北师大版八年级数学上册《二次根式的加减》教案1
北师大版八年级数学第二章二次根式的加减

二次根式的加减【学习目标】1、理解并掌握同类二次根式的概念和二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点进阶:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似)要点进阶:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式.要点二、二次根式的加减1.二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.要点进阶:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.(2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;3)合并同类二次根式.要点三、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.要点进阶:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果要写成最简形式.【典型例题】类型一、同类二次根式例1. 若最简二次根式与是同类二次根式,则a= .举一反三:【变式】若最简二次根式与是同类二次根式,则a= .类型二、二次根式的加减运算例2.计算:(1)4832315311312--+举一反三:【变式】计算.类型三、二次根式的混合运算例3.计算:.举一反三:【变式】)753)(753(-++-例4.计算:已知2310,x x -+=求2212x x+-的值.【巩固提高】一. 选择题1. 下列运算正确的是( )A .a +a=2aB .a 6÷a 3=a 2C .+=D .(a ﹣b )2=a 2﹣b 22. 与不是同类二次根式的是( )A.B. C. D. 3.若,则x 的值等于( )A. 4B.C. 2D. 4. 下列各式中运算正确的是( ) A.2510)5225(-=÷- B.529)52(2+=+ C.1)2131)(23(=-- D.ca b a c b a +=+÷)( 5.()()a b b a b a a b +-的运算结果是( )A . 0 B. ()ab b a - C. ()ab a b - D. 2ab ab6. 等腰三角形两边分别为32和25,那么这个三角形的周长是( )A.2534+B.21032+C.2534+或21032+D.21034+二. 填空题7.若最简二次根式与是同类二次根式,则.8.3283ab 与62a b b无法合并,这种说法是__________的(填“正确”或“错误”).9.设76,76,a b =+=-则20102011a b ⋅的值是_________ 10. (2016•哈尔滨)计算2﹣的结果是 .11. 长方形的宽为,面积为,则长方形的长约为_______(精确到0.1).12.已知x =,则的值等于____________.三 综合题13.计算: 5334y 5(1)xy ()(x y)515x 6÷-⋅-2(2)b a a ab b a b a b a b a b a b-+-+⋅÷--++14.若x ,y 为实数,且y=++. 求﹣的值.15.已知52+的整数部分为a ,小数部分为,b 求2222444a b a ab b -++的值.。
北师大版八年级上册 2.7 二次根式的加减 【教学设计】

二次根式的加减一、内容和内容解析1.内容二次根式加减运算.2.内容解析在二次根式性质和乘除运算的基础上,本课进一步学习二次根式的加减运算.二次根式的加减法是把二次根式化为最简二次根式后,合并被开方数相同的二次根式就可以了,所以本课内容与整式的加减法类似,在教学中可以让学生体会类比思想的实质,通过具体例子,引导学生探索发现二次根式加减运算的核心是合并被开方数相同的二次根式,基本依据是二次根式的性质和分配律.基于以上分析,可以确定本课的教学重点是应用分配律进行二次根式的加减运算.二、目标和目标解析1.目标(1)掌握二次根式加减运算的步骤和方法.(2)会灵活运用二次根式的有关性质进行二次根式的加减运算.2.目标解析达成目标(1)的标志是学生经历类比合并同类项的方法后能探究归纳,概括出二次根式加减运算的方法,先把每一个二次根式化成最简二次根式,再运用分配律合并被开方数相同的二次根式.目标(2)是通过例题教学使学生掌握运算的技巧方法,并能在练习中加以运用,能说出依据.三、教学问题诊断分析类比思想是根据不同对象在某些方面的类似之处,猜想新、旧知识之间的联系与区别.在二次根式的加减运算中,最后是合并被开方数相同的二次根式.但几个二次根式是否可以合并,这一判断没有整式同类项的判断直接.前者往往需要把每一个二次根式化成最简二次根式,这会造成学生学习的困难.所以在教学教师引导学生进行类比时,指向一定要明确,由浅入深,总结得出“一化简”、“二判断”、“三合并”的步骤.本课的教学难点是准确判断可以合并的二次根式,灵活运用性质、算律运算.四、教学过程设计(一)提出问题问题1:你认为可以怎样计算+?师生活动:让学生讨论,教师了解学生的思路,有的提出可化简求和,教师适时给予肯定评价.设计意图:通过分析如何计算+让学生了解到本课内容并不是孤立的全新知识,而与二次根式的化简密切相关.(二)探索新知,解决问题结果是多少?问题2:化简的师生活动:学生回答,并复习合并同类项的方法.追问1:你能化简吗?师生活动:学生指出它们不是同类项不能合并,老师给予肯定评价.追问2:你能化简吗?师生活动:教师引导学生类比合并同类项,令,学生总结方法得出结果.追问3:能化简吗?与上题区别在哪?师生活动:学生讨论,教师引导,令,,得出结论:不能、的被开方数不相同.设计意图:让学生经历类比合并同类项的方法去探究二次根式加减运算的方法,问题3:、都是最简二次根式,那、是最简二次根式吗?师生活动:学生回答:不是,、,教师给予肯定评价.追问:如何化简+?师生活动:学生讨论得出,教师引导学生类比合并同类项,总结得出二次根式加减运算的方法.“先化成最简二次根式,再把被开方数相同的二次根式进行合并.”设计意图:让学生感受到合并同类项与二次根式加减运算的联系与区别,归纳概括出二次根式加减运算的步骤.“一化简,二判断,三合并.”问题4:化简。
八年级数学上册《二次根式的加法和减法》教案、教学设计

1.教学内容:组织学生分组讨论,共同解决二次根式加减法的难题。
教学过程:
(1)教师给出讨论题目,如$\sqrt{45}+\sqrt{20}-\sqrt{24}$。
(2)学生分组讨论,共同探究解题方法。
(3)各小组汇报讨论成果,分享解题思路。
(4)教师点评,总结解题方法。
(四)课堂练习
(4)强调合并同类二次根式的方法,如$\sqrt{9}+\sqrt{16}-\sqrt{4}$的计算。
2.教学内容:通过示例和练习,巩固二次根式的加减法运算。
教学过程:
(1)教师展示例题,如$\sqrt{50}+\sqrt{18}-\sqrt{8}$,并引导学生运用运算法则进行计算。
(2)让学生独立完成类似的练习题,巩固所学知识。
(2)开展数学竞赛、趣味活动等,激发学生学习数学的兴趣,培养学生的数学素养。
四、教学内容与过程
(一)导入新课
1.教学内容:通过生活实例引出二次根式的概念,激发学生的学习兴趣。
教学过程:
(1)教师展示一个长方形的图形,提问:“如何计算这个长方形的对角线长度?”
(2)引导学生利用勾股定理,得到对角线长度为$\sqrt{a^2+b^2}$。
(2)选取几道具有代表性的题目,要求学生详细写出解题步骤,以便了解他们的思考过程。
3.应用问题解决:
(1)设计一些实际问题,让学生运用二次根式知识解决,例如计算不规则图形的面积、求解方程等。
(2)鼓励学生从生活中发现二次根式的应用,并进行分享和讨论。
4.拓展思维训练:
(1)布置一些拓展题,如二次根式的乘除运算、比较大小等,以激发学生的思维潜能。
(1)导入新课:通过生活实例,如计算面积、体积等,引出二次根式的概念。
北师版八年级上册数学教案-二次根式的加减

二次根式的加减【知识与技能】1.掌握同类二次根式的概念,会判断同类二次根式,会合并同类二次根式.2.掌握二次根式加减乘除混合运算的方法.【过程与方法】通过二次根式的加减法运算培养学生的运算能力.【情感态度】形成良好的思维习惯,学会从数学的角度提出问题、理解问题,并能运用所学的知识解决问题.【教学重点】二次根式加减法的运算.【教学难点】探讨二次根式加减法的运算方法,快速准确进行二次根式加减法的运算.一、情境导入,初步认识1.合并同类项:(1)2x+3x;(2)2x2-3x2+5x2.解:(1)5x;(2)4x2.这几道题是你运用什么知识做的?加减法则.2.化简:3.如何进行二次根式的加减计算?先化简,再合并.4.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.如22与32;28、38与58.二、思考探究,获取新知例1计算:例2计算:【教学说明】进行二次根式的加减运算时,必须先将其化简,是同类二次根式才可合并.例3计算:【教学说明】在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.三、运用新知,深化理解.1.下列计算是否正确?为什么?【教学说明】这类计算的简便方法是先变形,再代入求值.四、师生互动,课堂小结请学生分组讨论,小组代表汇报,教师展示本节课学习的知识要点.1.布置作业:从教材相应练习和“习题”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课通过复习整式的加减法合并同类项,引入二次根式的概念及二次根式的合并方法,对法则的教学与整式的加减比较学习,在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣.。
北师大版八年级数学上册《二次根式的运算》教案及教学反思

北师大版八年级数学上册《二次根式的运算》教案及教学反思一、教案设计1. 教学目标1.1 知识目标•掌握二次根式的加减乘除运算方法;•理解二次根式的化简和合并方法;•了解二次根式的应用领域。
1.2 能力目标•进一步提高学生的数理思维能力和计算能力;•培养学生的自学能力和问题解决能力;•注重培养学生的实际应用能力,增强其综合素质。
2. 教学重难点2.1 教学重点•二次根式的加减乘除运算方法;•二次根式的化简和合并方法。
2.2 教学难点•如何灵活使用二次根式进行计算和化简;•如何将二次根式应用于实际问题中进行解决。
3. 教学内容3.1 二次根式的基础概念和性质•二次根式的定义和符号表示;•二次根式的基本性质和运算规律。
3.2 二次根式的加法和减法•二次根式的加减法根据相关性质进行计算。
3.3 二次根式的乘法和除法•二次根式的乘法应用相关公式进行展开和化简;•二次根式的除法要转化成同底的分式,再进行化简。
3.4 二次根式的应用•二次根式的应用领域(如勾股定理);•二次根式的实际应用(如物理、化学等)。
4. 教学方法4.1 教学手段采用讲授、归纳、演示和练习等多种教学方法相结合。
4.2 教学步骤•第一步:回归本质,引出二次根式的基础概念和性质;•第二步:讲解二次根式的加减乘除运算方法,并进行案例讲解;•第三步:练习巩固,进行二次根式的综合应用练习;•第四步:反思总结,对整个教学过程进行总结和反思;5. 教学评估采用多元化的教学评估方法:•课堂表现评估;•练习成绩评估;•课后作业评估;•测验和考试评估。
二、教学反思本次教学主要针对八年级数学上册《二次根式的运算》内容进行了设计和实施。
在此过程中,教师主要采取了讲授、归纳、演示和练习等多种教学方法相结合,力求使学生在知识、能力和素质等方面都得到提高。
教学目标方面,需要注意的是要注重学生的数理思维能力和计算能力的提高。
应该通过一些实际和可视化的案例,鼓励学生动手实践和思考,从而提高他们的自学和解决问题的能力。
精品2019-2020年最新北师大课标版八年级数学上册《二次根式的加减》教案1(一等奖教学设计)

《二次根式的加减法》教案教材分析学生已学过同类项、合并同类项、二次根式等概念,对实数运算与性质有初步感受,为本节知识打下了基础.本节知识是前面相关内容的发展,同时是后面学习的直接基础,起到了承上启下的作用.学习目标知识目标:1、理解同类二次根式的概念,会合并同类二次根式.2、理解二次根式的加减法法则,并能熟练地进行二次根式的加减法运算.能力目标:培养学生由特殊到一般的思维能力,掌握运算法则.情感目标:通过合作学习,激发学生的学习兴趣,体验成功.教学重点和难点重点:(1)同类二次根式的概念;(2)二次根式的加减法法则.难点:二次根式的加减法运算.教学方法启发式、讲练结合.学习过程一、复习导入1、什么是同类项?2、合并同类项的法则?23、计算:(1)2x-3x+5x (2)2a2b–3a2b +b a234、二次根式的化简:(1)积的算数平方根法则.(2)商的算数平方根法则.教法说明:注重将新知识与旧知识进行联系与对比.二、自主学习、合作探究1、同类二次根式的概念:几个二次根式化成最简二次根式后,如果它们的被开方式相同,那么这几个二次根式称为同类二次根式.(类比同类项)判断同类项时,只与含有相同字母、相同字母的指数相同有关,而与系数和字母的排列顺序无关.判断同类二次根式时,只与被开方式及根指数有关,而与根号外的因式无关.有效训练1:1、试观察下列各组式子,哪些是同类二次根式: (1)2322与 (2)32与 (3)205与 (4)1218与2、合并同类二次根式的法则,(类比合并同类项的法则) 合并同类项的法则:系数相加减,字母与字母的指数不变.合并同类二次根式的法则:将同类二次根式的系数相加减,根指数与被开方式不变.有效训练2:计算课本P44例4.教法说明:从学生熟悉的实际问题出发,用已有的知识写出问题的答案并化简,分析所得结果在表达式上的特点,由此引入同类二次根式的概念.三、精讲点拨1、判断是否同类二次根式时,一定要先化成最简二次根式后再判断.2、二次根式的加减分三个步骤:①化成最简二次根式;②找出同类二次根式;③合并同类二次根式,不是同类二次根式的不能合并.教法说明:学生用充足的时间讨论,并思考同类二次根式应满足的条件.根据总结出的条件,对是同类二次根式的式子进行正确的运算.四、巩固练习:学生小组讨论同类二次根式的概念和合并法则,并完成练习1、课本P46例6.2、课本P48习题2.11.教法说明:对于同类二次根式的一些问题,让学生参与思考、探索、类比、掌握合并同类项的法则.五、课堂小结(1)同类二次根式的概念.(2)合并同类二次根式的法则.。
北京版-数学-八上-《二次根式的加减法》教案

课型新授课授课教师杨宏梅教学课题二次根式的加减法总课时:教学目标教学重点二次根式加减法运算方法教学难点二次根式的化简,合并被开方数相同的最简二次根式教学方法类比思想方法讲练结合教学准备学案教学过程教师活动设计学生活动设计设计意图时间安排一、复习引入上节课学习了二次根式的乘除法,这节课学习二次根式的加减法运算.二、探究新知(一)二次根式加减法法则活动1、类比计算,说明理由① 2a+3a;2322+.②2a-3a;2322-.③123+;1812+活动2、给出二次根式的加减法法则二次根式加减时,先将非最简二次根式化为最简二次根式,再逆用乘法分配律将被开方数相同的二次根式进行合并.被开方数不同的最简二次根式不能合并,作为最后结果中的部分.思考:(1)在有理数范围内成立的运算律,在实数范围内能否继续使用?(2)二次根式的加减运算与整式的加减运算相同之处是什么?(3)什么样的二次根式能够合并?(4)模仿整式的加减运算怎样进行二次根式的加减运算?理解记忆二次根式的加减法法则类比合并同类项,总结二次根式加减法法则理解记忆二次根式的加减法法则例1,(1)182-(2)821-(3)⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛-6812124 三、课堂训练 1.下列各组二次根式中,化简后被开方式相同的是( )2ab ab 与 2222n m n m -+与 nm mn 11+与 29984343b a b a 与2.二次根式的计算为什么先学乘除,后学加减?还有哪块知识也是如此?四、小结归纳五、作业设计 必做: 选做:先化成最简二次根式,在合并 同类二次根式学生独立完成回顾旧知,归纳总结1.进行二次根式加减运算的一般步骤.2.二次根式的熟练化简.3.二次根式加减的实际应用.检测法则的掌握情况检测法则的掌握情况板 书 设 计 二次根式的加减法二次根式加减法法则 例1课 后 反 思 使学生理解掌握运用二次根式加减法法则计算,并总结计算中应注意的问题。
北师大版初二数学上册16.3二次根式的加减(1)

原式= +y2 -x2 +5x
=2x + -x +5
=x +6
当x= ,y=3时,原式= × +6 = +3
五、归纳小结
本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.
六、布置作业:练习册
效果评价
在二次根式加减法的整个教学环节中,教师都要及时纠正学生的错误认识,比如:①不是最简二次根式就不是同类二次根式,②该化简的没有化简,或化简的不正确,③该合并的没有合并,不该合并的给合并了,或者合并错了,等等类似情况.教师在教学中可以出一些容易出错的题目让学生进行辨别,以利于知识的巩固.
分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x= ,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,再合并同类二次根式,最后代入求值.
解:∵4x2+y2-4x-6y+10=0
∵4x2-4x+1+y2-6y+9=0
∴(2x-1)2+(y-3)2=0
问题性质
这个教学设计是属于教师的教学方法和教学策略。
解决办法
二次根式的加减法的关键在于二次根式的化简,在适当复习二次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二次根式的加减法》教案
教材分析
学生已学过同类项、合并同类项、二次根式等概念,对实数运算与性质有初步感受,为本节知识打下了基础.本节知识是前面相关内容的发展,同时是后面学习的直接基础,起到了承上启下的作用.
学习目标
知识目标:
1、理解同类二次根式的概念,会合并同类二次根式.
2、理解二次根式的加减法法则,并能熟练地进行二次根式的加减法运算. 能力目标:培养学生由特殊到一般的思维能力,掌握运算法则.
情感目标:通过合作学习,激发学生的学习兴趣,体验成功.
教学重点和难点
重点:(1)同类二次根式的概念;(2)二次根式的加减法法则.
难点:二次根式的加减法运算.
教学方法
启发式、讲练结合.
学习过程
一、复习导入
1、什么是同类项?
2、合并同类项的法则?
3、计算:(1)2x -3x +5x (2)2a 2b –3a 2b +
b a 23
2 4、二次根式的化简:
(1)积的算数平方根法则.
(2)商的算数平方根法则.
教法说明:注重将新知识与旧知识进行联系与对比.
二、自主学习、合作探究
1、同类二次根式的概念:
几个二次根式化成最简二次根式后,如果它们的被开方式相同,那么这几个二次根式称为同类二次根式.(类比同类项)
判断同类项时,只与含有相同字母、相同字母的指数相同有关,而与系数和字母的排列顺序无关.
判断同类二次根式时,只与被开方式及根指数有关,而与根号外的因式无关. 有效训练1:
1、试观察下列各组式子,哪些是同类二次根式:
(1)2322与 (2)32与 (3)205与 (4)1218与
2、合并同类二次根式的法则,(类比合并同类项的法则)
合并同类项的法则:系数相加减,字母与字母的指数不变.
合并同类二次根式的法则:将同类二次根式的系数相加减,根指数与被开方式不变. 有效训练2:
计算课本P44例4.
教法说明:从学生熟悉的实际问题出发,用已有的知识写出问题的答案并化简,分析所得结果在表达式上的特点,由此引入同类二次根式的概念.
三、精讲点拨
1、判断是否同类二次根式时,一定要先化成最简二次根式后再判断.
2、二次根式的加减分三个步骤:
①化成最简二次根式;②找出同类二次根式;③合并同类二次根式,不是同类二次根式的不能合并.
教法说明:学生用充足的时间讨论,并思考同类二次根式应满足的条件.根据总结出的条件,对是同类二次根式的式子进行正确的运算.
四、巩固练习:
学生小组讨论同类二次根式的概念和合并法则,并完成练习
1、课本P46例6.
2、课本P48习题2.11.
教法说明:对于同类二次根式的一些问题,让学生参与思考、探索、类比、掌握合并同类项的法则.
五、课堂小结
(1)同类二次根式的概念.
(2)合并同类二次根式的法则.。