高中数学数列总复习(所有知识点总结)精编材料pdf版

合集下载

高中数学数列知识点总结(精华版)

高中数学数列知识点总结(精华版)

一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项 a n与项数 n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集( 或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2. 通项公式:如果数列 a n的第 n 项与序号之间可以用一个式子表示, 那么这个公式叫做这个数列的通项公式,即a n f (n) .3. 递推公式:如果已知数列a n的第一项(或前几项),且任何一项a n与它的前一项a n 1(或前几项)间的关系可以用一个式子来表示,即 a n f (a n 1 ) 或 a n f (a n 1 , a n 2 ) ,那么这个式子叫做数列a n的递推公式 . 如数列a n中, a1 1, a n2a n 1 ,其中a n2a n 1 是数列 a n的递推公式 .4.数列的前 n项和与通项的公式① S n a1 a2a n;② a nS1 (n1)S n .S n 1 ( n 2)5. 数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列 .①递增数列 : 对于任何n N , 均有 a n 1②递减数列 : 对于任何n N , 均有 a n 1③摆动数列 : 例如 :1,1,1,1,1, .④常数数列 : 例如 :6,6,6,6, ,,.⑤有界数列 : 存在正数M 使 a n M , n a n .a n . N.⑥无界数列 : 对于任何正数M , 总有项 a n使得 a n M .1、已知 a n n (n N *) ,则在数列 { a n } 的最大项为 __(答: 1 );n2156an 252、数列 { a n } 的通项为a n,其中 a,b 均为正数,则 a n与 a n 1的大小关系为 ___(答:bn 1a n a n 1);3、已知数列 { a n }中,a n n2n ,且 { a n } 是递增数列,求实数的取值范围(答:3 );4、一给定函数y f (x) 的图象在下列图中,并且对任意a1(0,1) ,由关系式 a n 1 f (a n )得到的数列{ a n }满足 a n 1 a n(n N *),则该函数的图象是()(答: A )二、等差数列1、等差数列的定义:如果数列an 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。

高中数学数列知识点总结(精华版)

高中数学数列知识点总结(精华版)

..一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n与项数n是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列a n的第n项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即af(n)n.3.递推公式:如果已知数列a n的第一项(或前几项),且任何一项a n与它的前一项a(或前几项)间的关系可以用一个式子来表示,即a n f(a n1)或a n f(a n1,a n2),n1那么这个式子叫做数列a的递推公式.如数列an中,a11,a n2a n1,其中na n2a n1是数列a n的递推公式.4.数列的前n项和与通项的公式①Sn a1a2a;②nS(n1)1a n.SS(n2)nn15.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何nN,均有a n1a n.②递减数列:对于任何nN,均有a n1a n.③摆动数列:例如:1,1,1,1,1,.④常数数列:例如:6,6,6,6,⋯⋯.⑤有界数列:存在正数M使a n M,n N.⑥无界数列:对于任何正数M,总有项a使得a n M.n1、已知n*a2(nN)nn156,则在数列{}a的最大项为__(答:n125);2、数列{}a的通项为nana n,其中a,b均为正数,则a n与a n1的大小关系为___(答:bn1aa n1);n23、已知数列{a}中,a是递增数列,求实数的取值范围(答:3);ann,且{}nnn4、一给定函数yf(x)的图象在下列图中,并且对任意a(0,1),由关系式a n1f(a n)1*得到的数列{}a满足a n1a n(nN),则该函数的图象是()(答:A)neord完美格式..二、等差数列1、等差数列的定义:如果数列a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。

(完整版)高中数学数列知识点总结

(完整版)高中数学数列知识点总结

数列基础知识点和方法归纳1. 等差数列的定义与性质定义:1nna a d (d 为常数),11na a n d等差中项:x A y ,,成等差数列2A xy前n 项和11122n na a n n n S na d性质:n a 是等差数列(1)若m n p q ,则m np q a a a a ;(2)数列12212,,nn na a a 仍为等差数列,232n nn nn S S S S S ,,……仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为a d a a d,,(4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m mma Sb T (5)n a 为等差数列2n S anbn (a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2nS anbn 的最值;或者求出n a 中的正、负分界项,即:当100a d,,解不等式组100n na a 可得n S 达到最大值时的n 值.当100a d ,,由100n na a 可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列na ,有),)(()()(11122212为中间两项n n n nn n n a a a a n a a n a a n S nd S S 奇偶,1nn a a S S 偶奇.(7)项数为奇数12n 的等差数列na ,有)()12(12为中间项n n na a n S ,n a S S 偶奇,1n n S S 偶奇.2. 等比数列的定义与性质定义:1n na q a (q 为常数,0q ),11n na a q.等比中项:x G y 、、成等比数列2G xy ,或Gxy .前n 项和:11(1)1(1)1nnna q S a q q q(要注意!)性质:n a 是等比数列(1)若m n p q ,则m n p qa a a a ··(2)232n nn nn S S S S S ,,……仍为等比数列,公比为nq .注意:由n S 求n a 时应注意什么?1n 时,11a S ;2n时,1nnna S S .3.求数列通项公式的常用方法(1)求差(商)法如:数列n a ,12211125222nna a a n……,求na 解1n 时,112152a ,∴114a ①2n时,12121111215222nn a a a n ……②①—②得:122nna ,∴12n na ,∴114(1)2(2)nn n a n [练习]数列n a 满足111543nnn S S a a ,,求na 注意到11nnn a S S ,代入得14n nS S ;又14S ,∴n S 是等比数列,4nnS2n 时,1134n n n na S S ……·(2)叠乘法如:数列n a 中,1131n na n a a n ,,求na 解3212112123nn a a a n a a a n ·……·……,∴11n a a n又13a ,∴3na n .(3)等差型递推公式由110()nna a f n a a ,,求n a ,用迭加法2n时,21321(2)(3)()nna a f a a f a a f n …………两边相加得1(2)(3)()na a f f f n ……∴0(2)(3)()na a f f f n ……[练习]数列n a 中,111132n nna a a n,,求n a (1312nna )(4)等比型递推公式1nna ca d (c d 、为常数,010c cd ,,)可转化为等比数列,设111nnn na xc a xa ca c x令(1)c xd ,∴1d xc ,∴1nda c 是首项为11da c c ,为公比的等比数列∴1111n nd d a a cc c ·,∴1111n nd d a a cc c (5)倒数法如:11212nnn a a a a ,,求na 由已知得:1211122nnnna a a a ,∴11112n n a a ∴1na 为等差数列,111a ,公差为12,∴11111122nn n a ·,∴21na n ( 附:公式法、利用1(2)1(1)n n S S n S n na 、累加法、累乘法.构造等差或等比1nn a pa q 或1()nna pa f n 、待定系数法、对数变换法、迭代法、数学归纳法、换元法)4. 求数列前n 项和的常用方法(1) 裂项法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项.如:n a 是公差为d 的等差数列,求111nk k ka a 解:由11111110kk k kkkda a a a dd a a ·∴11111223111111111111nnk k k kkknna a d a a da a a a a a ……11111n d a a [练习]求和:111112123123n…………121nna S n …………,(2)错位相减法若n a 为等差数列,n b 为等比数列,求数列n n a b (差比数列)前n 项和,可由nn S qS ,求n S ,其中q 为n b 的公比.如:2311234n n S x xxnx……①23412341n nnx S x xxxn x nx·……②①—②2111n nnx S x x xnx……1x 时,2111n nnxnxS xx,1x 时,11232nn n S n……(3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加. 121121n nn nnnS a a a a S a a a a …………相加12112nnnn S a a a a a a ……[练习]已知22()1xf x x,则111(1)(2)(3)(4)234f f f f f f f由2222222111()111111xxx f x fxx xxx∴原式11111(1)(2)(3)(4)111323422f f f f f f f (附:a.用倒序相加法求数列的前n 项和如果一个数列{a n },与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。

(完整word版)高中数学数列知识点总结(经典),推荐文档

(完整word版)高中数学数列知识点总结(经典),推荐文档

高一数学期末复习专题解三角形3. 正、余玄定理的解题类型: (1) 两类正弦定理解三角形的问题: ① 已知两角和任意一边,求其他的两边及一角 ② 已知两角和其中一边的对角,求其他边角 (2) 两类余弦定理解三角形的问题: ①已知三边求三角.②已知两边和他们的夹角,求第三边和其他两角4. 判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形 式或角的形式.5. 解题中利用 ABC 中:ABC,以及由此推得的一些基本关系式进行三角变换的运算,如:sin(A B) si nC,cos(A B) cosC, tan (A B) tanC,.A B C AB .CAB C sincos —,cos sin ,ta ncot .2 2 2 2 2 26、 三角公式: (1) 倍角公式: (2) 两角和、差公式:1正弦定理:a b c2Rsin AsinB sin Ca:b:c sin A:sin B:sin C .cos A2a b 2c 2bc cos A2.余弦定理: b22a c 2 2ac cos B 或 cos B2cb 2a 2ba cos Ccos Cb 22c 2a2bc2 22ac b2ac222ba c2ab数列基础知识点和方法归纳1.等差数列的定义与性质(1)定义:a n 1 and ( d 为常数),通项公式: a n ai n 1 d(2)等差中项: x , A y 成等差数列 2A x y (3) 前n 项和: S na 1 a n nnnn n 1d 122(4)性质: a n 是等差数列① 任意两项间的关系式; a n = a m + (n — m )d (m 、n € N ) ② 若 m n p q ,贝U a m a . a p a q ;③ S n , S 2n S n , S 3n S 2n ……仍为等差数列,公差为n 'd ; ④ 若三个成等差数列,可设为a d , a, a d⑤ 若a n , b n 是等差数列,且前n 项和分别为S n , T n ,则空 乩b m T 2m 1⑥a n 为等差数列 S n an 2 bn ( a,b 为常数,是关于n 的常数项为0的二次函数)S n 的最值可求二次函数S n an 2 bn 的最值;或者求出a .中的正、负分界项,a o即:当a ,, d 0,解不等式组时o 可得§达到最大值时的n值.a o当a ,0, d 0,由“ 可得S n 达到最小值时的n 值.a n 1 0⑦项数为偶数2n 的等差数列a n 有n(a n a n 1)6, a . 1为中间两项)⑧ 项数为奇数2n 1的等差数列a n 有:S偶S奇nd ,a n 1S2n 1 (2n 1)a n(a n为中间项),a n ,32.等比数列的定义与性质(1) 定义:也a nq ( q 为常数,q 0),(2) (3) (4) 通项公式: 等比中项: 前n 项和: 性质: a n a nX 、S nG 、y 成等比数列na(q 1) a 11 q n 1 q(q 1)是等比数列 ①任意两项间的关系: —m - na m = a n . q②若 m n p q ,贝U a . a p- a qG 2 xy ,或 G 、、xy(要注意!)(m 、n € N ).③S n , S 2nS n , S sn S ?n ……仍为等比数列,公比为ql注意:由S n 求a n 时应注意什么?n 1 时,a 1 S i ; n 2 时,a nS n S n 13.求数列通项公式的常用方法(1)求差(商)法 如:数列a n , 1 12a 1 尹2 夬n 2n 5, 求 an解:n 1时, n 2时,為 2 1 / 1尹214 2n①-②得:寺a n2,…a n 14(n 1) 2n1( n 2)5& 1a n 1, 3注意到a n 1 Sn 1 S n ,代入得S n[练习]数列a n 满足S n a 1 n 2 时,a nS n S n 14,求 a n又S 4 , • S n 是等比数列,S n 4(2)叠乘法如:数列a n 中, 3,3a nn求a n n 1解: a2a1 a3a2 a n 1又a1 3, —a n(3)等差型递推公式由a n a n 1 f(n).a o,求a n,用迭加法a2 a i a3 a2 f(2)f⑶两边相加得an a i f (2) f (3) f (n)--a n a0f(2)f(3)……[练习]数列a n中,a11 (4)等比型递推公式a n ca n 1d( c、d为常数,可转化为等比数列 ,设a n x令(c 1)x d , x d5・■ i c 1d d n 1…a n a1cc 1 c 1(5)倒数法如:a11,an 12a n求a n 2由已知得:1a n 21a n 12a n2••• 1为等差数列,11 ,a n a1 a n a n…a n a n a n 1 f (n)f(n)a n 3n1a n 2,求a n a n(3n1),a n丄a n公差为1,a n是首项为a ia n—,c为公比的等比数列c 11a n(附:公式法、利用a n S(nS n S n1)1 (n2)、累加法、累乘法•构造等差或等比3换元法)4.求数列前n 项和的常用方法(1) 公式法 (2)裂项相消法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项da 1a n 1(3)错位相减法由 S n qS n ,求 S n , 其中q 为b n 的公比.(4)分组求和法所谓分组求和法就是对一类既不是等差数列, 也不是等比数列的数列,若将这类 数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。

北师大版高中数学必修五《数列知识点总结》.pdf

北师大版高中数学必修五《数列知识点总结》.pdf

北师⼤版⾼中数学必修五《数列知识点总结》.pdf S=a+a+……+a+an12n?1n相加2S=a+a+a+a+…+a+a…()()()n1n2n?11nS=a+a+……+a+annn?121?2x[练习]已知fx()=,则21+x111f(1)+f(2)+f+f(3)+f+f(4)+f=2342122??11xxx由f(x)+f=+=+=12222x1+x1+x1+x11+x11111∴原式=f(1)+f(2)+f+f(3)+f+f(4)+f=+1+1+1=323422(附:a.⽤倒序相加法求数列的前n项和如果⼀个数列{an},与⾸末项等距的两项之和等于⾸末两项之和,可采⽤把正着写与倒着写的两个和式相加,就得到⼀个常数列的和,这⼀求和⽅法称为倒序相加法。

我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同⼀类知识的⼯具,例如:等差数列前n项和公式的推导,⽤的就是“倒序相加法”。

b.⽤公式法求数列的前n项和对等差数列、等⽐数列,求前n项和Sn可直接⽤等差、等⽐数列的前n项和公式进⾏求解。

运⽤公式求解的注意事项:⾸先要注意公式的应⽤范围,确定公式适⽤于这个数列之后,再计算。

c.⽤裂项相消法求数列的前n项和裂项相消法是将数列的⼀项拆成两项或多项,使得前后项相抵消,留下有限项,从⽽求出数列的前n项和。

d.⽤错位相减法求数列的前n项和错位相减法是⼀种常⽤的数列求和⽅法,应⽤于等⽐数列与等差数列相乘的形式。

即若在数列{an·bn}中,{an}成等差数列,{bn}成等⽐数列,在和式的两边同乘以公⽐,再与原式错位相减整理后即可以求出前n项和。

e.⽤迭加法求数列的前n项和迭加法主要应⽤于数列{an}满⾜an+1=an+f(n),其中f(n)是等差数列或等⽐数列的条件下,可把这个式⼦变成a-a=f(n),代⼊各项,得到⼀系列式⼦,把所有的式⼦加到⼀起,经过整理,可求出a,n+1nn从⽽求出S。

(完整word版)数列知识点复习总结,推荐文档

(完整word版)数列知识点复习总结,推荐文档

数列高考知识点大扫描数列基本概念数列是一种特殊函数,对于数列这种特殊函数,着重讨论它的定义域、值域、增减性和最值等方面的性质,依据这些性质将数列分类:依定义域分为:有穷数列、无穷数列; 依值域分为:有界数列和无界数列;依增减性分为递增数列、递减数列和摆动数列。

数列的表示方法:列表法、图象法、解析法(通项公式法及递推关系法); 数列通项:()n a f n =2、等差数列1、定义 当n N ∈,且2n ≥ 时,总有 1,()n n a a d d +-=常,d 叫公差。

2、通项公式 1(1)n a a n d =+-1)、从函数角度看 1()n a dn a d =+-是n 的一次函数,其图象是以点 1(1,)a 为端点, 斜率为d 斜线上一些孤立点。

2)、从变形角度看 (1)()n n a a n d =+--, 即可从两个不同方向认识同一数列,公差为相反数。

又11(1),(1)n m a a n d a a m d =+-=+-,相减得 ()n m a a n m d -=-,即()n m a a n m d =+-. 若 n>m ,则以 m a 为第一项,n a 是第n-m+1项,公差为d ; 若n<m ,则 m a 以为第一项时,n a 是第m-n+1项,公差为-d.3)、从发展的角度看 若{}n a 是等差数列,则12(2)p q a a a p q d +=++- ,12(2)m n a a a m n d +=++-, 因此有如下命题:在等差数列中,若2m n p q r +=+= , 则2m n p q r a a a a a +=+=.3、前n 项和公式由 1211,n n n n n S a a a S a a a -=+++=+++L L , 相加得 12n n a a S n +=, 还可表示为1(1),(0)2n n n S na d d -=+≠,是n 的二次函数。

高中数学知识点总结最全版pdf

高中数学知识点总结最全版pdf

高中数学知识点总结最全版pdf一、代数1. 集合与函数概念- 集合的基本概念、表示方法及其运算- 函数的定义、性质和常见类型(如一次函数、二次函数、指数函数、对数函数、三角函数等)2. 代数式的运算- 整式的加减乘除、因式分解- 分式的运算法则- 二次根式的化简与运算3. 一元一次与一元二次方程- 解一元一次方程的一般步骤- 一元二次方程的解法(开平方法、配方法、公式法、因式分解法)4. 不等式- 不等式的基本性质- 解一元一次不等式和一元二次不等式- 线性规划问题的解法5. 函数的极限与连续性- 极限的概念及其计算- 函数的连续性与间断点6. 序列与数列- 等差数列与等比数列的性质和求和公式- 数列的极限7. 排列组合与概率- 排列组合的基本概念及计算公式- 概率的基本原理和计算方法- 条件概率与独立事件二、几何1. 平面几何- 点、线、面的基本性质- 三角形、四边形的性质与计算- 圆的性质与圆的方程2. 空间几何- 空间直线与平面的方程- 空间几何体(如棱柱、棱锥、圆柱、圆锥、球)的性质与计算3. 解析几何- 曲线的方程与性质- 坐标系变换与曲线的对称性- 圆锥曲线(圆、椭圆、双曲线、抛物线)的标准方程三、三角学1. 三角函数- 三角函数的定义与基本关系- 三角函数的图像与性质- 三角恒等变换2. 三角方程- 三角方程的解法- 应用三角方法解决实际问题四、微积分1. 导数与微分- 导数的定义与几何意义- 常见函数的导数- 微分的概念与应用2. 函数的极值与最值问题- 极值存在的条件- 最值问题的求解方法3. 积分学- 不定积分的概念与基本积分表- 定积分的概念与计算- 积分的应用(如计算面积、体积等)4. 微分方程- 常微分方程的基本概念- 一阶微分方程与二阶微分方程的解法五、概率论与数理统计1. 随机事件与概率- 随机事件的概率定义与性质- 概率分布(如二项分布、正态分布等)2. 统计量与抽样分布- 常见的统计量(如均值、方差、标准差等) - 抽样分布的概念3. 参数估计- 点估计与区间估计- 估计量的评价标准4. 假设检验- 假设检验的基本步骤- 显著性水平与P值以上总结了高中数学的主要知识点,这些知识点构成了高中数学的基础框架,对于理解和掌握高中数学课程至关重要。

高中数学数列知识点总结(精华版)

高中数学数列知识点总结(精华版)

高中数学数列知识点总结(精华版)等比数列公式性质知识点1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈n_,q为非零常数).(2)等比中项:如果a、g、b成等比数列,那么g叫做a与b的等比中项.即:g是a与b的等比中项a,g,b成等比数列g2=ab.2.等比数列的有关公式(1)通项公式:an=a1qn-1.3.等比数列{an}的常用性质(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈n_),则am·an=ap·aq=a.特别地,a1an=a2an-1=a3an-2=….(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列sm,s2m-sm,s3m-s2m,…仍是等比数列(此时q≠-1);an=amqn-4.等比数列的特征(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数.(2)由an+1=qan,q≠0并无法立即断言{an}为等比数列,还要检验a1≠0.5.等比数列的前n项和sn(1)等比数列的前n项和sn就是用错位二者加法求出的,特别注意这种思想方法在数列议和中的运用.(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.1.等比中项如果在a与b中间插入一个数g,使a,g,b成等比数列,那么g叫做a与b的等比中项。

存有关系:注:两个非零同号的实数的'等比中项有两个,它们互为相反数,所以g2=ab是a,g,b 三数成等比数列的必要不充分条件。

2.等比数列通项公式an=a1_q’(n-1)(其中首项是a1,公比是q)an=sn-s(n-1)(n≥2)前n项和当q≠1时,等比数列的前n项和的公式为sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)当q=1时,等比数列的前n项和的公式为sn=na13.等比数列前n项和与通项的关系an=a1=s1(n=1)an=sn-s(n-1)(n≥2)4.等比数列性质(1)若m、n、p、q∈n_,且m+n=p+q,则am·an=ap·aq;(2)在等比数列中,依次每k项之和仍成等比数列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列一、数列的概念与简单表示法1.数列的相关概念定义:按照一定顺序排列的一列数叫数列.(例如:1,3,5,7,9…).项与项数:数列中每一个数叫做数列的项,排在第一位的叫做第一项(通常叫首项),以此类推,排在第n 位的叫做数列的第n 项. 表示:数列一般形式可以写成:123,,,,,,n a a a a 简记为{}n a .2.数列的分类按照数列中项数有限和无限分为:有穷数列,无穷数列. 按照数列的项的变化趋势分类:递增数列(1n n a a +>);递减数列(1n n a a +<);常数列(1n n a a +=);摆动数列(1n a +与n a 随着n 的变化大小关系不确定).例如:1,3,5,7,9…(无穷递增数列),10,7,4,1,-2,…,-14(有穷递减数列),2,2,2,2,…(常数列),1,-1,1,-1,1…(摆动数列). 3.数列与函数的关系数列可以看成以正整数*N (或它的有限子集{1,2,,}n )为定义域的函数()n a f n =,当自变量从小到大依次取值时,所对应的一列函数值. 4.数列的表示方法通项公式:如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.例如:1,3,5,7,9…可表示为21n a n =-,n ∈*N .注意:①不是所有的数列都能写出它的通项公式;②对于一个确定的数列,通项公式不一定唯一.直接列出:123,,,,,.n a a a a图像表示:在平面直角坐标系中,数列可以用一群孤立的点(,)n n a 表示.递推公式:给出数列的第一项(或前几项),再给出后面的项用前面的项来表示的式子,这种表示数列的方法叫递推公式法. 例如:数列{}n a 中,有11a =,111n n a a -=+,根据此递推公式,我们就可以依次写出数列中的每一项.5.n a 与n S 的关系数列前n 项和记为n S ,则1231n n n S a a a a a -=+++++,11231n n S a a a a --=++++,两式相减,得1n n n a S S -=-,由于n 只能取正整数,当1n =时1n S -不存在,不能使用上式,但当1n =时很明显有11a S =,故我们得到通项n a 与前n 项和n S 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩ .二、等差数列1.等差数列的定义如果一个数列从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫作等差数列,这个常数叫作等差数列的公差,通常用字母d 表示.递推式表示为1n n a a d +-=或1(2)n n a a d n --=≥.例如:数列{}n a 满足12n n a a +=+,则数列{}n a 是公差为2的等差数列. 注:0d >时,为递增数列;0d <时,为递减数列;0d =时,为常数列. 2.等差中项若三个数a ,A ,b 成等差数列,则A 叫作a 与b 的等差中项. 此时2a b A +=3.等差数列的通项公式等差数列{}n a 的首项为1a ,公差为d ,则1(1)n a a n d =+-.4.等差数列的性质(1)等差数列{}n a 的第m 项为m a ,则()n m a a n m d =+-.★ 例如:8123107652a a d a d a d a d =+=+=+=-=.(2)若m n p q +=+,则m n p q a a a a +=+,若2m n p +=,则2m n p a a a +=.★ 例如:1928374652a a a a a a a a a +=+=+=+=,12132n n n a a a a a a --+=+=+=.(3)下标成等差数列且公差为m 的项k a ,k m a +,2k m a +,组成公差为md 的等差数列.例如:135721,,,,,,n a a a a a -组成公差为2d 的等差数列; 51015205,,,,,,n a a a a a 组成公差为5d 的等差数列.(4){}n a 是公差为d 的等差数列,则{}n ka b +也是等差数列,公差为kd .(5){}n a ,{}n b 都是等差数列,则{}n n a b ±,{}n n pa qb ±也是等差数列.5.判断一个数列是等差数列的方法 (1)定义法:1n n a a d +-=(常数).(2)等差中项法:122++=+n n n a a a 或112-+=+n n n a a a .★ (3)通项公式法:=n a kn b +(公差为k ).(4)前n 项和公式法:2n S An Bn =+(不含常数项的二次函数).★三、等差数列的前n 项和1.等差数列前n 项和公式n a 通项公式得到)★ 21()22n d dS n a n =+-(以n 为变量,体现二次函数) 2n S An Bn =+(简化写法,不含常数项的二次函数)2.和的有关性质等差数列{}n a ,公差为d ,前n 项和为n S ,那么: (1){}n S n也成等差数列,其首项与{}n a 首项相同,公差是{}n a 公差的12.(2)等差数列{}n b ,前n 项和为n T(21(21)n n S n a -=-).★ (3)数列232,,,k k k k k S S S S S --是等差数列,公差为2k d .★(4)S 奇表示奇数项的和,S 偶表示偶数项的和,则有:①当项数为偶数2n 时,S S nd -=偶奇,1nn S a S a +=奇偶; ②当项数为奇数21n -时,n S S a -=奇偶,1S nS n =-奇偶.3.和与函数的关系及和的最值 21()22n d dS n a n =+-简写为2()n S An Bn n =+∈*N ,可以把(,)n n S 看作是二次函数图像上孤立的点,因此可以用二次函数的性质来研究和的性质,比如对称和求最值.四、等比数列1.等比数列的定义如果一个数列从第2项起,每一项与它前一项的比等于同一个常数,那么这个数列就叫作等比数列,这个常数叫作等比数列的公比,通常用字母q 表示(0q ≠).递推式表示为1n na q a +=或1(2)nn a q n a -=≥. 例如:数列{}n a 满足12n n a a +=,则数列{}n a 是公比为2的等比数列.特别注意:等比数列中任何一项都不为0,公比0q ≠,若一个数列是常数列,则此数列一定是等差数列,除了0,0,0,这样的常数列之外,其余的也都是等比数列.注:10a >,1q >时,{}n a 是递增的等比数列;10a >,01q <<时,{}n a 是递减的等比数列; 10a <,01q <<时,{}n a 是递增的等比数列; 10a <,1q >时,{}n a 是递减的等比数列;1q =时,{}n a 是非零常数列; 0q <时,{}n a 是摆动数列.2.等比中项若三个数a ,G ,b 成等比数列,则G 叫作a 与b 的等比中项. 此时2G ab =例如:2和8的等比中项为4±. 注:①一个等比数列,从第2项起,每一项都是它的前后两项的等比中项,即212n n n a a a ++=,每一项都是前后距离相同两项的等比中项,即2n n m n m a a a -+=.②当三个数成等比数列时,当四个数成等比数列时,常设这3.等比数列的通项公式等比数列{}n a 的首项为1a ,公比为q ,则11n n a a q -=.4.等比数列的性质(1)等比数列{}n a 的第m 项为m a ,则n mn m a a q -=.★例如:7652812310a a q a q a q a q -=====.(2)若m n p q +=+,则m n p q a a a a =,若2m n p +=,则2m n p a a a =.★例如:2192837465a a a a a a a a a ====,12132n n n a a a a a a --===.(3)下标成等差数列且公差为m 的项k a ,k m a +,2k m a +,组成公比为mq 的等比数列.例如:135721,,,,,,n a a a a a -组成公比为2q 的等比数列; 51015205,,,,,,n a a a a a 组成公比为5q 的等比数列.(4){}n a 是公比为q 的等比数列,则{}n ka 也是等比数列,公比为q . (5){}n a ,{}n b 都是等比数列,则{}n ka ,{||}n a ,2{}n a ,1{}n a ,{}n n a b ,{}n na b 也是等比数列.5.判断一个数列是等比数列的方法 (1)定义法:1n na q a +=(常数).★ (2)等比中项法:212+=n n n a a a +或211-+=n n n a a a .★ (3)通项公式法:11=n n a a q-(公比为q ).(4)前n 项和公式法:(0,0)nn S Aq A A q =-≠≠.五、等比数列的前n 项和1.等比数列前n 项和公式注意:应用求和公式时,要先看q 是否等于1,必要时需讨论.2.和的有关性质等比数列{}n a ,公比为q ,前n 项和为n S ,那么: (1)数列232,,,k k k k k S S S S S --是等比数列,公比为kq .★(2)m nm n m n n m S S q S S q S +=+=+.(3)S 奇表示奇数项的和,S 偶表示偶数项的和,则有:①当项数为偶数2n 时,S q S =偶奇;②当项数为奇数21n +时,1S a q S -=奇偶.六、求数列通项公式专题1.公式法等差数列通项公式: 1(1)n a a n d =+-,()n m a a n m d =+-. 等比数列通项公式:11n n a a q -=,n m n m a a q -=. 2.已知n S 与n a 的关系求通项已知n S 求n a 公式:11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩.3.累加法适用形式:1()n n a a f n +=+.变为1()n n a a f n +-=,下标依次递减1写出等式,直至写到21(1)a a f -=,最后把1n -个等式相加即可得到结果.4.累乘法适用形式:1()n n a a f n +=.变为1()n na f n a +=,下标依次递减1写出等式,直至写到21(1)af a =,最后把1n -个等式相乘即可得到结果. 5.构造法(1)形如1n n a qa p +=+,用待定系数法构造等比数列.即令1()n n a x q a x ++=+,则1(1)n n a qa q x +=+-,与1n n a qa p +=+对比可知1px q =-,故数列{}1n p a q +-是公比为q 的等比数列.形如1()n n a qa f n +=+,用待定系数法构造等比数列,令1(1)()n n a A n B q a An B ++++=++,利用系数相等求出A 和B .(2)形如11n n n a pa qp ++=+,采用两边同除法构造等差数列.两边同除以1n p +得到11n n n n a a q p p ++=+,故数列{}nn a p 是公差为q 的等差数列.11n n nqa p a pa ++=,即1n n a a p +=+,故{}n a 是公差为q p的等差数列. (4)含有n a ,1n a +的二次三项式,通过因式分解转化为常见数列求解.(5)形如21n n n a pa qa ++=+,用待定系数法转化为211()() n n n n a a p a a λλλ++++=++,化简对比求出λ,则1{}n n a a λ++是公比为p λ+的等比数列,再根据情况求出n a .(6)形如1rn n a pa +=,采用两边取对数法,变形为1lg lg lg n n a r a p +=+,再用待定系数法构造等比数列.(7)换元法:适用于含有根式的递推关系式,把根式整体代换为一个简单数列来表示.6.数学归纳法根据数列前几项的值猜想数列的通项公式,首先带入第一项验证成立,然后假设第k 项成立,最后证明第1k +项也成立,便可证明猜想的公式就是数列的通项公式.七、数列求和专题1.公式法等差数列求和公式: 11()(1)22n n n a a n n S na d +-==+. 等比数列求和公式:111(1)(1)(1)11n n n na q S a a q a q q q q =⎧⎪=--⎨=≠⎪--⎩.常用求和公式:1123(1)2n n n ++++=+ 22221123(1)(21)6n n n n ++++=++333321123[(1)]2n n n ++++=+2.分组求和法如果一个数列的通项可以写成n n n c a b =±的形式,而数列{}n a ,{}n b 是等差或等比数列或可转化为能够求和的数列,可采用分组求和法.3.错位相减法{}n a 是等差数列,{}n b 是等比数列,求数列{}n n a b ⋅的前n 项和时,采用错位相减法求解,在等式的两边同乘以{}n b 的公比,然后错位一项与{}n n a b ⋅的同次项对应相减,转化为特殊数列求和问题.需注意{}n b 共比为参数字母时,要对公比是否为1做讨论.它是等比数列前n 项和公式的推导方法.4.裂项相消法将数列每一项拆成两项或若干项,使得相加后有一些项可以相互抵消,从而求得其和.一般未被消去的项有前后对称的特点. 常见裂项方法: ①111(1)1n n n n =-++ ②1111()()n n k k n n k=-++③1111()(21)(21)22121n n n n =--+-+ ④ 1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++1k= ⑥ 1log (1)log (1)log a a a n n n +=+-注:(1)裂项常见公式没有必要死记硬背,例如对1(5)n n +裂项,可直接把分式从中间截断,变为115n n -+,再通分求得1155(5)n n n n -=++,与原式比较分母变为5倍,则把裂项后的结果115n n -+前面乘以15就变为与原式相等的裂项,即1111()(5)55n n n n =-++. (2)分母为根式相加形式的裂项,本质就是对分母有理化,即=1k=.(3)对数形式的裂项,考察的是对数的基本计算,利用对数性质巧妙构造相消项,如11log (1)log ()log (1)log a a a a n n n n n++==+-.5.倒序相加法一个数列中,与首末两项等距离的两项之和等于首末两项之和,那么把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法.它是等差数列前n 项和公式的推导方法. 6.并项求和法一个数列的前n 项和中,若项与项之间能两两结合求解,则称为并项求和.形如(1)()n n a f n =-的数列,可用此法.7.含有绝对值的求和关键找到正负转折项进行分类讨论.数学浪子整理制作,侵权必究。

相关文档
最新文档