数据库关系运算理论(2)
同济大学数据库关系模型和关系运算理论

1
本章重要概念
(1)基本概念
关系模型,关键码(主键和外键),关系 的定义和性质,三类完整性规则, (2)关系代数 五个基本操作,四个组合操作. (3) 理论知识 关系模型设计理论,关系数据库设计过程。
2
本章概要
• 本章先介绍关系模型的基本概念;然后介绍关 系运算的三种理论:关系代数、关系演算;最 后介绍关系模型设计理论,关系数据库设计过 程。
这条规则的实质是“不允许引用不存在的实体”。 在上述形式定义中,关系模式R1的关系称为“参照关 系”,关系模式R2的关系称为“依赖关系”。“主表” 和“副表”,“父表”和“子表”。
12
3.1.3 关系模型的完整性规则 (3)
• 例3.1 下面各种情况说明了参照完整性规则在关系中如何实现 的。
① 在关系数据库中有下列两个关系模式: S(S#,SNAME,AGE,SEX) SC(S#,C#,GRADE)
记录类型
记录1
记录2 文 记录3 件
记录4 字段值
关系模式
元组1
元组2 关 元组3 系
元组4 属性值
图3.2 关系模型的术语
8
3.1.1 基本术语(4)
• 关键码(key,简称键)由一个或多个属性组成。
在实际使用中,有下列几种键。 (1)超键(Super Key) (2)候选键(Candidate Key) (3)主键(Primary Key) 在图3.1中,(工号,姓名)是模式的一个超键,
• 关系中属性个数称为“元数”(arity),元组 个数为“基数”(cardinality)。
7
3.1.1 基本术语(3)
• 关系元数为5,基数为4。
一般术语
关系模型术语
数据库中关系运算

数据库中关系运算
数据库中的关系运算是指在关系型数据库中使用的一组基本运算,用于处理关系表中的数据。
这些关系运算包括选择、投影、连接、除、交、并等。
选择是指在关系表中选择满足特定条件的行。
例如,可以使用选择运算从一个员工表中选择所有工资大于5000元的员工。
投影是指从关系表中选择一部分列来生成一个新的关系表。
例如,可以使用投影运算从一个员工表中选择只包含姓名和工资两列的子表。
连接是指将两个或多个关系表按照某些条件进行连接。
例如,可以使用连接运算将一个员工表和一个部门表按照部门编号进行连接,生成一个包含员工和所在部门信息的新表。
除是指从一个关系表中删除与另一个关系表中的一些行相同的行。
例如,可以使用除运算从一个员工表中删除与另一个离职员工表中相同的行。
交是指从两个关系表中选择相同的行生成一个新的关系表。
例如,可以使用交运算从一个员工表和一个工资表中选择工资相同的员工。
并是指将两个或多个关系表中的所有行合并成一个新的关系表。
例如,可以使用并运算将一个员工表和一个离职员工表合并成一个包含所有员工信息的表。
这些关系运算是关系型数据库中的基本工具,可以用来实现各种复杂的查询和数据操作。
了解这些运算对于使用关系型数据库进行数
据处理非常重要。
关系数据库关系运算

关系数据库关系运算关系数据库是一种使用关系模型来组织和管理数据的数据库系统。
在关系数据库中,关系运算是一种用于处理关系型数据的操作。
关系运算主要包括集合运算和连接运算两大类。
一、集合运算集合运算是指对两个关系(即数据表)进行操作,返回满足某种条件的数据集合。
常用的集合运算有并运算、差运算、交运算和笛卡尔积运算。
1. 并运算:并运算是指将两个关系中的所有元组合并成一个新的关系。
例如,有关系A和关系B,关系A中的元组有(a,b)和(c,d),关系B中的元组有(e,f)和(g,h),则并运算的结果是关系C,关系C 中的元组有(a,b)、(c,d)、(e,f)和(g,h)。
2. 差运算:差运算是指从一个关系中减去另一个关系中的元组得到一个新的关系。
例如,有关系A和关系B,关系A中的元组有(a,b)、(c,d)和(e,f),关系B中的元组有(a,b),则差运算的结果是关系C,关系C中的元组有(c,d)和(e,f)。
3. 交运算:交运算是指返回两个关系中共有的元组。
例如,有关系A和关系B,关系A中的元组有(a,b)、(c,d)和(e,f),关系B中的元组有(c,d)和(g,h),则交运算的结果是关系C,关系C中的元组有(c,d)。
4. 笛卡尔积运算:笛卡尔积运算是指将两个关系中的元组两两组合成一个新的关系。
例如,有关系A和关系B,关系A中的元组有(a,b)和(c,d),关系B中的元组有(e,f)和(g,h),则笛卡尔积运算的结果是关系C,关系C中的元组有(a,b,e,f)、(a,b,g,h)、(c,d,e,f)和(c,d,g,h)。
二、连接运算连接运算是指将两个关系中满足某种条件的元组连接起来形成一个新的关系。
常用的连接运算有等值连接、自然连接和外连接。
1. 等值连接:等值连接是指根据两个关系中某个属性相等的元组进行连接。
例如,有关系A和关系B,关系A中的元组有(a,b,c)和(d,e,f),关系B中的元组有(c,d,e)和(f,g,h),则等值连接的结果是关系C,关系C中的元组有(a,b,c,d,e)和(d,e,f,g,h)。
关系数据库关系代数运算

• 是一种抽象的查询语言
SQL
• 介于关系代数和关系演算之间 • 集DDL、DML和DCL一身的关系数据语言
2.2 关系数据结构的形式化定义
关系模型建立在集合代数基础上,从集合论角度讨论 关系的形式化定义
定义1:域(Domain)-形式化表示为D
• 一组具有相同数据类型的值的集合,如整数、实数等。定义
张三 女
802
李四 男
803
王五 男
804
赵六 女
805
钱七 男
01
19
01
20
01
20
02
20
02
19
专业号 01 02 03
专业名 信息 数学 计算机
关系间的引用
例2 学生、课程、学生与课程之间的多对多联系
学生(学号,姓名,性别,专业号,年龄) 课程(课程号,课程名,学分) 选修(学号,课程号,成绩)
外码说明
关系R和S不一定是不同的关系 目标关系S的主码Ks 和参照关系的外码F必
须定义在同一个(或一组)域上 关于取名
外码并不一定要与相应的主码同名 当外码与相应的主码属于不同关系时,往往取
相同的名字,以便于识别
参照完整性举例
例1:学生实体与专业实体间的关系: 外码 学生(学号,姓名,性别,专业号,年龄) 专业(专业号,专业名)
04
90
04
88
关系间的引用
例3 学生实体及其内部的领导联系(一对多)
学生(学号,姓名,性别,专业号,年龄,班长)
学号
801 802 803 804 805
姓名
张三 李四 王五 赵六 钱七
性别
女 男 男 女 男
数据库原理2 关系数据库

三、用户定义的完整性(User-defined integrity)
实体完整性和参照性适用于任何关系数据 库系统。除此之外,不同的关系数据库 系统根据其应用环境的不同,往往还需 要一些特殊的约束条件。用户定义的完 整性就是针对某一具体关系数据库的约 束条件,它反映某一具体应用所涉及的 数据必须满足的语义要求。关系模型应 提供定义和检验这类完整性的机制,以 便用统一的系统的方法处理它们,而不 要由应用程序承担这一功能。
体和实体间的联系的关系的集合构成一 个关系数据库。同样,关系数据库也有 型和值之分。
型:关系数据库模式 是对关系数据库的描 述。
值:一般就称为关系数据库。
2.3 关系的完整性
关系模型的完整性规则是对关系的某种约 束条件。
关系模型的三类完整性:
1. 实体完整性 2. 参照完整性 3. 用户定义的完整性
2.4 关系代数
本节要求
给定关系和关系代数表达式,要会算。
给定关系模式和查询(语义)要求,要会写 关系代数表达式。
关系代数是一种抽象的查询语言,用对
关系的运算来表达查询,作为研究关系 数据语言的数学工具。
关系代数的运算对象是关系,运算结果
亦为关系。关系代数用到的运算符包括 四类:集合运算符、专门的关系运算符、 算术比较符和逻辑运算符。
第二章 关系数据库
2-5章为本课程重点与难点 关系数据库的理论基础 1970, E.F.Codd “A Relational Model of Data for Shared Data Banks” 现代主流数据库几乎全部支持关系模型 Oracle(甲骨文),Sybase, IBM DB2, MS SQL Server, Ingres
引用的时候,必须取基本表中已经存在的 值。由此引出参照的引用规则。
数据库原理第二章关系数据库

关系代数小结
❖ 传统的集合运算
▪ 并、差、交、笛卡尔积
❖ 专门的关系运算
▪ 选择、投影、连接、除
❖ 5种基本运算
▪ 并、差、笛卡尔积、投影、选择
二、关系演算
❖ 关系演算是以数理逻辑中的谓词演算为基础的,通过谓词 形式来表示查询表达式。
❖ 根据谓词变元的不同,可将关系演算分为元组关系演算和 域关系演算。前者以元组为变量,简称元组演算;后者以 域为变量,简称域演算。
❖ 元组关系演算
▪ Tuple Relational Calculus ,简称TRC ▪ 元组关系演算语言ALPHA ▪ 元组关系表达式
❖ 域关系运算
▪ Domain Relational Calculus ,简称DRC ▪ 域关系演算语言QUE
1、元组关系演算
❖ 元组关系演算是以元组变量作为谓词变元的基本对象。 ❖ 元组关系演算语言的典型代表是E.F.Codd提出的ALPHA
例2:查询一名男同学的教师号和姓名,并使他的年龄最小。
GET W (1) (Student) : Student. Ssex = ‘男’ up Student.Sage
▪ 所谓的定额查询就是通过在W后面的括号中加上定额数量, 限定查询出元组的个数。
▪ 这里(1)表示查询结果中男同学的个数,取出学生表中第一 个男同学的学号和姓名。
RANGE Course CX SC SCX
GET W (Student.Sname): SCX (SCX.Sno=Student.Sno∧ CX (o=o∧CX.Pcno='6'))
例5:查询选修全部课程的学生姓名。
RANGE SC X Course CX
GET W (Student.SN) : CXSCX (SCX.SNO=Student.SNO∧O=O)
02 关系数据库的基本理论

2.2.4 关系系统
2.关系系统的分类 按照E.F.Codd的思想,可以把关系系统分 类如下: (1)最小关系系统 (2)关系上完备的系统 (3)全关系系统
2.2.4 关系系统
3.全关系系统的12条基本准则 【准则2-0】一个关系型的DBMS必须能完全通过 它的关系能力来管理数据库。 【准则2-1】信息准则。 【准则2-2】保证访问准则。 【准则2-3】空值的系统化处理。 【准则2-4】基于关系模型的动态的联机数据字典。 【准则2-5】统一的数据子语言准则。
第2章 关系数据库的基本理论
关系数据库系统具有独特的风格,概括起 来有以下五个特点。
(1)简单明了的数据模型。 (2)具有严谨的理论基础。 (3)实体表示方法和实体之间联系的表示 方法一致。 (4)处理多对多的联系方便。 (5)使用的关系数据语言功能强大。
2.1 关系模型概述
关系模型是关系数据库的基础。关系模型由数据 结构、关系操作集合和完整性约束三部分组成。 2.1.1 关系数据结构
其中,姓名、职称、X称为域名,姓名域和职称域各有4个值, X域有2个值,一般称它们的基数分别为4、4、2。
2.2.1 数学定义
【 定 义 2-2】 给 定 一 组 域 D1,D2,…,Dn , 则 D1×D2×…×Dn = { (d1,d2,…,dn) | d1∈Di , i = 1,2,…,n } 称 为 D1,D2,…,Dn 的 笛卡尔积。其中每个(d1,d2,…,dn)叫做一个n元组,元组中的 每个di是Di域中的一个值,称为一个分量。
表达(或描述)关系操作的关系数据语言 可以分为三类,具体分类情况如下:
2.1.2 关系操作
(1)关系代数 关系代数是用对关系的运算来表达查询要
求的方式。 (2)关系演算
02《数据库》第二章关系数据模型 #

• 结果关系的所有属性都是原关系的属性。 • 结果关系的所有元组都是原关系的元组。
• 例如:在学生表中将98管理班同学全部
学号 找出姓来名 。 出生年月 性别 班级
0001 • 李伟 <班19级80=.1‵2.0938管男理′>(学9生8管表理)
性、参照完整性和用户定义的完整性。 • 实体完整性:主码的任何属性值都不能为空。 • 参照完整性:若A是基本关系R1的外码。它与
基本关系R2的主码K相对应,则R1中每个元组 在A上的值必须为以下情况之一。 • 等于R2中某个元组的主码值。 • 取空值(A的每个属性值均为空值)。
• 例如:职工关系(职工号,姓名,…部门编号) 和部门关系(部门编号,部门名称,…)。
班级 98管理 98管理 98管理 98管理
学号 课程号 成绩
0001 01
85
0001 02
70
0003 01
80
0003 02
90
• 自然连接 • (学生表)(成绩表)
学号 姓名 0001 李伟 0001 李伟 0003 赵兰 0003 赵兰
出生年月 性别 1980.12.03 男 1980.12.03 男 1979.05.26 女 1979.05.26 女
《数据库技术原理与应用》
章、关系数据模型基础理论
TEL: Email:
本章教学内容
一、关系模型的基本概念 二、关系代数 三、关系演算 四、查询优化 五、关系系统
一、关系模型的基本概念
1、关系模型的数学定义: 关系模型是建立在数学理论基础上的。 定义(1)域:域(Domain)是值的集合
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、求商÷
①
合并
具有相同属性集的两个关系R1,R2
的合并,是由属于R1或属于R2(或属于两
者)的所有元组t(不计重复元组)组成 的一个新的关系,新关系具有和R1相同
的属性名集合。
运算符:“∪” 记为: R1∪R2
例如
R
A 1 B 2 C 3 A 7 4 5 A B 2
S
(2) W=(T╳S)-R (计算T╳S中不在R的元组)
除运算是同时从行和列角度进行运算
41
象集
给定一个关系R(X,Y),X和Y为属性组。定 义,当t[X]=x时,x在R中的象集为:
Yx ={t[Y]|t∈R,t[X]=x}
它表示R中属性组X上值为x的诸元组在Y上各 分量的集合。
Y为R中的一个属性组,Y={yi1,yi2…yik}, t[Y]=(t[yi1],t[yi2]…t[yik])表示R中的元 组t在属性组Y上各分量的集合
42
t[Y]
因此,求R÷S的操作步骤如下: (1)将R中属性分为两个集合X和Y, R(X,Y),其中Y就是S中的前半部分
属性的集合,S(Y,Z)。 (2)若X的某个值x的象集Yx Yx={t[Y]∣t∈R∧t[X]=x} 包含S表中t[Y]的所有元组 ,则 将x放入结果集中。
43
例如:
X
A a a a b e e B b b b c d d C c e d e c e
什么是自然联结
自然联结是一种特殊的等值联结 两个关系中进行比较的分量必须是相同的属 性组 在结果中把重复的属性列去掉 自然联结的含义 R和S具有相同的属性组B
R S = { tr ts | tr R∧ts S∧tr[B] =ts[B] }
30
一般的联结操作是从行的角度进行运算。
R AθB S={trts |tr∈R∧ts∈S∧tr[A]θts[B]}
其中A和B分别为R和S上度数相等并且可 比的属性组。θ是比较运算符。联结运算 从R和S的广义笛卡尔积R×S中选取R关系在 A属性组上的值与S关系在B属性组上的值满 足比较运算符θ的元组。
两类常用联结运算
等值联结(equijoin)
投影操作主要是从列的角度进行运算
π
但投影之后不仅取消了原关系中的某些列, 而且还可能取消某些元组(避免重复行)
24
投影(续)
[例3] 查询学生的姓名和所在系
即求Student关系上学生姓名和所在系两个 属性上的投影 πSname,Sdept(Student) 或 π2,5(Student) 结果:
年 龄 Sage 20 19 18 19 所在系 Sd
选择(续)
课程号 Cno 1 2 3 4 5 6 课程名 Cname 数据库 数学
Course
先行课 Cpno 5 1 6 7 学分 Ccredit 4 2 4 3 4 2
信息系统 操作系统 数据结构 数据处理
7
PASCAL语言
(b)
6
4
19
选择(续)
SC
学 号
Sno 95001 95001
课程号
Cno 1 2
成 绩
Grade 92 85
95001
95002 95002
3
2 3
(c)
88
90 80
20
选择(续)
[例1] 查询信息系(IS系)全体学生 σSdept = 'IS' (Student) 或 σ5 ='IS' (Student) 结果:
R
S
AθB
自然联结还需要取消重复列,所以是同 时从行和列的角度进行运算。
31
[例5]
A a1 a1 a2 a2 B b1 b2 b3 b4 C 5 6 8 12
B b1 b2 b3 b3 b5
E 3 7 10
2 2
R
S
32
R
C <E
S
A R.B C S.B E
a1
a1 a1 a1 a2
b1
b1 b2 b2 b3
运算符
运算符
运算符
运算符
1.关系代数的基本操作
(1)定义
关系代数是一组建立在关系上的高级 运算,每个运算都以一个或多个关系作为 它的运算对象,并且生成一个关系作为运 算结果。
(a) 运算对象:关系
(b) 运算结果:关系
(2) 关系运算分类
(a)传统的集合运算: 合并∪ 、相交∩ 、求差-(相减)、 笛卡尔积× (运算从关系的水平(行)的角度来进行) (b)专门的关系运算: 选择σ 、投影π 、联接
25
投影(续)
Sname 李勇 刘晨 王敏 张立 Sdept
CS
IS MA IS
26
投影(续)
[例4] 查询学生关系Student中都有哪些系 πSdept(Student)
结果:
Sdept CS IS MA
27
⑦ 联结
联结也称为θ联结,它是从两个关系的 笛卡尔积中选取属性间满足一定条件的元 组。记作:
Y S
B C
Z
D
A a1
a2
a3 a1 a4 a2
b3
b4 b2 b6 b2
c7
c6 c3 c6 c3
b1 c 2 d1
b2 c 1 d1
b2 c 3 d2
(1)当x=(a1)时 其象集为
B b1 b2 b2 C c2 c3 c1
a1
b2
c1
X可以取值为{a1,a2,a3,a4}
46
(2)当x=(a2)时 (3)当x=(a3)时 (4)当x=(a4)时 其象集为 其象集为 其象集为
B 8 5 1 C 3 C 9 6 12
4
7
5
8
6
9
R∪S的结果为:
1
4
7 5
5
8 1
6
9 12
② 差(相减)
具有相同属性集的两个关系R1, R2
的求差,是由属于R1而不属于R2的所有
元组t组成的一个新的关系,新关系具 有和R1相同的属性名集合。
运算符:“-”
记为: R1- R2
例如
R
A 1 B 2 C 3 A 7 4 5
R÷S是满足下列条件的最大关系:最 大关系中每个元组 t 与 S 中每个元组 u 组成 的新元组〈t,u〉必在关系R中。
为了方便起见,我们假设关系 S 的属 性为关系R中后S个属性。
40
则R÷S的具体计算过程如下:
(1) T=Π1,2,…m-n(R) (3) V=Π1,2,…m-n(W)
(4) R÷S=T-V 即 R÷S=Π1,2,…m-n ( R ) -Π1,2,…m-n ((Π1,2,…m-n (R)╳ S)-R)
S
B 8 5 1 C 9 6 12
4
7
5
8
6
9
R-S的结果为:
A 1
B 2
C 3
③ 笛卡尔积
两个关系R,S(设R为k1元关系,M个元组,S
为k2元关系,N个元组)的广义笛卡尔积,是一个 (K1+K2)列的元组的集合,是由属于R1的任何一 个元组tk1和属于S的元组tk2连接而成的新元组t所 组成的一个新关系。(新关系中元组的前K1列是关系
16
选择运算是从行的角度进行的运算
σ
例如 设有一个学生-课程数据库,包 括学生关系Student、课程关系 Course和选修关系SC。
17
选择(续)
学 号 Sno 95001 95002 95003 95004 姓 名 Sname 李勇 刘晨 王敏 张立 性 别 Ssex 男 女 女 男
Student
Y
D d f e f d f
Y S
C D
R
c
e
d
f
当x=(b,c)时, 其象集Yx为:
C
e
D
f
44
当x=(a,b)时, 其象集Yx为:
C c e d D d f e
当x=(e,d)时, 其象集Yx为:
C
c e
D
d f
X
R÷S的结果为:
A a e B b d
45
例: R÷S
X
R
Y
B b1 C c2
自然联接
R
A a d b c B b b b a C c c f d B b b a
S
C c c d D d e b A a
R
B b
S
C c D d
a
d d c
b
b b a
c
c c d
e
d e b
等值联接
R
A a d b c B b b b a C c c f d B
b
S
C
c
R 3=2 S
D
d
A R.B R.C S.B S.C D
5
5 6 6 8
b2
b3 b2 b3 b3
7
10 7 10 10
33
等值联结 R
A
R.B=S.B
S
C S.B E
R.B
a1
a1 a2 a2
b1
b2 b3 b3
5
6 8 8
b1
b2 b3 b3
3
7 10 2
34
自然连接 R
A
a1
S
B
b1
C
5
E
3
a1
a2 a2
b2
b3 b3
6
8
7
10
8
2
35