电力电子技术课程设计完整

合集下载

电力电子课程设计完整版

电力电子课程设计完整版

目录概述电力电子技术课程设计任务书第二章第1章 PWM控制技术简介 (1)第二章器件的选择 (5)第三章三角波发生电路 (8)第四章三相正弦交流电源发生器 (9)第五章比较电路的生成 (11)第六章驱动电路 (12)第七章死区生成电路 (14)第八章电容滤波的三相不可控整流电路 (15)第九章逆变电路 (18)第十章总结 (22)第十一章参考文献 (22)概述PWM控制技术在逆变电路中的应用最为广泛,对逆变的影响也最为深刻.现在大量应用的逆变电路中,绝对大部分都是PWM逆变电路.可以说PWM 控制技术正是有赖于在逆变中的应用,才发展的比较成熟,才确定了他在电力电子技术中的重要地位.而SPWM技术就是其中的一种广泛应用.我们采取电容滤波的三相不可控整流电路获得直流电,成为逆变电路的直流侧,其中在整流电路和逆变电路中间并联有很大的电容,等效为恒压源。

为SPWM的等幅提供了条件。

在该电路中我们用三角波作为载波,三相交流电压作为调试波,采用双极性调制,利用比较器输出三角波和正弦波的焦点信息,该信息成为IGBT驱动电路的输入信号,控制IGBT的导通和关端,根据IGBT 的导通和关断时间的不同做到了输出的矩形波的宽度为不等幅,根据面积相等效应,输出电流为正弦波,即实现调制法控制SPWM逆变。

电力电子技术课程设计任务书一、课程设计的目的通过电力电子计术的课程设计达到以下几个目的:1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。

2、培养学生综合分析问题、发现问题和解决问题的能力。

3、培养学生运用知识的能力和工程设计的能力。

4、培养学生运用仿真工具的能力和方法。

5、提高学生课程设计报告撰写水平。

二、课程设计的要求1. 自立题目题目:无源三相PWM逆变器控制电路设计注意事项:①学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS电源等,②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。

电力电子技术课程设计完整

电力电子技术课程设计完整

课程设计名称:.... 电力电子技术题目:专业:自动化班级:自动化12-2班姓名:王军学号:1205010219精品文本课程设计任务书间:2014年12月30日辽宁工程技术大学课程设计成绩评定表第一章主要技术数据和可控整流电路的选择1.1主要技术数据输入交流电源:三相380V 10%、f=50Hz、直流输出电流连续的最小值为5A。

电动机额定参数:额定功率P N =10kw、磁极对数P=2、额定转速n N=1000r/min,额定电压U MN=220V、额定电流I MN=54.8A、过载倍数151.2可控整流电路的选择晶闸管可控整流电路型式较多,各种整流电路的技术性能和经济性能个不相同。

单相可控整流电路电压脉动大、脉动频率低、影响电网三相平衡运行。

三相半波可控整流电路虽然对影响电网三相平衡运行没有影响,但其脉动仍然较大。

此外,整流变压器有直流分量磁势,利用率低。

当整流电压相同时,晶闸管元件的反峰压比三相桥式整流电路高,晶闸管价格高三相半波可控整流电路晶闸管数量比三相桥式可控整流电路少,投资比三相桥式可控整流电路少。

三相桥式可控整流电路它的脉动系数比三相半波可控整流电路少一半。

整流变压器没有直流分量磁势,变压器利用率高,晶闸管反峰压低。

这种可控整流电路晶闸管数量是三相半波可控整流电路的两倍。

总投资比三相半波可控整流电路多。

从上面几种可控整流电路比较中可以看到:三相桥式可控整流电路从技术性能和经济性能两项指标综合考虑比其它可控整流电路优越,故本设计确定选择三相桥式可控整流电路。

如图(1-1)所示图1—1三相桥式可控整流电路第二章可控整流电路的波形图图1 —2三相桥式全控整流电路带电阻负载a0。

时的波形第三章整流电路参数计算和元件选择3.1整流变压器的计算整流变压器的作用是给晶闸管整流电路提供所需电源电压,同时将整流电路与交流电源隔离,增强安全性并减小整流电路对请其他用电设备的干扰。

(1) 整流变压器的接线变压器采用D,Y nii接线一次侧采用D接线的目的是个电流中三的整数倍高次谐波提供通路,以保证磁通和电压为正弦波,避免在变压器每相绕组中产生尖顶波电势。

电力电子课程设计

电力电子课程设计

电力电子 课程设计一、课程目标知识目标:1. 让学生掌握电力电子器件的基本原理、分类及其在电路中的应用;2. 使学生了解电力电子变换器的工作原理,掌握常见电力电子变换器的电路拓扑及控制方法;3. 引导学生理解电力电子技术在能源转换、电力系统中的应用及发展趋势。

技能目标:1. 培养学生能够运用所学知识分析、设计和搭建简单的电力电子电路;2. 提高学生运用电力电子器件和变换器解决实际问题的能力;3. 培养学生运用电力电子技术进行能源转换和电力系统优化的技能。

情感态度价值观目标:1. 培养学生对电力电子技术产生兴趣,激发学生学习积极性;2. 培养学生具备团队协作、沟通交流的能力,增强合作意识;3. 使学生认识到电力电子技术在节能减排、可持续发展中的重要性,树立环保意识。

分析课程性质、学生特点和教学要求,本课程目标旨在让学生在掌握电力电子基础知识的基础上,提高实际应用能力,培养学生解决实际问题的综合素质。

通过本课程的学习,学生能够具备以下具体学习成果:1. 能够列举并解释常见电力电子器件的原理和特点;2. 能够绘制并分析常见电力电子变换器的电路图;3. 能够运用电力电子技术进行实际案例分析,提出优化方案;4. 能够关注电力电子技术的发展趋势,认识到其在节能环保领域的作用。

二、教学内容本章节教学内容依据课程目标,结合教材,科学系统地组织以下内容:1. 电力电子器件:-PN结、晶体管、晶闸管等基本原理和特性;-电力MOSFET、IGBT等现代电力电子器件的结构和特点。

2. 电力电子变换器:-AC-DC、DC-AC、DC-DC等变换器的工作原理及分类;-常见电力电子变换器电路拓扑及其控制方法。

3. 电力电子技术应用:-电力电子技术在电力系统、新能源发电、电动汽车等领域的应用案例;-电力电子器件和变换器在节能、环保等方面的作用。

教学大纲安排如下:第一周:电力电子器件的基本原理和特性;第二周:现代电力电子器件的结构和特点;第三周:AC-DC、DC-AC变换器工作原理及电路拓扑;第四周:DC-DC变换器及控制方法;第五周:电力电子技术应用及案例分析;第六周:电力电子技术在节能环保领域的贡献及发展趋势。

电力电子技术的课程设计

电力电子技术的课程设计

电力电子技术的课程设计一、课程目标知识目标:1. 掌握电力电子器件的基本工作原理,如二极管、晶体管、晶闸管等;2. 了解电力电子电路的基本类型,如整流电路、斩波电路、逆变电路等;3. 学会分析简单电力电子电路的性能、特点及应用场合;4. 掌握电力电子设备在实际应用中的参数计算和选型方法。

技能目标:1. 能够正确使用实验设备搭建简单的电力电子电路;2. 学会运用电路分析方法,对电力电子电路进行性能分析和故障排查;3. 能够根据实际需求设计简单的电力电子系统,并进行参数计算和选型。

情感态度价值观目标:1. 培养学生对电力电子技术的兴趣,激发学习热情;2. 增强学生的团队合作意识,提高沟通与协作能力;3. 培养学生严谨的科学态度,树立工程伦理观念。

课程性质:本课程为电力电子技术的基础课程,旨在使学生掌握电力电子器件、电路及其应用,培养实际操作能力和工程素养。

学生特点:学生具备一定的电子技术基础,具有较强的学习能力和动手能力,但对电力电子技术尚处于入门阶段。

教学要求:结合学生特点,注重理论与实践相结合,强调动手实践和实际应用,提高学生的综合能力。

通过本课程的学习,使学生能够达到上述课程目标,为后续相关课程和实际工作打下坚实基础。

二、教学内容1. 电力电子器件:介绍二极管、晶体管、晶闸管等基本器件的结构、工作原理及特性,重点讲解其在电力电子电路中的应用。

教材章节:第一章至第三章内容安排:2学时2. 电力电子电路:讲解整流电路、斩波电路、逆变电路等基本电路的类型、工作原理及性能特点。

教材章节:第四章至第六章内容安排:4学时3. 电力电子电路分析:教授电路分析方法,如平均值法、等效电路法等,分析典型电力电子电路的性能和应用。

教材章节:第七章内容安排:3学时4. 电力电子设备设计:介绍参数计算和选型方法,结合实际案例进行设备设计。

教材章节:第八章内容安排:3学时5. 实践操作:安排学生进行电力电子电路搭建、性能测试和故障排查,提高动手能力。

电力电子的课程设计

电力电子的课程设计

电力电子的课程设计一、课程目标知识目标:1. 理解电力电子器件的基本原理和分类,掌握其工作特性和应用范围。

2. 学习电力电子变换器的基本电路拓扑,理解其工作原理和转换过程。

3. 掌握电力电子器件的驱动与保护方法,了解其在实际电路中的应用。

技能目标:1. 能够运用电力电子器件设计简单的电力变换电路,并进行仿真分析。

2. 学会使用相关软件工具对电力电子电路进行性能评估和故障诊断。

3. 培养动手实践能力,能搭建简单的电力电子实验装置,并进行调试。

情感态度价值观目标:1. 培养学生对电力电子技术的好奇心和探索精神,激发学习兴趣。

2. 增强学生的团队合作意识,培养在小组讨论和实验中积极沟通、协作的能力。

3. 培养学生的节能环保意识,理解电力电子技术在节能减排中的重要作用。

分析课程性质、学生特点和教学要求,本课程目标旨在使学生在掌握电力电子基础知识的同时,提高实践操作能力,培养创新思维和团队协作精神。

通过具体的学习成果分解,教师可进行针对性的教学设计和评估,确保课程目标的实现。

二、教学内容本章节教学内容围绕以下三个方面展开:1. 电力电子器件:- 基本原理与分类:讲解电力电子器件的工作原理,如晶闸管、IGBT等,并介绍各类器件的应用范围。

- 工作特性:分析电力电子器件的主要参数,如静态特性、动态特性等。

2. 电力电子变换器:- 基本电路拓扑:介绍常用的电力电子变换器拓扑结构,如AC-DC、DC-AC、DC-DC等,并分析其工作原理。

- 转换过程:讲解不同变换器的工作过程,包括能量转换、电压电流波形等。

3. 器件驱动与保护:- 驱动方法:介绍电力电子器件的驱动技术,如光耦隔离驱动、磁隔离驱动等。

- 保护方法:分析器件保护措施,如过压保护、过流保护等。

教学内容安排与进度:1. 第一周:电力电子器件基本原理与分类,工作特性分析。

2. 第二周:电力电子变换器基本电路拓扑,工作原理讲解。

3. 第三周:器件驱动与保护方法,实际应用案例分析。

电力电子技术教学设计 (2)

电力电子技术教学设计 (2)

电力电子技术教学设计前言电力电子技术是电力系统中的核心技术之一,具备广阔的应用前景。

对于学习电力电子技术的学生来说,需要进行系统的理论和实践培训,以掌握该领域的核心知识和技能。

本文将介绍一种实用的电力电子技术教学设计,旨在提高学生的学习效果和实践能力。

教学目标本次教学旨在培养学生对电力电子技术的深入理解。

具体教学目标如下:1.掌握电力电子技术的基本概念和原理。

2.熟悉电力电子器件的结构、特点和应用范围。

3.理解电力电子系统的运行原理和控制方法。

4.培养实践能力,能够自主设计、调试和维护基本的电力电子系统。

教学内容本次教学涵盖电力电子技术的基本原理和实践应用。

具体教学内容如下:第一部分:电力电子技术基础1.电力电子技术的概念和发展历程。

2.电力电子器件的分类、结构和特性。

3.电力电子系统的组成和功能。

第二部分:电力电子系统的应用1.直流电力电子系统的优点和应用领域。

2.交流电力电子系统的优点和应用领域。

3.电力电子逆变器的原理和应用。

4.电力电子开关电源的原理和应用。

第三部分:电力电子实验1.电流互感器的实验。

2.交流电桥的实验。

3.直流/交流电源转换器的实验。

4.直流电源的设计和调试实验。

教学方法本次教学采用理论与实践相结合的教学方法。

具体教学方法如下:1.以课堂讲授为基础,由教师讲解电力电子技术的基本概念和原理。

2.结合案例分析和工程实例,引入电力电子系统的实际应用。

3.强调实践操作,安排多次电力电子实验和实践操作环节,让学生亲自操作器件和电路,掌握实际操作技能。

4.系统性、渐进式的实践设计案例,由自己完成实验设计、调试和测试。

教学评价为了更好地评价学生对电力电子技术的掌握情况,在设计该教学方案时,考虑到以下评价方式:1.考试测验:根据学生对电力电子技术的掌握情况,安排闭卷或开卷测试题目,考查学生对基本概念、实际应用和操作技能的掌握情况。

2.实验评估:针对学生进行实验操作流程的评价,考查学生在实际操作过程中遇到的问题、解决方法和结果分析能力。

电力电子技术教案(完整版)全文编辑修改

电力电子技术教案(完整版)全文编辑修改
VT1、VD2导通
VT1、VD1导通
18
二、工作原理
3、当u2为负半周且控制角为α 时,触发VT2导通,负载电流 id经VT2、VD1流通,电感由 释放能量变成储存能量,负 载端电压ud=uba=-u2。
4、 u2电压由负变正过零时,电 感由储存能量变为释放能量, 产生上负下正的自感电动势, 维持电流流通,VT2将继续到 通,同时VD1关断、VD2导通, 负载端电压为0。
负载性质: 电阻性 电感性 反电势性
4
第2章:单相可控整流电路
用晶闸管组成的可控整流电路,可以很方便地把交流 电变成大小可调的直流电,且具有体积小、重量轻、效率 高以及控制灵敏等优点。
§2-1 单相可控整流电路 §2-2 三相可控整流电路
§2-3 带平衡电抗器的双反星型可控整流电路
§2-4 整流电路的换相压降与外特性
晶闸管承受的最大电压为 6U2 。
44
§2-2-3 :三相桥式半控整流电路
一、阻性负载: a <=60º,负载端电压波形 连续
Ud 1.17U 21 cosa
VT1 VT3 VT5
当α〉60°时,负载端电压波形断续 VD4 VD6 VD2
Ud 1.17U 21 cosa
二、电感性负载: 与单相半控桥式整流电路一样,桥内二极管有续流作用,因
qT qD 180
VT2、VD1导通
VT2、VD2导通
19
结论
1.晶闸管在触发时刻换 流,二极管在电源电 压过零时刻换流。
2.对于单向半控桥感性 负载,负载端的电压 波形如右图。
根据波形得
Ud=0.9U2(1+cosα)/2
20
结论
3.单相半控桥感性负载, 负载端电压波形与阻 性负载完全相同,即 单相半控桥感性负载 本身具有续流作用。

电力电子技术课程设计

电力电子技术课程设计

电力电子技术课程设计一、教学目标本课程旨在让学生掌握电力电子技术的基本概念、原理和应用,培养学生分析和解决电力电子技术问题的能力。

具体目标如下:1.知识目标:–了解电力电子技术的基本原理和特性;–掌握电力电子器件的工作原理和选用方法;–熟悉电力电子电路的分析和设计方法。

2.技能目标:–能够分析简单的电力电子电路;–能够选用合适的电力电子器件进行电路设计;–能够进行电力电子设备的安装、调试和维护。

3.情感态度价值观目标:–培养学生的创新意识和团队合作精神;–增强学生对电力电子技术领域的兴趣和自信心;–培养学生对电力电子技术应用的的责任感和使命感。

二、教学内容本课程的教学内容主要包括电力电子技术的基本原理、电力电子器件、电力电子电路的分析与设计以及电力电子技术的应用。

具体安排如下:1.电力电子技术的基本原理:–电力电子器件的工作原理;–电力电子电路的特性与分类。

2.电力电子器件:–晶闸管及其驱动电路;–整流器、逆变器及其控制电路。

3.电力电子电路的分析与设计:–电力电子电路的基本分析方法;–电力电子电路的设计原则与步骤。

4.电力电子技术的应用:–电力电子设备的功能与结构;–电力电子技术的应用领域。

三、教学方法本课程采用多种教学方法,以激发学生的学习兴趣和主动性。

主要包括:1.讲授法:通过教师的讲解,让学生掌握电力电子技术的基本概念和原理;2.讨论法:通过小组讨论,培养学生分析问题和解决问题的能力;3.案例分析法:通过分析实际案例,让学生了解电力电子技术的应用;4.实验法:通过实验操作,让学生熟悉电力电子器件和电路的工作原理。

四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备。

教材选用《电力电子技术》一书,参考书包括《电力电子器件》和《电力电子电路设计》。

多媒体资料包括教学PPT、视频动画等。

实验设备包括晶闸管、整流器、逆变器等实验装置。

这些资源能够支持教学内容和教学方法的实施,丰富学生的学习体验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计名称:.... 电力电子技术题目:专业:自动化班级:自动化12-2班姓名:王军学号:1205010219精品文本课程设计任务书间:2014年12月30日辽宁工程技术大学课程设计成绩评定表第一章主要技术数据和可控整流电路的选择1.1主要技术数据输入交流电源:三相380V 10%、f=50Hz、直流输出电流连续的最小值为5A。

电动机额定参数:额定功率P N =10kw、磁极对数P=2、额定转速n N=1000r/min,额定电压U MN=220V、额定电流I MN=54.8A、过载倍数151.2可控整流电路的选择晶闸管可控整流电路型式较多,各种整流电路的技术性能和经济性能个不相同。

单相可控整流电路电压脉动大、脉动频率低、影响电网三相平衡运行。

三相半波可控整流电路虽然对影响电网三相平衡运行没有影响,但其脉动仍然较大。

此外,整流变压器有直流分量磁势,利用率低。

当整流电压相同时,晶闸管元件的反峰压比三相桥式整流电路高,晶闸管价格高三相半波可控整流电路晶闸管数量比三相桥式可控整流电路少,投资比三相桥式可控整流电路少。

三相桥式可控整流电路它的脉动系数比三相半波可控整流电路少一半。

整流变压器没有直流分量磁势,变压器利用率高,晶闸管反峰压低。

这种可控整流电路晶闸管数量是三相半波可控整流电路的两倍。

总投资比三相半波可控整流电路多。

从上面几种可控整流电路比较中可以看到:三相桥式可控整流电路从技术性能和经济性能两项指标综合考虑比其它可控整流电路优越,故本设计确定选择三相桥式可控整流电路。

如图(1-1)所示图1—1三相桥式可控整流电路第二章可控整流电路的波形图图1 —2三相桥式全控整流电路带电阻负载a0。

时的波形第三章整流电路参数计算和元件选择3.1整流变压器的计算整流变压器的作用是给晶闸管整流电路提供所需电源电压,同时将整流电路与交流电源隔离,增强安全性并减小整流电路对请其他用电设备的干扰。

(1) 整流变压器的接线变压器采用D,Y nii接线一次侧采用D接线的目的是个电流中三的整数倍高次谐波提供通路,以保证磁通和电压为正弦波,避免在变压器每相绕组中产生尖顶波电势。

这个电势有时将超过正常值的50%,对变压器绝缘不利。

此外电网波形畸变,对并接在电网的其他负载亦有很大影响。

例如:对通讯检测信号的干扰,增加电器铁芯损耗,使保护装置误动作以及电子计算机无法工作。

(2) 整流变压器二次电压U2的计算采用三相桥式整流电路整流变压器二次侧相电压可用下式估算:U2= (0.90-1.0) U MN/ -3 (3- 1)式中:U2 —整流变压器二次侧相电压U MN—直流电动机额定电压;6 尸(0.9旷1.0) 220/ .3=(114.5- 127.2 V取U2=120V整流变压器一、二次电压比为:K= UWU2®=380/120 =3.17式中:K—整流变压器变比U i —整流变压器一次侧相电压;U2 —整流变压器二次侧相电压;(3) .整流变压器一、二次电流l i、I2的计算3=0.816 I dN= 0.816 X 54.8=44.7A 式中:I dN —整流器额定直流值l1= I2/ K=44.7/3.17=14.1A(4) 整流变压器的容量的计算S = ( S + S2) /2= K ST K UV U2』dN=1.05 X 2.34 X 120 X 54.8=16.16 KVA取S T =17 KVA式中:S T—整流变压器视在功率;S1 -整流变压器一次侧视在功率;S2-整流变压器二次侧视在功率;K ST—视在功率计算因素;K UV—整流变压器计算因素; (3 —2)(3—3)U 2厂整流变压器二次侧相电压;I dN -整流器额定直流值;(5)整流变压器的数据相数:三相;接线:D,Y n11;容量:17KVA ;一次侧相电压:380V;二次侧相电压:120V;一次侧相电流:14.1A ;二次侧相电流:44.7A ;3.2晶闸管元件的选择(1).额定电压的计算U TN = (2〜3),6 U2© (3-4)=(2〜3). 6 X 120=(588〜882)V取U TN =800V(2).额定电流的计算I T(AV)》(1.5〜2)K IT I dmax (3—5)式中:K IT—晶闸管电流计算因素,采用三相桥式整流电路K IT=0.367I dmax —最大整流电流(A )I dmax=电动机最大工作电流,取I dmax =1.5I NI T(AV)》(1.5〜2)K IT I dmax= (1.5〜2)K IT X 1.5N=(1.5〜2)X 0.367 X 1.5 X 54.8=(45.2 〜60.3)A取I T(AY) =50A选晶闸管的型号规格为KP50-83.3 平波电抗器的计算(1).电动机电枢电感L Ma (mH)的计算3L Ma=K M U MN 103/2PnN I MN ( 3-6) 式中:U MN—直流电动机额定电压(V);I MN -直流电动机额定电流( A);n N —电动机额定转速(r/min );P—电动机磁极对数;K M—计算系数,一般无补偿电动机K M=8〜12快速无补偿电动机K M=6〜8, 有补偿电动机K M=5〜6;L Ma= K M U MN10/2Pn N I MN=8 X 220 X 102 X 2 X 1000 X 54.8 = 8.029 (mH)(2)变压器漏感L T (mH)的计算L T = K T U dl U2 / I dN (3—7)式中:K T —整流变压器漏感计算系数,三相全控K T=3.9;U d—整流变压器短路电压标么值,取U d=0.05;U2 —整流变压器二次侧相电压(A);乐-整流器额定直流值(A);L T = K T U dl U2/ I dN=3.9 X 0.05 X 120/54.8=0.427(mH)3)平波电抗器电感的计算1 )保持电流连续所需的电感值L lx(mH )L|x=L 1 —( 2 L T+ L Ma) =K 1 U2 J I dmin —( 2 L T + L Ma)(3-8)式中:L i —电流连续时的临界电感L I =K I U2“ I dmin ;L T-整流变压器漏感;L Ma —电动机电枢电感;U 2 —整流变压器二次侧相电压;I dmin -电流连续的最小值;K 1 -临界电感计算系数,三相全控桥K1=0.693;L|x=K 1 U2 J I dmin —( 2 L T + L Ma)=0.693 X 120/5 (- 2X 0.427 8+.029)=7.749(mH)2)限制电流脉动系数所需的电感值L md(mH)L md= L 2—( 2 L T+L Ma)=(U dM/ U 2 J • 1^/2 n d fU 2 J S i I dN ( 2 L T + L Ma)3- 9) 式中:L 2 -满足一定脉动要求的电感值;U dM —整流输出电压最低频率的交流电压分量幅值, 在三相全控桥整流电路中U dM/ U 2J=0.46;f d—输出最低频率分量的频率值,三相全控桥f d=300;S —给定的允许电流脉动系数,三相整流电路中S为5%〜10%;L md = (U dM/ U 2)• 1102 n d f "U 2^/S i I dN=(0.46 X 312 nX 300) X 120/0.05 X 54.8 —(2X74427 +=1.78(mH)所以,选取平波电抗器的电感量为8 mH 时,电流连续和脉动要求能同时满足。

第四章保护电路的设计4.1 整流电路的过电压保护(1)引起过压的原因1 )操作过电压:由拉闸、合闸、快速直流开关的切断等经常性操作中的电磁过程引起的过压。

2)浪涌过压:由雷击等偶然原因引起,从电网进入变换器的过压。

3)电力电子器件关断过电压:电力电子器件关断时产生的过压。

4)在电力电子变换器-电动机调速系统中,由于电动机回馈制动造成直流侧直流电过高产生过压,也称为泵升电压。

过电压保护有操作过电压和浪涌过电压两种。

操作过电压是由于变压器合闸,拉闸以及晶闸管本身关断所引起的。

浪涌过电压是由于雷击等原因,从电网侵入的偶然过电压。

晶闸管元件承受过电压能力较差,发生过电压时,会使元件损坏,因此必须采取有效措施。

(2)交流侧过电压保护1).交流侧阻容吸收过电压保护(如图4—1)C R图4—1交流侧阻容吸收过电压保护①RC吸收电路电容C a(卩F)的计算C a=17320 E /2U (4—1)式中:E—变压器励磁电流对额定电流标么值,一般为0.02〜0.05;U2L —变压器二次侧线电压;C a=17320 E /2L=17320 X 0.05/3 X 120=4.17(卩F)取C a=4.7 卩FC a的交流耐压:U cam=1.5U m=1.5 X 2 3 X 120=441(V)U m—晶闸管所承受的最大电压;选:金属化纸介质电容CZJ-5004.7 4.7卩F ,500V ,3只②RC吸收电路电阻R a( Q )的计算R a=0.17 U2L/ E2I (4 —2)=0.17 .3 X 120/0.05 X 44.7=15.8 ( Q)取R a=16 Q1电阻功率 P Ra = ( - EI 2 R a(4-3)= 4(1 X 0.05 X 44.72X 16=5.02 W )4选:线绕电阻 RX-10-10. 10 Q 10 W 3 只.2) .交流侧压敏电阻过电压保护(如图 4 — 2)图4 — 2交流侧压敏电阻过电压保护压敏电阻额定电压U lmA 的选择U imA > 1.334(4— 4)式中:U m —压敏电阻承受的额定电压峰值(V );U imA 》 1.33 2 U 2L > 1.332 .3 X 120=391 V )压敏电阻通流容量I pm 的选择I pm >(20〜50) I 2(4—5)=(20〜50)X 44.7=894 2235 (A )选用MY31-440/3型压敏电阻;额定电压 440V,通流容量3KA , 3只,△接(2)直流侧过电压保护直流侧采用压敏电阻过电压保护(如图 4 — 3)压敏电阻额定电压U lmA 的选择式中:U m —压敏电阻承受的额定电压峰值 V ; 压敏电阻通流容量I pm 的选择I pm >( 20〜50) I dN = (20〜50)X 54.8=1096 2740( A )选用MY31-330/3型压敏电阻;额定电压 330V,通流容量3KA , 1只(3)晶闸管元件过电压保护(如图4 — 4)图4— 4晶闸管元件过电压保护晶闸管过电压保护通常采用RC 吸收电路,该电路直接并联在器件阳极和阴极之间, 既可吸收瞬态电压尖峰,又可抑制电压上升率 du/dt 。

相关文档
最新文档