氧生物处理1.厌氧生物处理的基本原理是什么?答:废水厌氧生物处理是指在无分子氧条件下通过厌氧微生物 (包括兼氧微生物)的作用,将废水中的各种复杂有机物分解转化成甲烷和二氧化碳等物质的过程,也称为厌氧消化。

厌氧生物处理是一个复杂的微生物化学过程,依靠三大主要类群的细菌,即水解产酸细菌、产氢产乙酸细菌和产甲烷细菌的联合作用完成。

2、厌氧发酵分为哪个阶段?为什么厌氧生物处理有中温消化和高温消化之分?污水的厌氧生物处理有什么优势,又有哪些不足之处?答:通常厌氧发酵分为三个阶段:第一阶段为水解发酵阶段:复杂的有机物在厌氧菌胞外酶的作用下,首先被分解为简单的有机物。

继而简单的有机物在产酸菌的作用下经过厌氧发酵和氧化转化成乙酸、丙酸、丁酸等脂肪酸和醇类等。

第二阶段为产氢产乙酸阶段:产氢产乙酸菌把第一阶段中产生的中间产物转化为乙酸和氢,并有二氧化碳生成。

第三阶段为产甲烷阶段:产甲烷菌把第一阶段和第二阶阶段产生的乙酸、氢气和二氧化碳等转化为甲烷.厌氧生物处理可以在中温(35℃一38℃)进行(称中温消化),也可在高温(52℃一55℃)进行(称高温消化)。

因为在厌氧生物处理过程中需考虑到各项因素对产甲烷菌的影响,因为产甲烷菌在两个温度段(即35℃一38℃和52℃一55℃)时,活性最高,处理的效果最好.厌氧生物处理优势在于:应用范围广,能耗低,负荷高,剩余污泥量少,其浓缩性、脱水性良好,处理及处置简单.另外,氮、磷营养需要量较少,污泥可以长期贮存,厌氧反应器可间歇性或季节性运转.其不足之处:厌氧设备启动和处理所需时间比好氧设备长;出水达不到要求,需进一步进行处理;处理系统操作控制因素较复杂;过程中产生的异味与气体对空气有一定影响。

3、影响厌氧生物处理的主要因素有哪些?提高厌氧处理的效能主要从哪些方面考虑?答:影响厌氧生物处理的主要因素有如下:pH、温度、生物固体停留时间、搅拌和混合、营养与C/N比、氧化还原电位、有机负荷、厌氧活性污泥、有毒物质等。

污水的厌氧生物处理课件

污水的厌氧生物处理课件
生物膜的吸附、微生物的代谢作用和滤料 的截留作用下,废水中的有机物被降解, 并产生沼气,沼气从池顶部排出。
根据进水的方向将厌氧固定膜反应器 分 为 升 流 式 ( USFF) 、 降 流 式 ( DSFF) 和平流式(LSFF)三种;根据填料填充
的程度分为全充填型和部分充填型。
填料可采用拳状石质滤料,如碎石、 卵石等,也可使用陶粒、塑料等填料。
烷化严重受阻。
1 厌氧生物处理的基本原理
2. 厌氧消化的影响因素
(2) pH及碱度
按降解机理分段:
产甲烷菌适宜的pH值为7.0左右,大体在 6.5-7.5 之间。
在消化系统中,如果水解发酵阶段与产酸阶段的反应速率超过 产甲烷阶段,则pH会降低,影响甲烷菌的生活环境。
反应器的pH值过低,常表现为挥发酸浓度过高; pH值过高, 常见于NH4+浓度过高。
(5)有机负荷
按降解机理分段:
在厌氧法中,有机负荷通常是指容积有机负荷,简称容积负荷, 即消化器单位有效容积每天接受的有机物量[kgCOD/m3 ∙d]。此外也 有用污泥负荷表达的,即[kgCOD/kgVSS . d]。
厌氧消化过程中,产酸阶段反应速率比产甲烷阶段反应速率快 得多, 必须十分谨慎的选择有机负荷,使挥发性脂肪酸的生成和消 耗不致失调,形成挥发酸的积累。为保持系统的平衡,有机负荷不 能过高。
甲烷产量的70%
产氢产乙酸阶段
在产氢产乙酸菌的作 用下
产甲烷阶段
两组生理上不同 的产甲烷菌
③ 厌氧消化的4阶段理论
1 厌氧生物处理的基本原理
2. 厌氧消化的影响因素
参考教材第357页
由于产甲烷菌在厌氧处理的各个阶段中,对环境的影响最敏感机,理分段: 世代时间相对较长,甲烷化反应速度较慢,常作为厌氧消化过程的 控制阶段, 反应条件应重点满足甲烷菌的环境要求。

厌氧生物处理原理及工艺

厌氧生物处理原理及工艺

厌氧生物处理的方法和基本功能有二:
(1)酸发酵的目的是为进一步进行生物处理提供易生 物降解的基质;
(2)甲烷发酵的目的是进一步降解有机物和生产气体 燃料。
完全的厌氧生物处理工艺因兼有降解有机物和生产 气体燃料的双重功能,因而得到了广泛的发展和应 用。
原理
一、厌氧消化的生化阶段 复杂有机物的厌氧消化过程要经历数个阶段,由不同 的细菌群接替完成。根据复杂有机物在此过程中的 物态及物性变化,可分三个阶段(表9-1)。
发酵工艺
甲烷发酵 酸发酵
——
厌氧生物处理——原理
二、发酵的控制条件 (以下重点讨论甲烷发酵的控制条件。) (一)营养与环境条件
废水、污泥及废料中的有机物种类繁多,只要未达 到抑制浓度,都可连续进行厌氧生物处理。对生物 可降解性有机物的浓度并无严格限制,但若浓度太 低,比耗热量高,经济上不合算;水力停留时间短, 生物污泥易流失,难以实现稳定的运行。一般要求 COD大于1000mg/L。 COD∶N∶P=200∶5∶1
(4)pH值的控制 如果料液会导致反应器内液体的pH 值低于6.5或高于8.0时,则应对料液预先中和。当有 机酸的积累而使反应液的pH值低于6.8~7时,应适当 减小有机物负荷或毒物负荷,使pH值恢复到7.0以上 (最好为7.2~7.4)。若pH低于6.5,应停止加料,并 及时投加石灰中和。
厌氧生物处理——主要构筑物及工艺
生污泥从池顶进入,通过搅拌与池内污泥混合,进行 厌氧消化。分解后的污泥从池底排出。产生的生物 气从池顶收集。普通消化池需要加热,以维持高的 生化速率。
这种处理构筑物通常是每天加排料各1~2次,与此同时 进行数小时的搅拌混合。
d1
D d2
圆筒形厌氧消化池

高廷耀《水污染控制工程》(第4版)(下册)考研真题精选-第十五章 污水的厌氧生物处理【圣才出品】

高廷耀《水污染控制工程》(第4版)(下册)考研真题精选-第十五章 污水的厌氧生物处理【圣才出品】

第十五章污水的厌氧生物处理一、填空题1.methanogenesis的中文翻译为:______;堆肥的英文为:______。

[中国科学技术大学2012年研]【答案】产甲烷作用;compost【解析】methanogenesis的中文翻译是产甲烷作用,是厌氧消化的最后阶段。

在该阶段中,产甲烷菌把第一阶段和第二阶段产生的乙酸、H2和CO2等转化为甲烷。

堆肥的英文是compost,堆肥是指利用含有肥料成分的动植物遗体和排泄物,加上泥土和矿物质混合堆积,在高温、多湿的条件下,经过发酵腐熟、微生物分解而制成的一种有机肥料。

2.列举3种厌氧生物处理装置:______、______和______。

[宁波大学2015年研]【答案】化粪池;普通厌氧消化池;厌氧生物滤池【解析】在没有分子氧及化合态氧存在的条件下,兼性细菌与厌氧细菌降解和稳定有机物的生物处理方法称为厌氧生物处理。

处理工艺包括化粪池、普通厌氧消化池、厌氧生物滤池、厌氧接触法、升流式厌氧污泥床反应器、厌氧流化床和颗粒污泥膨胀床、厌氧内循环反应器、厌氧折流板反应器、厌氧生物转盘、厌氧序批式反应器、两相厌氧法和分段厌氧处理法等。

3.厌氧消化过程划分为三个连续的阶段,即______、______和______。

[中国科学技术大学2015年研;宁波大学2017年研]【答案】水解发酵阶段;产氢产乙酸阶段;产甲烷阶段【解析】厌氧消化分为三个阶段,包括:①水解发酵阶段,在该阶段复杂的有机物在厌氧菌胞外酶的作用下,首先被分解成简单的有机物,参与这个阶段的水解发酵菌主要是专性厌氧菌和兼性厌氧菌;②产氢产乙酸阶段,在该阶段产氢产乙酸菌把除乙酸、甲烷、甲醇以外的第一阶段产生的中间产物,如丙酸、丁酸等脂肪酸和醇类等转化成乙酸和氢气,并有CO2产生;③产甲烷阶段,在该阶段产甲烷菌把第一阶段和第二阶段产生的乙酸、H2和CO2等转化为甲烷。

4.厌氧消化通过搅拌使污泥和底物充分混合,搅拌方式有______、______、______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9. 抑制物和激活剂 所谓“有毒”是相对的,既有激活作用又有抑制作用,关键
在于它们的浓度界限,即毒阈浓度。 氨对产甲烷阶段的影响见下表
15.3.2 影响产甲烷细菌的主要细菌因子
厌氧生物处理中重金属毒性限度见下表
15.3.2 影响产甲烷细菌的主要细菌因子
部分有机物在厌氧处理中的容许浓度见下表
15.3.1 影响产酸细菌的主要生态因子 15.3.2 影响产甲烷细菌的主要细菌因子 15.3.3 影响硫酸盐还原菌的主要生态因子 15.3.4 厌氧生化反应动力学 15.3.5 厌氧生物处理过程中微生物优势种群的演替及
相互关系
15.3.1 影响产酸细菌的主要生态因子
1. PH值:一般认为最佳pH值为6~7;考虑到产甲烷菌的 生存条件( pH值为6.5~7.5 ),反应器中产酸发酵区域 的pH不应低于5.5。 现代研究证明,在正常ORP(-150~-400mv)范围内: PH=4-4.5时,发生乙醇型发酵; PH=4.5-5时,发生丁酸 型发酵;PH=5左右时,主要产物有乙酸、丙酸、丁酸和 乙醇;PH=5.5左右时,发生丙酸型发酵;
kmax ——最大比底物利用速率,gCOD /(gVSS d ) ; S ——可降解的底物浓度,mg/L;
Ks ——半速度常数,即最大比底物利用速率为一半时的底物
浓度,mg/L;
X ——生物浓度,mg/L;
细菌类型分为两大类型:产酸细菌(acidogens)和产甲 烷细菌(methanogens)
厌氧生物代谢过程示意图
5% 10%
13% H2 CO2
复杂有机化合物 (碳水化合物、蛋白质、类脂类)
水解 简单有机化合物 (糖、氨基酸、肽)
长链脂肪酸 (丙酸、丁酸等)
20 %
35 % 产酸
17 % 乙酸
15.3.2 影响产甲烷细菌的主要细菌因子
其它一些物质对厌氧处理的激活作用见下表
15.3.3 影响硫酸盐还原菌的主要生态因子
1、温度:中温的硫酸盐还原菌最适生长温度为30~ 35℃;高温菌种能够在50~70℃的范围内生长;
2、PH值:最适的pH值是6.5~8.0; 3、氧化还原电位ORP: 一般应保持在-100mV以下; 4、碳硫比: 不应小于1:5; 5、盐度:非嗜盐性的硫酸盐还原菌培养基的pH值应调
15.2.4 产氢产乙酸阶段
产氢产乙酸阶段:将产酸发酵阶段2C以上的有机酸 (除乙酸)和醇转化为乙酸、氢气、二氧化碳的过程, 并产生新的细菌物质。
这类细菌称为产氢产乙酸细菌。 水解的产物被发酵细菌摄入体内,进行代谢,由于菌
种不同,产物也不一样,众多产物中仅CO2、H2、乙 酸、甲酸、甲醇、甲胺(三甲一乙)可以被产甲烷细 菌利用。 其它产物(丙酸、丁酸等脂肪酸和醇类)经产氢产乙 酸细菌进一步转化成H2和乙酸等方可被利用。
影响传质速率的因素主要有厌氧污泥与介质间的液膜 厚度,搅拌可降低液膜厚度。另外注意布水系统对接 触的影响,避免在反应器中出现短流的现象。
15.3.2 影响产甲烷细菌的主要细菌因子
8. 营养:试验表明,COD:N:P控制在500:5:1左右为 宜,在厌氧处理装置启动时,可稍微增加氮素,有利于微 生物的增殖,并有利于提高反应器的缓冲能力
5. 水力停留时间和有机负荷
有机负荷为5~60 kgCOD /(m3 d ) ,产酸细菌可发挥良好 的作用,水力停留时间过短将影响底物的转化程度。水力 停留时间过短则出水中会出现较多未降解的有机物。
15.3.2 影响产甲烷细菌的主要细菌因子
1. PH值:一般来说,产甲烷细菌的最适pH值为6.5~7.5; 2. 氧化还原电位 :产甲烷细菌最适ORP为-300~-
Disc、ARBD)
折流式厌氧反应器(Anaerobic Baffled Reactor、 ABR)
厌氧生物处理的发展
⑤90年代以后,在UASB反应器基础上又发展起来了
EGSB和IC反应器; ——EGSB反应器,处理低温低浓度的有机废水; ——IC反应器,处理高浓度有机废水,可达到更高的有
至7.1;嗜盐性的硫酸盐还原菌的培养基最好调至7.6。 嗜盐性菌一般分布在海洋环境中,要求NaCl浓度大于 0.6%,最适宜的浓度为1%~3%。
15.3.4 厌氧生化反应动力学
厌氧生化反应动力学方程式:
dS dt
rsu
kmax SX Ks S
dX dt
rg
Yrsu
kd X
式中 rsu ——底物去除速率,mg /(L d ) ;
15.2.6 其他厌氧生物处理过程
硫酸盐还原过程对厌氧生物处理的影响 :
废水SO42-浓度低时,还原作用弱,对厌氧处理无影响, 且SO42-还原菌可利用H2,从而降低氢分压,一定程度上 促进有机物厌氧处理。
废水SO42-浓度高时, SO42-还原菌会和产甲烷菌竞争共 同底物乙酸和H2;同时SO42-还原产生的H2S会对甲烷菌 产生抑制作用,H2S还会对沼气的产生造成严重影响。
机负荷。
15.1.2 厌氧生物处理的特点
厌氧生物处理优点: 能耗少(可产生沼气)、运行费用低、污泥产量少,
能处理高浓度有机废水和某些好氧不能处理的有机废 水、BOD(COD)有机负荷和容积负荷高、可间歇运 行。 厌氧生物处理缺点: 启动周期长、出水不达标(需加好氧工艺)。
15.1.4 厌氧生物处理的发展趋势
2. 氧化还原电位(ORP) :一般认为,产酸细菌的最适 ORP范围为-200~-300mV。
15.3.1 影响产酸细菌的主要生态因子
3. 碱度:在产酸发酵过程中,足够的碱度可保证系统具有 良好的缓冲能力,避免pH值迅速降低而导致某些厌氧细 菌受到抑制。
4. 温度:一般来说,产酸细菌最佳工作温度为35℃ 左右
从目前厌氧处理工艺技术和设备发展前景来看,进一 步提高生物处理能力和稳定性的途径有以下方面:
(1)提高反应器中生物持有量; (2)利用厌氧微生物处理中微生物种群的特点,实现
相分离; (3)研制反应器使之形成特殊的水力流态,创造厌氧
微生物的最适生存条件。
15.2 厌氧生物处理的基本原理
15.2.1 复杂有机物的厌氧降解 15.2.2 水解阶段 15.2.3 产酸发酵阶段 15.2.4 产氢产乙酸阶段 15.2.5 产甲烷阶段 15.2.6 其他厌氧生物处理过程
第十五章 厌氧生物处理
15.1 概述
15.1.1 厌氧生物处理的发展 15.1.2 厌氧生物处理的特点 15.1.3 厌氧生物处理工艺的分类 15.1.4 厌氧生物处理的发展趋势
厌氧生物处理的发展
① 厌氧过程广泛存在于自然界中,主要用于剩余污泥的 厌氧消化处理.
② 1881年,法国,Louis Mouras ,“自动净化器”; ③ 处理城市污水的化粪池、双层沉淀池等 处理剩余污泥
15.3 厌氧微生物生态学
厌氧生物处理中,一般产酸细菌种群多,代谢速率和 生长速率快,所以厌氧处理中(产酸阶段和产甲烷阶 段)的控制步骤在产甲烷阶段。
近年来,随着对厌氧生物处理的研究,对产酸阶段的 影响因子也作了很大的研究,力求最大限度地发挥两 类菌群的作用。
15.3 厌氧微生物生态学
厌氧处理中,由于产甲烷阶段要求的生态条件苛刻, 并对环境改变敏感,对产甲烷阶段研究较多,目前对 厌氧处理生态学的研究包含了以下部分:
500mV;pH值低,ORP值高;pH值高,ORP低。 3. 有机负荷率:负荷率习惯上以投配率表达,即每日投加
的生污泥容积占反应器容积的百分数,而对于厌氧生物处 理有机废水时,大都以容积负荷率为参数,悬浮生长工艺 也可用污泥负荷率作指标; 4. 温度:最适温度有2个区,中温区在30~39℃之间,高 温区在50~60℃。
28%
CH4 CO2
72%
15.2.2 水解阶段
水解定义:复杂的非溶解性的有机物质在产酸细菌胞 外水解酶的作用下被转化为简单的溶解性单体或二聚 体的过程
不溶解性大分子有机物经胞外水解酶的作用,在溶液 中分解为水溶性的小分子有机物,如氨基酸、脂肪酸、 葡萄糖、甘油等
纤维素经水解转化成较简单的糖类; 蛋白质转化成较简单的氨基酸; 脂类转化成脂肪酸和甘油等
故象味精废水等高浓度SO42-废水,宜用专门的SO42-反应 器用作SO42-还原,目前常用的是二相厌氧反应器(有二 个独立的产酸菌反应器和产甲烷菌反应器)。
其他厌氧生物处理过程
2. 反硝化与厌氧氨氧化
(1)生物反硝化反应:
(2)厌氧氨氧化:无氧环境中,同时存在 NH4+和 NO2-时, NH4+作为反硝化的无机电子供体, NO2-作为 电子受体,产生N2,这是生物氮转化的新理论。
原细菌(sulfate-reducing bactecia,简称SRB)利用废 水中的有机物作为电子供体,将氧化态硫化合物还原为 硫化物的过程。 以乳酸为电子供体的化学反应式可表示为:
2CH3CHOHCOOH SO42 4ADP 4H3PO4 2CH3COOH 2CO2 S 2 6H2O 4ATP
15.2.5 产甲烷阶段
产甲烷阶段:由严格专性厌氧的产甲烷细菌将乙酸、 甲酸、甲醇、甲胺和二氧化碳/氢气等转化为甲烷和二 氧化碳(沼气)的过程
产甲烷细菌利用CO2、H2、三甲一乙将有机物中的碳 最终以CH4、CO2等产物形式逸出。
15.2.6 其他厌氧生物处理过程
1. 硫酸盐还原过程 硫酸盐还原:是指在厌氧条件下,化能异养型硫酸盐还
Sludge Blanket (Bed)、UASB ) 厌氧流化床 (Anaerobic Fluidized Bed、AFB ) 厌 氧 附 着 膜 膨 胀 床 (Anaerobic Attached Film
Expanded Bed 、AAFEB) 厌 氧 生 物 转 盘 ( Anaerobic Rotated Biological
厌氧氨氧化细菌有可能是亚硝化单胞菌属中的二个种 (N.europaea和N.eutropha),它们能同时进行硝化和 反硝化,无氧条件下, NH4+为电子供体,转化N2,还 原NO2-,无需有机C源,以碳酸盐或CO2为无机C源,氨 氮转化率同好氧硝化相当,能节省C源和供氧消耗。
相关文档
最新文档