线性回归方程——非线性方程转化为线性方程

合集下载

2023年高考数学复习:非线性回归问题

2023年高考数学复习:非线性回归问题
2023年高考数学复习:
通过变量间的相关关系对两个变量进行统计分析是数学的重要应 用,其中非线性回归问题具有十分重要的现实意义.
例 (2021·武汉模拟)近年来,明代著名医药学家李时珍的故乡黄冈市蕲 春县大力发展大健康产业,蕲艾产业化种植已经成为该县脱贫攻坚的主 要产业之一,已知蕲艾的株高y(单位:cm)与一定范围内的温度x(单位:℃) 有关,现收集了蕲艾的13组观测数据,得到如下的散点图: 现根据散点图利用 y=a+b x或 y =c+dx建立 y 关于 x 的非线性回归 方程,令 s= x,t=1x得到如下数据:
^
2 230.8-20=2 210.8,所以z≤2 210.8,
当且仅当x=20时等号成立, 所以当温度为20℃时蕲艾的利润最大.
能力 提升
非线性回归方程的求法 (1)根据原始数据作出散点图. (2)根据散点图,选择恰当的拟合函数. (3)作恰当变换,将其转化成线性函数,求线性回归方程. (4)在(3)的基础上通过相应变换,即可得非线性回归方程.
解 先建立v关于x的线性回归方程. 由y=eλx+t,得ln y=t+λx,即v=t+λx.
12
xi- x vi- v
^ i=1
由于λ=
12
xi- x 2
=71740≈0.018,
i=1
^
^
t= v -λ x =4.20-0.018×20=3.84,
^
所以 v 关于 x 的线性回归方程为v=0.02x+3.84,
i=1
14
(1)设(ui,yi)的相关系数为r1,(xi,vi)的相关系数为r2,请从相关系数的角 度,选择一个拟合程度更好的模型;
解 r1=
12
ui- u yi- y

常见非线性回归模型

常见非线性回归模型

常见非线性回归模型1.简非线性模型简介非线性回归模型在经济学研究中有着广泛的应用。

有一些非线性回归模型可以通过直接代换或间接代换转化为线性回归模型,但也有一些非线性回归模型却无法通过代换转化为线性回归模型。

柯布—道格拉斯生产函数模型y AKL其中L和K分别是劳力投入和资金投入, y是产出。

由于误差项是可加的,从而也不能通过代换转化为线性回归模型。

对于联立方程模型,只要其中有一个方程是不能通过代换转化为线性,那么这个联立方程模型就是非线性的。

单方程非线性回归模型的一般形式为y f(x1,x2, ,xk; 1, 2, , p)2.可化为线性回归的曲线回归在实际问题当中,有许多回归模型的被解释变量y与解释变量x之间的关系都不是线性的,其中一些回归模型通过对自变量或因变量的函数变换可以转化为线性关系,利用线性回归求解未知参数,并作回归诊断。

如下列模型。

(1)y 0 1e x(2)y 0 1x2x2p x p(3)y ae bx(4)y=alnx+b对于(1)式,只需令x e x即可化为y对x是线性的形式y01x,需要指出的是,新引进的自变量只能依赖于原始变量,而不能与未知参数有关。

对于(2)式,可以令x1=x,x2=x2,⋯,x p=x p,于是得到y关于x1,x2,⋯, x p 的线性表达式y 0 1x12x2 pxp对与(3)式,对等式两边同时去自然数对数,得lnylnabx ,令y lny, 0 lna, 1 b,于是得到y关于x的一元线性回归模型:y 0 1x。

乘性误差项模型和加性误差项模型所得的结果有一定差异,其中乘性误差项模型认为yt本身是异方差的,而lnyt是等方差的。

加性误差项模型认为yt是等方差的。

从统计性质看两者的差异,前者淡化了y t值大的项(近期数据)的作用,强化了y t值小的项(早期数据)的作用,对早起数据拟合得效果较好,而后者则对近期数据拟合得效果较好。

影响模型拟合效果的统计性质主要是异方差、自相关和共线性这三个方面。

(整理)计量经济学第四章非线性回归模型的线性化

(整理)计量经济学第四章非线性回归模型的线性化

(整理)计量经济学第四章⾮线性回归模型的线性化第四章⾮线性回归模型的线性化以上介绍了线性回归模型。

但有时候变量之间的关系是⾮线性的。

例如 y t = α 0 + α11βt x + u t y t = α 0 t x e 1α+ u t上述⾮线性回归模型是⽆法⽤最⼩⼆乘法估计参数的。

可采⽤⾮线性⽅法进⾏估计。

估计过程⾮常复杂和困难,在20世纪40年代之前⼏乎不可能实现。

计算机的出现⼤⼤⽅便了⾮线性回归模型的估计。

专⽤软件使这种计算变得⾮常容易。

但本章不是介绍这类模型的估计。

另外还有⼀类⾮线性回归模型。

其形式是⾮线性的,但可以通过适当的变换,转化为线性模型,然后利⽤线性回归模型的估计与检验⽅法进⾏处理。

称此类模型为可线性化的⾮线性模型。

下⾯介绍⼏种典型的可以线性化的⾮线性模型。

4.1 可线性化的模型⑴指数函数模型y t = t t ubx ae + (4.1)b >0 和b <0两种情形的图形分别见图4.1和4.2。

显然x t 和y t 的关系是⾮线性的。

对上式等号两侧同取⾃然对数,得Lny t = Lna + b x t + u t (4.2)令Lny t = y t *, Lna = a *, 则y t * = a * + bx t + u t (4.3) 变量y t * 和x t 已变换成为线性关系。

其中u t 表⽰随机误差项。

010203040501234XY 1图4.1 y t =tt u bx ae+, (b > 0) 图4.2 y t =t+, (b < 0)⑵对数函数模型y t = a + b Ln x t+ u t(4.4)b>0和b<0两种情形的图形分别见图4.3和4.4。

x t和y t的关系是⾮线性的。

令x t* = Lnx t, 则y t = a + b x t* + u t(4.5)变量y t和x t* 已变换成为线性关系。

图4.3 y t = a + b Lnx t + u t , (b > 0) 图4.4 y t = a + b Lnx t + u t , (b < 0)⑶幂函数模型y t= a x t b t u e(4.6) b取不同值的图形分别见图4.5和4.6。

多元线性回归模型习题及答案

多元线性回归模型习题及答案

多元线性回归模型习题及答案TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为,则调整后的多重决定系数为( D )2.下列样本模型中,哪一个模型通常是无效的(B )A. i C (消费)=500+i I (收入)B. d i Q (商品需求)=10+i I (收入)+i P (价格)C. s i Q (商品供给)=20+i P (价格)D. iY (产出量)=0.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t t y b b x b x u =+++后,在的显着性水平上对1b 的显着性作t 检验,则1b 显着地不等于零的条件是其统计量t 大于等于( C )A. )30(05.0tB. )28(025.0tC. )27(025.0tD. )28,1(025.0F4.模型t t t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向 5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从( C )(n-k+1) (n-k-2)(n-k-1) (n-k+2)7. 调整的判定系数 与多重判定系数 之间有如下关系( D ) A.2211n R R n k -=-- B. 22111n R R n k -=--- C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=---- 8.关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。

高一数学必修三课件第章线性回归方程

高一数学必修三课件第章线性回归方程

01
02
03
变量
在某一过程中可以取不同 数值的量。
自变量
能够影响其它变量,而又 不受其它变量影响的变量 。
因变量
依赖于其它变量,而又不 能影响其它变量的变量。
散点图及其特点
散点图
用点的密度和变化趋势表示两指 标之间的直线和曲线关系的图。
特点
能直观表现出影响因素和预测对 象之间的总体关系趋势。
线性回归方程定义
通过绘制自变量和因变量的散点图,观察数据点 分布形态,若呈现非线性形态,则可能存在非线 性关系。
曲线拟合
根据散点图形态,选择合适的曲线类型进行拟合 ,如二次曲线、指数曲线、对数曲线等。
3
变换自变量或因变量
通过对自变量或因变量进行变换,如取对数、平 方、开方等,将非线性关系转化为线性关系。
可化为线性关系非线性模型
一致性
随着样本量的增加,线性回归方程 的系数估计值会逐渐接近真实值。
预测值与置信区间估计
预测值
根据回归方程和给定的自 变量值,可以计算出因变 量的预测值。
置信区间
通过构造置信区间,可以 对预测值进行区间估计, 表示预测值的可靠程度。
置信水平
置信水平表示了置信区间 包含真实值的概率,常用 的置信水平有95%和99% 。
在数据采集过程中,可能存在某些自变量 被重复测量或高度相关的情况。
变量设计问题
样本量问题
在变量设计时,可能存在某些自变量之间 存在固有的高度相关性。
当样本量较小而自变量较多时,也容易出 现多重共线性问题。
识别和处理多重共线性方法
观察自变量间的相关系数
如果两个自变量间的相关系数很高,则可能存在多重共线性 。
案例二

线性回归计算方法及公式

线性回归计算方法及公式
• 简单线性回归是研究一个因变量(Y)和一个自变量 (X)之间数量上相互依存的线性关系。而多元线性回 归是研究一个因变量(Y)和多个自变量(Xi)之间数 量上相互依存的线性关系。 • 简单线性回归的大部分内容可用于多元回归,因其基 本概念是一样的。
• 多 元 线 性 回 归 分 析 的 作 用
• 回 归 分 析 中 自 变 量 的 选 择
一般地,设某事件D发生(D=1)的概 率P依赖于多个自变量(x1,x2, …,xp),且
P(D=1)=e Bo+B1X1+…+BpXp /(1+e Bo+B1X1+…+BpXp ) 或
Logit(P) = Bo+B1X1+…+Bp X p 则称该事件发生的概率与变量间关系符合多元 Logistic回归或对数优势线性回归。
和多元线性回归分析一样,在Logistic回 归分析中也须对自变量进行筛选。方法 和多元线性回归中采用的方法一样,有 向后剔除法、向前引入法及逐步筛选法 三种。筛选自变量的方法有wald检验、 Score test、likelihood ratio test(wald chisquare test)三种。
• 逐步引入-剔除法(stepwise selection) 先规定两个阀值F引入和F剔除,当候选变 量中最大F值>=F引入时,引入相应变量; 已进入方程的变量最小F<=F剔除时,剔 除相应变量。如此交替进行直到无引入 和无剔除为止。(计算复杂)
多元线性回归方程的作用
• 因素分析 • 调整混杂因素的作用 • 统计预测
X的取值在正负无穷大之间;F( 用Logistic分布函数这一特征,将其应用到临床 医学和流行病学中来描述事件发生的概率。

第3章 线性回归与非线性回归

第3章 线性回归与非线性回归

Yt B1 B2 X t ut
假设 u t u t -1 v t -1 1 其中,v满足OLS假定,并且 是已知的。
Yt 1 B1 B2 X t 1 ut 1
方程(9 - 2)的两边同时乘以 , 得到 :
Yt -1 B1 B2 X t -1 u t -1
View/Residual Tests/Heteroskedasticity Tests 或者 eq01.hettest(type=Glejser) c car pmg pop rgnp


斯皮尔曼(Spearman)秩相关检验。 戈德费尔德-匡特(Goldfeld-Quandt)检验 巴特莱特(Bartlett)检验 匹克(Peak)检验 布鲁尔什-培甘(Breusch-Pagan)检验 CUSUMSQ检验

在方程定义窗口的定义栏中输入: 线性化方法:ls log(Y) c log(K) log(L) 非线性方法:ls Y=c(1)*K^c(2)*L^c(3)

有时遇到估计结果不符合常规或显示出无法收敛 的错误信息时,需要设定选项重新估计。 (1)初始值(Start Value) 初始值是EViews进行第一次迭代计算时参数所取 的数值。这个值保存在与回归函数有关的系数向 量中。回归函数必须定义初始值。例如如果回归 函数包含表达式1/C (1),就不能把C (1)的初始值 设定为0,同样如果包含表达式LOG (C (2)),那C (2)必须大于零。



建模过程仍是先打开方程定义窗口,在定义栏中输 入模型的非线性表达式即可。不同的是有时候可能 迭代无法收敛,则需要通过修改选项设置来重新估 计。 与例3.6比较,可以看出,线性化与NLS法的参数估 计值完全一样,统计量输出相同,这是由于线性化 仅改变了变量的形式,而NLS法也没有改变y和1/x 的线性关系,在这两种情况下进行最小二乘估计对 于待估参数来说是等价的。

一元线性回归模型及其应用

一元线性回归模型及其应用

题型二 一元线性回归模型的应用
[探究发现]
(1)残差平方和与R2有怎样的关系?
n
yi-^yi2
i=1
提示:R2=1-
,即残差平方和越小,R2 越大.
n
yi--y 2
i=1
(2)R2的大小对模型的拟合效果有怎样的影响?
提示:R2越大,说明残差平方和越小,即模型的拟合效果越好.
[学透用活] [典例2] 假定小麦基本苗数x与成熟期有效穗y之间存在相关关系,今测得5 组数据如下:
解:(1) x =16×(8+8.2+8.4+8.6+8.8+9)=8.5, y =16×(90+84+83+80+75+68)=80, ^a= y +20 x =80+20×8.5=250, 所以经验回归方程为^y=-20x+250. (2)工厂获得的利润 z=(x-4)y=-20x2+330x-1 000, 由二次函数知识可知当 x=343时,zmax=361.25(元). 故该产品的单价应定为 8.25 元.
2.一元线性回归模型参数的最小二乘估计 (1)经验回归方程:
对于一组具有线性相关关系的成对样本数据(x1,y1),(x2,y2),…,(xn,yn),
n
xi--x yi--y
n xiyi-n-x -y
i=1
i=1
由最小二乘法得^b=


n
xi--x 2
n x2i -n-x 2
i=1
i=1
^a=-y -^b-x .
(二)基本知能小试
1.判断正误
(1)在一元线性回归模型中,e 是 bx+a 预报真实值 y 的随机误差,它是一个
可观测的量.
()
(2)用最小二乘法求出的^b可能是正的,也可能是负的. (3)残差平方和越大,线性回归模型的拟合效果越好. (4)经验回归方程^y=^bx+^a必过点(-x ,-y =1 076.2.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性回归方程——非线性方程转化为线性方程例1.(2015·高考全国卷Ⅰ)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费x i 和年销售量y i (i =1,2,⋯,8)数据作了初步处理,得到下面的散点图及一些统计量的值.x̅ y ̅ w ̅46.6 563 6.8289.81.61469108.8表中w i =√x i ,w ̅ =18 ∑w i 8i=1,,I )根据散点图判断,y =a +bx 与y =c +d √x ,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);,II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为z =0.2y −x ,根据(II )的结果回答下列问题: (i )年宣传费x =49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1) (u 2,v 2) ,…,(u n ,v n ) 其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为:β̂=∑(u i −u)(v i −v)ni=1∑(u i −u)2ni=1,α̂=v −β̂u . 【答案】(Ⅰ)y =c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型;(Ⅱ)y ̂=100.6+68√x ;(Ⅲ)(i)答案见解析;(ii)46.24千元.【解析】(I )由散点图可以判断,y =c +d √x 适宜作为年销售量y 关于年宣传费x 的回归方程类型. (II )令w =√x ,先建立y 关于w 的线性回归方程,由于d̂=∑(w i −w)(y i −y)8i=1∑(w i −w)28i=1=108.81.6=68,∴ĉ=y −d ̂w =563−68×6.8=100.6, ∴y 关于w 的线性回归方程为y ̂=100.6+68w , 因此y 关于x 的回归方程为y ̂=100.6+68√x .(III )(ⅰ)由(II )知,当x =49时,年销售量y 的预报值y ̂=100.6+68√49=576.6, 年利润z 的预报值为ẑ=576.6×0.2−49=66.32.,ⅱ)根据(II )的结果知,年利润z 的预报值ẑ=0.2(100.6+68√x)−x =−x +13.6√x +20.12, 所以当√x =13.62=6.8,即x =46.24时,ẑ取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大.例2.某地级市共有200000中小学生,其中有7%学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5:3:2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1000元、1500元、2000元。

经济学家调查发现,当地人均可支配年收入较上一年每增加n%,一般困难的学生中有3n%会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生中有2n%转为一般困难,特别困难的学生中有n%转为很困难。

现统计了该地级市2013年到2017年共5年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份x取13时代表2013年,x与y(万元)近似满足关系式y=C1⋅2C2x,其中C1,C2为常数。

(2013年至2019年该市中学生人数大致保持不变)其中k i=log2y i,k̅=15∑5i=1k i(Ⅰ)估计该市2018年人均可支配年收入;(Ⅰ)求该市2018年的“专项教育基金”的财政预算大约为多少?附:对于一组具有线性相关关系的数据(u1,v1),(u2,v2),⋯,(u n,v n),其回归直线方程v=βu+α的斜率和截距的最小二乘估计分别为β̂=∑ni=1(u i−u̅)(v i−v̅)∑n i=1(u i−u̅)2,α̂=v̅−β̂u̅.【答案】(Ⅰ)2.8(万);(Ⅱ)1624万.【详解】(Ⅰ)因为x̅=15(13+14+15+16+17)=15,所以∑5i=1(x i−x̅)2=(−2)2+(−1)2+12+22=10.由k=log2y得k=log2C1+C2x,所以C2=∑5i=1(x i−x̅)(k i−k̅)∑5i=1(x i−x̅)2=110,log2C1=k̅−C2x̅=1.2−110×15=−0.3,所以C1=2−0.3=0.8,所以y=0.8×2x10.当x=18时,2018年人均可支配年收入y=0.8×21.8=0.8×3.5=2.8(万)(Ⅱ)由题意知2017年时该市享受“国家精准扶贫”政策的学生共200000×7%=14000人一般困难、很困难、特别困难的中学生依次有7000人、4200人、2800人, 2018年人均可支配收入比2017年增长0.8×21.8−0.8×21.70.8×21.7=20.1−1=0.1=10%所以2018年该市特别困难的中学生有2800×(1-10%)=2520人,很困难的学生有4200×(1-20%)+2800×10%=3640人一般困难的学生有7000×(1-30%)+4200×20%=5740人.所以2018年的“专项教育基金”的财政预算大约为5740×1000+3640×1500+2520×2000=1624万.例3.近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x 表示活动推出的天数,y 表示每天使用扫码支付的人次(单位:十人次),统计数据如表l 所示: 表1根据以上数据,绘制了如右图所示的散点图.(1)根据散点图判断,在推广期内,y =a +bx 与y =c ⋅d x (c,d 均为大于零的常数)哪一个适宜作为扫码支付的人次y 关于活动推出天数x 的回归方程类型?(给出判断即可,不必说明理由),(2)根据(1)的判断结果及表1中的数据,求y 关于x 的回归方程,并预测活动推出第8天使用扫码支付的人次; 参考数据:其中υi =1gy i ,υ=17∑υi 7i=1参考公式:对于一组数据(u 1,υ1),(u 2,υ2),⋅⋅⋅,(u n ,υn ),其回归直线υ̂=a ̂+β̂u 的斜率和截距的最小二乘估计公式分别为:β̂=∑u i υi −nuυni=1∑u i 2−nu 2ni=1,a ̂=υ−β̂u ̂. 【答案】(1)y =c ⋅d x ,2,3470【详解】(1)根据散点图判断,y =c ⋅d x 适宜作为扫码支付的人数y 关于活动推出天数x 的回归方程类型; (2)∵y =c ⋅d x ,两边同时取常用对数得:1gy =1g(c ⋅d x ) =1gc +1gd ⋅x , 设1gy =v, ∴v =1gc +1gd ⋅x∵x =4,v =1.54, ∑x i 27i=1=140, ∴l g ̂d =∑x i v i 7i=1−7xv ∑x i2−7x 27i=1=50.12−7×4×1.54140−7×42=728=0.25,把样本中心点(4,1.54)代入v =1gc +1gd ⋅x ,得: l g ̂c =0.54, ∴v ̂=0.54+0.25x ,∴l g ̂y =0.54+0.25x ,∴y 关于x 的回归方程式:y ̂=100.54+0.25x =100.54×(100.25)x =3.47×100.25x,把x =8代入上式,y ̂=3.47×102=347, 活动推出第8天使用扫码支付的人次为3470,例4.近年来,随着我国汽车消费水平的提高,二手车流通行业得到迅猛发展.某汽车交易市场对2017年成交的二手车交易前的使用时间(以下简称“使用时间”)进行统计,得到频率分布直方图如图1.图1 图2(1)记“在2017年成交的二手车中随机选取一辆,该车的使用年限在(8 , 16]”为事件A ,试估计A 的概率; (2)根据该汽车交易市场的历史资料,得到散点图如图2,其中x (单位:年)表示二手车的使用时间,y (单位:万元)表示相应的二手车的平均交易价格.由散点图看出,可采用y =e a+bx 作为二手车平均交易价格y 关于其使用年限x 的回归方程,相关数据如下表(表中Y i =lny i ,Y =110∑Yi 10i=1,,①根据回归方程类型及表中数据,建立y 关于x 的回归方程;②该汽车交易市场对使用8年以内(含8年)的二手车收取成交价格4%的佣金,对使用时间8年以上(不含8年)的二手车收取成交价格10%的佣金.在图1对使用时间的分组中,以各组的区间中点值代表该组的各个值.若以2017年的数据作为决策依据,计算该汽车交易市场对成交的每辆车收取的平均佣金.附注:①对于一组数据(u 1,v 1),(u 2,v 2),⋯(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为β̂=∑u i v i n i=1−nu̅ v ̅∑u i 2ni=1−nu ̅2,α̂=v̅−β̂ u ̅, ②参考数据:e 2.95≈19.1 , e 1.75≈5.75 , e 0.55≈1.73 , e −0.65≈0.52 , e −1.85≈0.16,【答案】(1)0.40;(2)y ̂=e 3.55−0.3x 0.29万元【详解】(1)由频率分布直方图得,该汽车交易市场2017年成交的二手车使用时间在(8,12]的频率为0.07×4=0.28,在(12,16]的频率为0.03×4=0.12 ,所以P (A )=0.28+0.12=0.40,(2)①由y =e a+bx 得lny =a +bx ,即Y 关于x 的线性回归方程为Ŷ=a +bx , 因为b ̂=∑x i Y i −10x̅⋅Y ̅10i=1∑x i 2−10x̅210i=1=79.75−10×5.5×1.9385−10×5.52=−0.3,a ̂=Y ̅−b ̂⋅x̅=1.9−(−0.3)×5.5=3.55 所以Y 关于x 的线性回归方程为Y ̂=3.55−0.3x , 即y 关于x 的回归方程为y ̂=e 3.55−0.3x ②根据①中的回归方程y ̂=e 3.55−0.3x 和图1,对成交的二手车可预测:使用时间在(0,4]的平均成交价格为e 3.55−0.3×2=e 2.95≈19.1,对应的频率为0.2, 使用时间在(4,8]的平均成交价格为e 3.55−0.3×6=e 1.75≈5.75,对应的频率为0.36, 使用时间在(8,12]的平均成交价格为e 3.55−0.3×10=e 0.55≈1.73,对应的频率为0.28,使用时间在(12,16]的平均成交价格为e3.55−0.3×14=e−0.65≈0.52,对应的频率为0.12,使用时间在(16,20]的平均成交价格为e3.55−0.3×18=e−1.85≈0.16,对应的频率为0.04所以该汽车交易市场对于成交的每辆车可获得的平均佣金为(0.2×19.1+0.36×5.75)×4%+(0.28×1.73+0.12×0.52+0.04×0.16)×10% =0.29092≈0.29万元例5.菜农定期使用低害杀虫农药对蔬菜进行喷洒,以防止害虫的危害,但采集上市时蔬菜仍存有少量的残留农药,食用时需要用清水清洗干净,下表是用清水x(单位:千克)清洗该蔬菜1千克后,蔬菜上残留的农药y(单位:微克)的数据作了初步处理,得到下面的散点图及一些统计量的值. y (微克)x (千克)其中ω=x 2(I )根据散点图判断,y ̂=bx +a 与y ̂=dx 2+c ,哪一个适宜作为蔬菜农药残量y ̂与用水量x 的回归方程类型(给出判断即可,不必说明理由);(Ⅱ)若用解析式y ̂=dx 2+c 作为蔬菜农药残量y ̂与用水量x 的回归方程,求出y ̂与x 的回归方程.(c ,d 精确到0.1) (Ⅲ)对于某种残留在蔬菜上的农药,当它的残留量低于20微克时对人体无害,为了放心食用该蔬菜,请估计需要用多少千克的清水清洗一千克蔬菜?(精确到0.1,参考数据√5≈2.236) 附:参考公式:回归方程y ̂=a ̂+b̂x 中斜率和截距的最小二乘估计公式分别为: b ̂=∑(x i −x̅)(y i −y ̅)n i=1∑(x i −x̅)2n i=1, a ̂=y ̅−b ̂x̅ 【答案】(1)见解析; (2)y ̂=−2.0x 2+60.0;(3)需要用4.5千克的清水清洗一千克蔬菜. 【详解】(I )根据散点图判断y ̂=dx 2+c 适宜作为蔬菜农药残量y ̂与用水量x 的回归方程类型; (Ⅱ)令w =x 2,先建立y 关于w 的线性回归方程, 由于d̂=∑(w i −w )8i=1(y i −y )∑(w i −w )8i=12=−751374≈−2.0,∴ĉ=y −d̂w =38+2×11=60. ∴y 关于w 的线性回归方程为y ̂=−2.0w +60.0, ∴y 关于x 的回归方程为y ̂=−2.0x 2+60.0.(Ⅲ)当y ̂<20时,−2.0x 2+60.0<20 ,x >2√5≈4.5∴为了放心食用该蔬菜,估计需要用4.5千克的清水清洗一千克蔬菜。

相关文档
最新文档