量子力学主要知识点复习全资料
量子力学基础知识

一个吸收全部入射线的表面称为黑体表面。 一个带小孔的空腔可视为黑体表面。它几乎完全 吸收入射幅射。通过小孔进去的光线碰到内表面 时部分吸收,部分漫反射,反射光线再次被部分 吸收和部分漫反射……,只有很小部分入射光有 机会再从小孔中出来。如图1-1所示
图 1- 2表 示在四种不同 的温度下,黑 体单位面积单 位波长间隔上 发射的功率曲 线。十九世纪 末,科学家们 对黑体辐射实 验进行了仔细 测量,发现辐 射强度对腔壁 温度 T的依赖 关系。
玻尔
Bohr
他获得了 1922年的 诺贝尔物 理学奖。
玻尔
Bohr(older)
1.1.3
--- 德布罗意物质波
Einstein为了解释光电效应提出了光子说, 即光子是具有波粒二象性的微粒,这一观点在科 学界引起很大震动。1924年,年轻的法国物理学 家德布罗意(de Broglie)从这种思想出发,提 出了实物微粒也有波性,他认为:“在光学上,比 起波动的研究方法,是过于忽略了粒子的研究方 法;在实物微粒上,是否发生了相反的错误?是 不是把粒子的图像想得太多,而过于忽略了波的 图像?” 他提出实物微粒也有波性,即德布罗意波。
为了解释以上结果,玻尔综合了普朗克的量子论, 爱因斯坦的光子说以及卢瑟福的原子有核模型,提出著 名的玻尔理论: (1)原子中有一些确定能量的稳定态,原子处于定态 不辐射能量。 (2)原子从一定态过渡到另一定态,才发射或吸收能量。
E E2 E
1
h
(3)各态能量一定,角动量也一定( M=nh/2π ) 并且是量子化的,大小为 h/2π 的整数倍。
E =
h v , p = h / λ
1927年,戴维逊(Davisson)与革末 (Germer)利用单晶体电子衍射实验,汤姆逊 (Thomson)利用多晶体电子衍射实验证实了德 布罗意的假设。 光(各种波长的电磁辐射)和微观实物粒 子(静止质量不为0的电子、原子和分子等)都 有波动性(波性)和微粒性(粒性)的两重性 质,称为波粒二象性。 戴维逊(Davisson)等估算了电子的运动速度, 若将电子加压到1000V,电子波长应为几十个pm, 这样波长一般光栅无法检验出它的波动性。他 们联想到这一尺寸恰是晶体中原子间距,所以 选择了金属的单晶为衍射光栅。
《量子力学》复习资料提纲

)(Et r p i p Ae-⋅=ρϖηϖψ《量子力学》复习 提纲一、基本假设 1、(1)微观粒子状态的描述 (2)波函数具有什么样的特性 (3)波函数的统计解释2、态叠加原理(说明了经典和量子的区别)3、波函数随时间变化所满足的方程 薛定谔方程4、量子力学中力学量与算符之间的关系5、自旋的基本假设 二、三个实验1、康普顿散射(证明了光子具有粒子性) 第一章2、戴维逊-革末实验(证明了电子具有波动性) 第三章3、史特恩-盖拉赫实验(证明了电子自旋) 第七章 三、证明1、粒子处于定态时几率、几率流密度为什么不随时间变化;2、厄密算符的本征值为实数;3、力学量算符的本征函数在非简并情况下正交;4、力学量算符的本征函数组成完全系;5、量子力学测不准关系的证明;6、常见力学量算符之间对易的证明;7、泡利算符的形成。
四、表象算符在其自身的表象中的矩阵是对角矩阵。
五、计算1、力学量、平均值、几率;2、会解简单的薛定谔方程。
第一章 绪论1、德布洛意假设: 德布洛意关系:戴维孙-革末电子衍射实验的结果: 2、德布洛意平面波:3、光的波动性和粒子性的实验证据:4、光电效应:5、康普顿散射: 附:(1)康普顿散射证明了光具有粒子性(2)戴维逊-革末实验证明了电子具有波动性∑=nnn c ψψ1d 2=⎰τψ(全)()ψψψψμ∇-∇2=**ηϖi j ⎩⎨⎧≥≤∞<<=ax x a x x V 或0,0,0)(0=⋅∇+∂∂j tϖρ⎥⎦⎤⎢⎣⎡+∇-=),(222t r V H ϖημ)(,)(),(r er t r n tE i n n n ϖϖϖηψψψ-=n n n E H ψψ=(3)史特恩-盖拉赫实验证明了电子自旋第二章 波函数和薛定谔方程1.量子力学中用波函数描写微观体系的状态。
2.波函数统计解释:若粒子的状态用()t r ,ρψ描写,τψτψψd d 2*=表示在t 时刻,空间r ρ处体积元τd 内找到粒子的几率(设ψ是归一化的)。
第一章量子力学基础知识总结

第一章量子力学基础知识总结微观粒子的运动特征1.黑体辐射和能量量子化●黑体是一种能全部吸收照射到它上面的各种波长辐射的物体。
●黑体辐射的能量量子化公式:●普朗克常数(h=6.626×10-34 J·s)2.光电效应和光子学说●只有当照射光的频率超过某个最小频率(即临阈频率)时,金属才能发射光电子。
●不同金属的临阈频率不同。
●随着光强的增加,发射的电子数也增加,但不影响光电子的动能。
●增加光的频率,光电子的动能也随之增加●式中h为Planck常数,ν为光子的频率●m = h /c2所以不同频率的光子有不同的质量。
●光子具有一定的动量(p)P = mc = h /c = h/λ●光的强度取决于单位体积内光子的数目,即光子密度。
Ek = h -W3.实物微粒的波力二项性● E = h v , p = h / λ●光(各种波长的电磁辐射)和微观实物粒子(静止质量不为0的电子、原子和分子等)都有波动性(波性)和微粒性(粒性)的两重性质,称为波粒二象性4.不确定度关系●具有波动性的粒子其位置偏差(△x )和动量偏差(△p )的积恒定.,有以下关系:量子力学基本假设1、波函数和微观粒子的状态●波函数ψ和微观粒子的状态●合格波函数的条件2、物理量和算符●算符:对某一函数进行运算,规定运算操作性质的符号。
如:sin,log等。
线性算符:Â( 1+ 2)=Â 1+Â 2自轭算符:∫ 1*Â 1 d =∫ 1(Â 1 )*d 或∫ 1*Â 2 d =∫2(Â 1 )*d3、本征态、本征值和Schrödinger方程●A的本征方程Aψ= aψa 称为力学量算符 A 的本征值,ψ称为A的本征态或本征波函数,4、态叠加原理●若 1, 2… n为某一微观体系的可能状态,由它们线性组合所得的 也是该体系可能的状态。
5、Pauli(泡利)原理●在同一原子轨道或分子轨道上,至多只能容纳两个自旋相反的电子。
量子力学基础 知识点

量子物理知识点小结一、普朗克能量子假说1、黑体辐射的实验定律2、普朗克能量子假说2)维恩位移定律:T λm = b1)斯特藩-玻耳兹曼定律: M (T ) = σT 4对频率为ν 的谐振子, 最小能量 ε 为: ⋅⋅⋅⋅⋅⋅,,,3,2,εεεεn νh =ε谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍,二、爱因斯坦光量子假说1、光量子假说 W m h νm+=221v 2、光电效应方程: 光具有“波粒二象性”光子的动量: λhp =光子的能量: h ν=ε碰撞过程中能量守恒: 2200mc h νc m h ν+=+v m e h e h n +=λλ00碰撞过程中动量守恒:波长的偏移量:)cos 1(0θλλλλ-=-=∆c nm 00243.0m 10432120=⨯⋅≈=-cm h c λ康普顿波长: 三、康普顿效应(X 射线光子与自由电子碰撞)四、玻尔氢原子理论一切实物粒子都具有波粒二象性 2)角动量量子化条件假设; 1)定态假设; 3)频率条件假设h νmc E ==2λh m p ==v ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥∆⋅∆≥∆⋅∆≥∆⋅∆222 z y x p z p y p x 2≥∆⋅∆t Ε五、德布罗意假说六、不确定性关系:七、波函数2、波函数满足的条件1、波函数的统计意义1)归一化条件t 时刻,粒子在空间r 处的单位体积中出现的概率, 与波函数模的平方成正比。
*2),(ΨΨt r ΨdVdW w === 概率密度: 12=⎰⎰⎰dV Ψ粒子在整个空间出现的总概率等于 1 , 即: 2)标准化条件:单值、连续、有限一维情况: 1)(2=⎰+∞∞-dx x Ψ八、定态薛定谔方程1、定态:若粒子的势能 E P (x ) 与 t 无关,仅是坐标的函数, 微观粒子在各处出现的概率与时间无关2、一维定态薛定谔方程: 0)()()(=-+x E E 2m dx x d P 222ψψ九、氢原子,3,2,1,1)8(22204=⋅-=n nh me E n ε1、能量量子化和主量子数n 2、角动量量子化和角量子数l)1(2)1(+=+=l l h l l L π1,,3,2,1,0-=n l 3、角动量空间量子化和磁量子数m ll m m L l l z ±±±==,,2,1,0, 4、自旋角动量和自旋量子数 21,)1(=+=s s s S 21,±==s s z m m S十、原子的电子壳层结构1、原子中电子状态由四个量子数(n 、l 、m l 、 m s )决定用 K , L , M , N , O , P , …. 表示 2、原子的壳层结构主量子数 n 相同的电子属于同一壳层壳层n = 1 , 2 , 3 , 4 , 5 , 6 , …. 同一壳层中( n 相同),l 相同的电子组成同一分壳层 支壳层 用 s , p , d , f , … , 表示l = 0, 1 , 2 , 3 , … , n -13、原子的壳层结构中电子的填充原则1) 泡利不相容原理2) 能量最小原理。
量子力学复习资料

《量子力学》复习资料第一章 绪论1、经典物理学的困难:①黑体辐射;②光电效应;③氢原子线性光谱;④固体在低温下的比热。
2、★★★普朗克提出能量子假说:黑体只能以νh E =为能量单位不连续的发射和吸收辐射能量,⋯⋯==,3,2,1 n nh E n ν,能量的最小单元νh 称为能量子。
意义:解决了黑体辐射问题。
3、★★★(末考选择)爱因斯坦提出光量子假说:电磁辐射不仅在发射和吸收时以能量νh 的微粒形式出现,而且以这种形式在空间以光速c 传播,这种粒子叫做光量子,也叫光子。
意义:解释了光电效应。
【注】光电效应方程为0221W hv v m m e -= 4、★★★玻尔的三个基本假设:①定态假设:原子核外电子处在一些不连续的定常状态上,称为定态,而且这些定态相应的能量是分立的。
②跃迁假设:原子在与能级m E 和n E 相对应的两个定态之间跃迁时,将吸收或辐射频率为ν的光子,而且有m n E E hv -=.③角动量量子化假设:角动量必须是 的整数倍,即 ,3,2,1,==n n L意义:解决了氢原子光谱问题。
(末考选择)5、★★★玻尔理论后来也遇到了困难,为解决这些困难,德布罗意提出了微观粒子也具有波粒二象性的假说。
6、德布罗意公式:⇒⎪⎩⎪⎨⎧===k n h p h Eλν意义:将光的波动性和粒子性联系起来,两式的左端描述的是粒子性(能量和动量),右端描述的是波动性(频率和波长)。
7、(填空)德布罗意波长的计算:meUhmE h p h 22===λ 8、★★★康普顿散射实验的意义:证明了光具有粒子性。
(末考填空)同时也证实了普朗克和爱因斯坦理论的正确性。
9、★★★证实了电子具有波动性的典型实验:戴维孙-革末的电子衍射实验(也证实了德布罗意假说的正确性)、电子双缝衍射实验。
10、微观粒子的运动状态和经典粒子的运动状态的区别:(1)描述方式不同:微观粒子的运动状态用波函数描述,经典粒子的运动状态用坐标和动量描述;(2)遵循规律不同:微观粒子的运动遵循薛定谔方程,经典粒子的运动遵循牛顿第二定律。
第一章量子力学基础知识.doc

第一章 量子力学基础知识1.1 微观粒子的运动特征基本内容一、微观子的能量量子化1. 黑体辐射黑体:是理想的吸收体和发射体.Plank 假设:黑体中原子或分子辐射能量时作简谐振动,它只能发射或吸收频率为ν,数值为ε=hν整数倍的电磁波,及频率为ν的振子发射的能量可以等于:0hν,1 hν,2 hν,3 hν,…..,n hν.由此可见,黑体辐射的频率为ν的能量,其数值是不连续的,只能为hν的倍数,称为能量量子化。
2. 光电效应和光子光电效应:是光照射在金属样品表面上,使金属发射出电子的现象。
金属中的电子从光获得足够的能量而逸出金属,称为光电子。
光电效应的实验结果:(1) 只有当照射光的频率超过某个最小频率ν时金属才能发射光电子,不同金属的ν值也不同。
(2) 随着光强的增加,发射的电子数也增加,但不影响光电子的动能。
(3) 增加光的频率,光电子的动能也随之增加。
光子学说的内容如下:(1) 光是一束光子流,每一种频率的光的能量都有一个最小单位称为光子,光子的能量与光子的频率成正比即:νεh =0(2) 光子不但有能量,还有质量(m ),但光子的静止质量为零。
按相对论质能联系定律,20mc =ε,光子的质量为:c h c m νε==2,所以不同频率的光子有不同的质量。
(3) 光子具有一定的动量(p) p=mc=c h ν=λh(4) 光子的强度取决于单位体积内光子的数目即光子密度:ττρτd dNN =∆∆=→∆0lim将频率为ν的光照射到金属上,当金属中的一个电子受到一个光子撞击时,产生光电效应,并把能量hν转移给电子。
电子吸收的能量,一部分用于克服金属对它的束缚力,其余部分则表现为光电子动能。
2021mv h E w h k +=+=νν 当νh <w 时,光子没有足够的能量,使电子逸出金属,不发生光电效应,当νh =w 时,这时的频率时产生光电效应的临阈频率0ν,当νh >w 时从金属中发射的电子具有一定的动能,它随ν的增加而增加,阈光强无关。
量子力学复习资料

量子力学复习资料一、基本概念1、波粒二象性这是量子力学的核心概念之一。
它表明微观粒子既具有粒子的特性,如位置和动量,又具有波动的特性,如波长和频率。
例如,电子在某些实验中表现出粒子的行为,如碰撞和散射;而在另一些实验中,如双缝干涉实验,又表现出波动的行为。
2、量子态量子态是描述微观粒子状态的方式。
与经典物理学中可以精确确定粒子的位置和动量不同,在量子力学中,粒子的状态通常用波函数来描述。
波函数的平方表示在某个位置找到粒子的概率密度。
3、不确定性原理由海森堡提出,指出对于一个微观粒子,不能同时精确地确定其位置和动量,或者能量和时间。
即:\(\Delta x \cdot \Delta p \geq \frac{\hbar}{2}\),\(\Delta E \cdot \Delta t \geq \frac{\hbar}{2}\),其中\(\hbar\)是约化普朗克常数。
二、数学工具1、薛定谔方程这是量子力学中的基本方程,类似于经典力学中的牛顿运动方程。
对于一个质量为\(m\)、势能为\(V(x)\)的粒子,其薛定谔方程为:\(i\hbar\frac{\partial \Psi(x,t)}{\partial t} =\frac{\hbar^2}{2m}\frac{\partial^2 \Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t)\)。
2、算符在量子力学中,物理量通常用算符来表示。
例如,位置算符\(\hat{x}\)、动量算符\(\hat{p}\)等。
算符作用在波函数上,得到相应物理量的可能取值。
三、常见量子力学系统1、一维无限深势阱粒子被限制在一个宽度为\(a\)的区域内,势能在区域内为零,在区域外为无穷大。
其能量本征值为\(E_n =\frac{n^2\pi^2\hbar^2}{2ma^2}\),对应的本征函数为\(\Psi_n(x) =\sqrt{\frac{2}{a}}\sin(\frac{n\pi x}{a})\)。
(完整版)量子力学知识点总结,推荐文档

1光电效应:光照射到金属上,有电子从金属上逸出的现象。
这种电子称之为光电子。
2光电效应有两个突出的特点:①存在临界频率ν0 :只有当光的频率大于一定值v 0 时,才有光电子发射出来。
若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。
②光电子的能量只与光的频率有关,与光的强度无关。
光的强度只决定光电子数目的多少。
3爱因斯坦光量子假说:光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出现,而且以这种形式在空间以光速C 传播,这种粒子叫做光量子,或光子4康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。
⒕康普顿效应的实验规律:射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ;波长增量Δλ=λ-λ随散射角增大而增大5戴维逊-革末实验证明了德布罗意波的存在6波函数的物理意义:某时刻t 在空间某一点(x,y,z)波函数模的平方与该时刻t 该地点(x,y,z)附近单位体积内发现粒子的几率密度(通常称为几率)dw(x,y,z,t)成正比。
按照这种解释,描写粒子的波是几率波7波函数的归一化条件1),,,( 2⎰∞=ψτd t z y x 8定态:微观体系处于具有确定的能量值的状态称为定态。
定态波函数:描述定态的波函数称为定态波函定态的性质:⑴由定态波函数给出的几率密度不随时间改变。
⑵粒子几率流密度不随时间改变。
⑶任何不显含时间变量的力学量的平均值不随时间改变9算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。
10厄密算符的定义:如果算符满足下列等式Fˆ,则称为厄密算符。
式中ψ和φ为任意() ˆ ˆdx F dx F φψφψ**⎰⎰=F ˆ波函数,x 代表所有的变量,积分范围是所有变量变化的整个区域。
推论:量子力学中表示力学量的算符都是厄密算符。
11厄密算符的性质:厄密算符的本征值必是实数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学量子力学主要知识点复习资料,填空及问答部分1能量量子化辐射黑体中分子和原子的振动可视为线性谐振子,这些线性谐振子可以发射和吸收辐射能。
这些谐振子只能处于某些分立的状态,在这些状态下,谐振子的能量不能取任意值,只能是某一最小能量ε 的整数倍εεεεεn ,,4,3,2,⋅⋅⋅ 对频率为ν 的谐振子, 最小能量ε为: νh =ε2.波粒二象性波粒二象性(wave-particle duality )是指某物质同时具备波的特质及粒子的特质。
波粒二象性是量子力学中的一个重要概念。
在经典力学中,研究对象总是被明确区分为两类:波和粒子。
前者的典型例子是光,后者则组成了我们常说的“物质”。
1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。
1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。
根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。
德布罗意公式h νmc E ==2λhm p ==v3.波函数及其物理意义在量子力学中,引入一个物理量:波函数 ,来描述粒子所具有的波粒二象性。
波函数满足薛定格波动方程0),()](2[),(22=-∇+∂∂t r r V mt r t i ψψ 粒子的波动性可以用波函数来表示,其中,振幅表示波动在空间一点(x ,y,z )上的强弱。
所以,应该表示 粒子出现在点(x,y,z )附件的概率大小的一个量。
从这个意义出发,可将粒子的波函数称为概率波。
自由粒子的波函数)](exp[Et r p i A k -⋅=ψ=ψ波函数的性质:可积性,归一化,单值性,连续性 4. 波函数的归一化及其物理意义常数因子不确定性设C 是一个常数,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。
相位不定性如果常数 ,则 和 对粒子在点(x,y,z )附件出现概率的描述是相同的。
表示粒子出现在点(x,y,z )附近的概率。
表示点(x,y,z )处的体积元 中找到粒子的概率。
这就是波函数的统计诠释。
自然要求该粒子在空间各点概率之总和为1必然有以下归一化条件 5. 力学量的平均值2|(,,)|x y z ψ2|(,,)|x y z x y z ψ∆∆∆x y z τ∆=∆∆∆2|(,,)|1x y z dxdydz ψ∞=⎰(,,)x y z ψ(,,)c x y z ψαi e C =(,,)i e x y z αψ(,,)x y z ψ既然 表示 粒子出现在点附件的概率,那么粒子坐标的平均值,例如x 的平均值x __,由概率论,有 又如,势能V 是 r 的函数:)(r V,其平均值由概率论,可表示为⎰+∞∞-=r d r r V r V 3*)()()(ψψ⎰+∞∞-=rd r r V r V 3*)()()(ψψ再如,动量 的平均值为: 为什么不能写成 因为x 完全确定时p 完全不确定,x 点处的动量没有意义。
能否用以坐标为自变量的波函数计算动量的平均值?可以,但需要表示为p __r d r pr ⎰+∞∞-=3*)(ˆ)(ψψ其中 为动量 的算符 6.算符量子力学中的算符表示对波函数(量子态)的一种运算如动量算符∇-≡i pˆ 能量算符Eti E ˆ≡∂∂=动能算符222ˆ∇-=mT动能平均值r d r T r T ⎰+∞∞-=3*)(ˆ)(ψψ 角动量算符pr l ˆˆ⨯= 角动量平均值r d r l r l ⎰+∞∞-=3*)(ˆ)( ψψ薛定谔方程),()],(2[),(22t r t r V mt r t i ψψ+∇-=∂∂算符 ,被称为哈密顿算符, 7.定态数学中,形如 的方程,称为本征方程。
其中 方程 称为能量本征方程,被称为能量本征函数, E 被称为能量本征值。
当E 为确定值,),(t r ψ=)(r E ψ)exp(Et i-拨函数所描述的状态称为定态,处于22|()||(,,)|r x y z ψψ=),,(z y x r =23*3|()|()(),x r xd r r x r d r ψψψ+∞+∞-∞-∞==⎰⎰3d r dxdydz=*3()(),p p p p d p ϕϕ+∞-∞=⎰⎰+∞∞-=r d r r p r p 3*)()()( ψψ∇-≡ i p ˆpˆAf af =ˆA →算符,f →本征函数,a →本征值22ˆ()2H V r m =-∇+22ˆ[()]()()()()2E E E E V r r E r H r E r m ψψψψ-∇+=→=)(r E ψ定态下的粒子有以下特征:粒子的空间概率密度不随时间改变,任何不显含t 的力学量的平均值不随时间改变,他们的测值概率分布也不随时间改变。
8.量子态叠加原理但一般情况下,粒子并不只是完全处于其中的某一本征态,而是以某种概率处于其中的某一本征态。
换句话说,粒子的状态是所有这些分立状态的叠加,即)()(x c x n nn ψψ∑=,具有),(中发现粒子处于态)(表示在态||2x x c n n ψψ的概率能量n E9. 宇称若势函数V (x )=V (-x ),若)(x ψ是能量本征方程对于能量本征值E 的解,则)(x -ψ也是能量本征方程对于能量本征值E 的解具有确定的宇称。
无简并,则若的解,如果能量本征值是能量本征方程对应于设)()(),()()(x x x V x V Ex ψψψ-=10.束缚态通常把在无限远处为零的波函数所描写的状态称为束缚态 11. 一维谐振子的能量本征值 12. 隧穿效应量子隧穿效应为一种量子特性,是如电子等微观粒子能够穿过比它们能量大的势垒的现象。
这是因为根据量子力学,微观粒子具有波的性质,而有不为零的概率穿过位势障壁。
又称隧穿效应,势垒贯穿。
按照经典理论,总能量低于势垒是不能实现反应的。
但依量子力学观点,无论粒子能量是否高于势垒,都不能肯定粒子是否能越过势垒,只能说出粒子越过势垒概率的大小。
它取决于势垒高度、宽度及粒子本身的能量。
能量高于势垒的、运动方向适宜的未必一定反应,只能说反应概率较大。
而能量低于势垒的仍有一定概率实现反应,即可能有一部分粒子(代表点)穿越势垒(也称势垒穿透barrier penetration),好像从大山隧道通过一般。
这就是隧道效应。
例如H+H2低温下反应,其隧道效应就较突出。
13. 算符对易式一般说来,算符之积不满足交换律,即 ,由此导致量子力学中的一个基本:()()()()()()()()()cos()cos()cos()sin()sin()sin()P P x x P x x x P x x x x P x x x P x x x ψψψψψψψψψ=-=-==-=-→=-=→=-=-定义空间反演算符为如果或,称具有确定的偶宇称或奇宇称,如偶宇称奇宇称注意:一般的函数没有确定的宇称.,2,1,0,)2/1(⋅⋅⋅=+==n n E E n ω A BB A ˆˆˆˆ≠ˆˆˆˆˆˆˆˆ问题:对易关系对易式 ,通常 坐标对易关系角动量的对易式,0]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,0]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,0]ˆ,ˆ[,0],ˆ[,],ˆ[,],ˆ[,],ˆ[,0],ˆ[,],ˆ[,],ˆ[,],ˆ[,0],ˆ[=-====-=-====-====-=-===z yx y z y x z x z y y y z x y y z x z y x x x y z z y y y x x x p l p i p l p i p l p i p l p l p i p l p i p l p i p l p l z l x i y l y i x l x i z l y l z i x l y i z l z i y l x lyx z x z y z y x zz y y x x l i l l l i l l l i l l l l l l l l ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,ˆ]ˆ,ˆ[,0]ˆ,ˆ[,0]ˆ,ˆ[,0]ˆ,ˆ[ ======14.厄密算符平均值的性质,ˆ~ˆˆ,ˆ*的厄密共轭算符称为的共轭转置算符则A A A A ∀。
=即记为*~ˆˆ,ˆA A A ++先转置,再共轭。
**ˆ~ˆψτϕϕτψA d A d ⎰⎰= 体系的任何状态下,其厄密算符的平均值必为实数,在任何状态下平均值为实的算符必为厄米算符,实验上可观测量相应的算符必须是厄米算符。
厄密算符的属于不同本征值的本征函数彼此正交。
15. 量子力学关于算符的基本假设1、微观粒子的状态由波函数 描写。
2、波函数的模方 表示 t 时刻粒子出现在空间点(x,y,z )的概率。
3、力学量用算符表示。
4、波函数的运动满足薛定格方程0]ˆ,ˆ[≠B A⎩⎨⎧≠===βαβαδααββ,0,]ˆ,[ i i p z y x ,,,=βα0]ˆ,ˆ[,0]ˆ,ˆ[,0]ˆ,ˆ[,ˆˆˆˆ2222222===++=z y x zy x l l l l l l l l l l 有令),(t r ψψ=2|),(|t r ψ2222ˆ(,)()(,)(,),2ˆi r t V r t H r t t mψψψ∂=-∇+=∂16.算符的本征方程,本征值与本征函数数学中,形如的方程,称为本征方程。
其中3*其中,,)(均可展开如下:状态完备态矢,系统的任何能构成一组正交归一都是不简并的,则,果的本征态与本征值,如ˆ是算符和draaxAAAnnnnnnnnn⎰∑==∀ψψψψψψψ17.不确定度关系的严格表达18.两个算符有共同本征态的条件两个算符对易,即0]ˆ,ˆ[=BA19.力学量完全集若算符的本征值是简并的,仅由其本征值无法惟一地确定其本征态。
若要惟一地确定其本征态,必须再加上另一些与之对易的算符的本征值才可。
例如,仅由的本征值不能确定体系状态,必再加上的本征值才能确定体系状态。
这样,为了完全确定一个体系的状态,我们定义力学量完全集。
定义:如果有一组彼此独立而且相互对易的厄米算符,它们只有一组共同完备本征函数集,记为,可以表示一组量子数,给定一组量子数后,就完全确定了体系的一个可能状态,则称为体系的一组力学量完全集。
20.力学量完全集共同本征态的性质ˆAf af=ˆA→算符,f→本征函数,a→本征值ˆ,ˆˆˆn n nnnA A An A AA A AAψψψψψψ==满足的和不止一组可能有组,因此此式称为的本征方程,称为的一个本征值,称为的一个本征态。
若能级简并21. 守恒量对于Hamilton 量H 不含时的量子体系,如果力学量A 与H 对易,则无论体系处于什么状态(定态或非定态),A 的平均值及其测值的概率分布均不随时间改变,所以把A 称为量子体系的一个守恒量。