相关与回归SPSS

合集下载

第7章 相关分析与回归分析(含SPSS)

第7章 相关分析与回归分析(含SPSS)



四、偏相关分析
(一) 偏相关分析和偏相关系数 偏相关分析也称净相关分析,它在控制其他变量 的线性影响的条件下分析两变量间的线性相关性, 所采用的工具是偏相关系数(净相关系数)。

偏相关分析的主要用途是根据观测资料应用偏相 关分析计算偏相关系数,可以判断哪些解释变量对 被解释变量的影响较大,而选择作为必须考虑的解 释变量。这样在计算多元回归分析时,只要保留起 主要作用的解释变量,用较少的解释变量描述被解 释变量的平均变动量。
(7.7)

偏相关系数的取值范围及大小含义与相关系数相 同。
2、对样本来自的两总体是否存在显著的偏相关 进行推断。
(1)提出原假设:两总体的偏相关系数与零无显 著差异。
(2)选择检验统计量。偏相关系数的检验统计量 为 t 统计量。 (3)计算检验统计量的观测值和相伴概率 p 。
(4)给定显著性水平 ,并作出决策。如果相 伴概率值小于或等于给定的显著性水平,则拒绝 原假设;如果相伴概率值大于给定的显著性水平, 则不能拒绝原假设。

(二)偏相关系数在SPSS中的实现

1、建立或打开数据文件后,进入Analyze→ Correlate →Partial主对话框,如图7-6所示。
图7-6 偏相关分析主对话框
2、选择分析变量送入Valiables框,选择控制变
量进入Controlling for框。
3、在Test of Significance 栏中选择输出偏相
图7-7 偏相关分析的选项对话框
(1)Statistics 统计量选择项,有两个选项: ①
Means and standard deviations 复选项,要求
SPSSZero-order correlations 复选项,要求显示零阶

SPSS的相关分析和线性回归分析

SPSS的相关分析和线性回归分析

• 如果两变量的正相关性较强,它们秩的变化具有同步性,于

n
Di2
n
(Ui
Vi)2的值较小,r趋向于1;
• i1
i1
如果两变量的正相关性较弱,它们秩的变化不具有同步性,
于是
n
n
Di2 (Ui Vi)2
的值较大,r趋向于0;
• i1
i1
在小样本下,在零假设成立时, Spearman等级相关系数
用最小二乘法求解方程中的两个参数,得到:
1
(xi x)(yi y) (xi x)2
0 ybx
多元线性回归模型
多元线性回归方程: y=β0+β1x1+β2x2+.+βkxk
β1、β2、βk为偏回归系数。 β1表示在其他自变量保持不变的情况下,自变量x1变动
一个单位所引起的因变量y的平均变动。
析功能子命令Bivariate过程、Partial过程、 Distances过程,分别对应着相关分析、偏相关分析和相 似性测度(距离)的三个spss过程。
Bivariate过程用于进行两个或多个变量间的相关分 析,如为多个变量,给出两两相关的分析结果。
Partial过程,当进行相关分析的两个变量的取值都受 到其他变量的影响时,就可以利用偏相关分析对其他变量 进行控制,输出控制其他变量影响后的偏相关系数。
• 回归分析的一般步骤
确定回归方程中的解释变量(自变量)和被解释变量( 因变量) 确定回归方程 对回归方程进行各种检验 利用回归方程进行预测
8.4.2 线性回归模型 一元线性回归模型的数学模型:
y0 1x
其中x为自变量;y为因变量; 0 为截距,即
常量; 1 为回归系数,表明自变量对因变量的影

如何使用统计软件SPSS进行回归分析

如何使用统计软件SPSS进行回归分析

如何使用统计软件SPSS进行回归分析如何使用统计软件SPSS进行回归分析引言:回归分析是一种广泛应用于统计学和数据分析领域的方法,用于研究变量之间的关系和预测未来的趋势。

SPSS作为一款功能强大的统计软件,在进行回归分析方面提供了很多便捷的工具和功能。

本文将介绍如何使用SPSS进行回归分析,包括数据准备、模型建立和结果解释等方面的内容。

一、数据准备在进行回归分析前,首先需要准备好需要分析的数据。

将数据保存为SPSS支持的格式(.sav),然后打开SPSS软件。

1. 导入数据:在SPSS软件中选择“文件”-“导入”-“数据”命令,找到数据文件并选择打开。

此时数据文件将被导入到SPSS的数据编辑器中。

2. 数据清洗:在进行回归分析之前,需要对数据进行清洗,包括处理缺失值、异常值和离群值等。

可以使用SPSS中的“转换”-“计算变量”功能来对数据进行处理。

3. 变量选择:根据回归分析的目的,选择合适的自变量和因变量。

可以使用SPSS的“变量视图”或“数据视图”来查看和选择变量。

二、模型建立在进行回归分析时,需要建立合适的模型来描述变量之间的关系。

1. 确定回归模型类型:根据研究目的和数据类型,选择适合的回归模型,如线性回归、多项式回归、对数回归等。

2. 自变量的选择:根据自变量与因变量的相关性和理论基础,选择合适的自变量。

可以使用SPSS的“逐步回归”功能来进行自动选择变量。

3. 建立回归模型:在SPSS软件中选择“回归”-“线性”命令,然后将因变量和自变量添加到相应的框中。

点击“确定”即可建立回归模型。

三、结果解释在进行回归分析后,需要对结果进行解释和验证。

1. 检验模型拟合度:可以使用SPSS的“模型拟合度”命令来检验模型的拟合度,包括R方值、调整R方值和显著性水平等指标。

2. 检验回归系数:回归系数表示自变量对因变量的影响程度。

通过检验回归系数的显著性,可以判断自变量是否对因变量有统计上显著的影响。

薛薇,《SPSS统计分析方法及应用》第八章 相关分析和线性回归分析

薛薇,《SPSS统计分析方法及应用》第八章  相关分析和线性回归分析

以控制,进行偏相关分析。
偏相关分 析输出结 果;负的 弱相关
相关分析 输出结果 ;正强相 关
8.4.1
8.4.2
回归分析概述
线性回归模型
8.4.3
8.4.4 8.4.5 8.4.6
回归方程的统计检验
基本操作
其它操作
应用举例

线性回归分析的内容

能否找到一个线性组合来说明一组自变量和因变量
可解释x对Y的影响大小,还可 以对y进行预测与控制
目的是刻画变量间的相关 程度
8.2.1 8.2.2 8.2.3 8.2.4
散点图 相关系数 基本操作 应用举例

相关分析通过图形和数值两种方式,有效地揭示事物
之间相关关系的强弱程度和形式。

8.2.1 散点图 它将数据以点的的形式画在直角坐标系上,通过

Distances 过程用于对各样本点之间或各个变量之间 进行相似性分析,一般不单独使用,而作为聚类分
析和因子分析等的预分析。
1) 选择菜单Analyze Correlate Bivariate,出现 窗口:
2) 把要分析的变量选到变量Variables框。
3) 在相关系数Correlation Coefficents框中选择计算哪种

一元线性回归模型的数学模型:
y 0 1 x

其中x为自变量;y为因变量; 0 为截距,即常量;
1 为回归系数,表明自变量对因变量的影响程度。

用最小二乘法求解方程中的两个参数,得到
1
( x x )( y y ) (x x)
i i 2 i
0 y bx

spss-回归分析和相关分析的区别

spss-回归分析和相关分析的区别

spss-回归分析和相关分析的区别回归分析和相关分析是互相补充、密切联系的,相关分析需要回归分析来表明现象数量关系的具体形式,而回归分析则应该建立在相关分析的基础上。

主要区别有:一,在回归分析中,不仅要根据变量的地位,作用不同区分出自变量和因变量,把因变量置于被解释的特殊地位,而且以因变量为随机变量,同时总假定自变量是非随机的可控变量.在相关分析中,变量间的地位是完全平等的,不仅无自变量和因变量之分,而且相关变量全是随机变量. 二,相关分析只限于描述变量间相互依存关系的密切程度,至于相关变量间的定量联系关系则无法明确反映.而回归分析不仅可以定量揭示自变量对应变量的影响大小,还可以通过回归方程对变量值进行预测和控制.相关分析与回归分析均为研究2个或多个变量间关联性的方法,但2种数理统计方法存在本质的差别,即它们用于不同的研究目的。

相关分析的目的在于检验两个随机变量的共变趋势(即共同变化的程度),回归分析的目的则在于试图用自变量来预测因变量的值。

在相关分析中,两个变量必须同时都是随机变量,如果其中的一个变量不是随机变量,就不能进行相关分析,这是相关分析方法本身所决定的。

对于回归分析,其中的因变量肯定为随机变量(这是回归分析方法本身所决定的),而自变量则可以是普通变量(有确定的取值)也可以是随机变量。

在统计学教科书中习惯把相关与回归分开论述,其实在应用时,当两变量都是随机变量时,常需同时给出这两种方法分析的结果;如果自变量是普通变量,即模型Ⅰ回归分析,采用的回归方法就是最为常用的最小二乘法。

如果自变量是随机变量,即模型Ⅱ回归分析,所采用的回归方法与计算者的目的有关。

在以预测为目的的情况下,仍采用“最小二乘法”(但精度下降—最小二乘法是专为模型Ⅰ 设计的,未考虑自变量的随机误差);在以估值为目的(如计算可决系数、回归系数等)的情况下,应使用相对严谨的方法(如“主轴法”、“约化主轴法”或“Bartlett法” )。

相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现

相关分析和回归分析SPSS实现SPSS(统计包统计分析软件)是一种广泛使用的数据分析工具,在相关分析和回归分析方面具有强大的功能。

本文将介绍如何使用SPSS进行相关分析和回归分析。

相关分析(Correlation Analysis)用于探索两个或多个变量之间的关系。

在SPSS中,可以通过如下步骤进行相关分析:1.打开SPSS软件并导入数据集。

2.选择“分析”菜单,然后选择“相关”子菜单。

3.在“相关”对话框中,选择将要分析的变量,然后单击“箭头”将其添加到“变量”框中。

4.选择相关系数的计算方法(如皮尔逊相关系数、斯皮尔曼等级相关系数)。

5.单击“确定”按钮,SPSS将计算相关系数并将结果显示在输出窗口中。

回归分析(Regression Analysis)用于建立一个预测模型,来预测因变量在自变量影响下的变化。

在SPSS中,可以通过如下步骤进行回归分析:1.打开SPSS软件并导入数据集。

2.选择“分析”菜单,然后选择“回归”子菜单。

3.在“回归”对话框中,选择要分析的因变量和自变量,然后单击“箭头”将其添加到“因变量”和“自变量”框中。

4.选择回归模型的方法(如线性回归、多项式回归等)。

5.单击“统计”按钮,选择要计算的统计量(如参数估计、拟合优度等)。

6.单击“确定”按钮,SPSS将计算回归模型并将结果显示在输出窗口中。

在分析结果中,相关分析会显示相关系数的数值和统计显著性水平,以评估变量之间的关系强度和统计显著性。

回归分析会显示回归系数的数值和显著性水平,以评估自变量对因变量的影响。

值得注意的是,相关分析和回归分析在使用前需要考虑数据的要求和前提条件。

例如,相关分析要求变量间的关系是线性的,回归分析要求自变量与因变量之间存在一定的关联关系。

总结起来,SPSS提供了强大的功能和工具,便于进行相关分析和回归分析。

通过上述步骤,用户可以轻松地完成数据分析和结果呈现。

然而,分析结果的解释和应用需要结合具体的研究背景和目的进行综合考虑。

SPSS的线性回归分析分析

SPSS的线性回归分析分析

SPSS的线性回归分析分析SPSS是一款广泛用于统计分析的软件,其中包括了许多功能强大的工具。

其中之一就是线性回归分析,它是一种常用的统计方法,用于研究一个或多个自变量对一个因变量的影响程度和方向。

线性回归分析是一种用于解释因变量与自变量之间关系的统计技术。

它主要基于最小二乘法来评估自变量与因变量之间的关系,并估计出最合适的回归系数。

在SPSS中,线性回归分析可以通过几个简单的步骤来完成。

首先,需要加载数据集。

可以选择已有的数据集,也可以导入新的数据。

在SPSS的数据视图中,可以看到所有变量的列表。

接下来,选择“回归”选项。

在“分析”菜单下,选择“回归”子菜单中的“线性”。

在弹出的对话框中,将因变量拖放到“因变量”框中。

然后,将自变量拖放到“独立变量”框中。

可以选择一个或多个自变量。

在“统计”选项中,可以选择输出哪些统计结果。

常见的选项包括回归系数、R方、调整R方、标准误差等。

在“图形”选项中,可以选择是否绘制残差图、分布图等。

点击“确定”后,SPSS将生成线性回归分析的结果。

线性回归结果包括多个重要指标,其中最重要的是回归系数和R方。

回归系数用于衡量自变量对因变量的影响程度和方向,其值表示每个自变量单位变化对因变量的估计影响量。

R方则反映了自变量对因变量变异的解释程度,其值介于0和1之间,越接近1表示自变量对因变量的解释程度越高。

除了回归系数和R方外,还有其他一些统计指标可以用于判断模型质量。

例如,标准误差可以用来衡量回归方程的精确度。

调整R方可以解决R方对自变量数量的偏向问题。

此外,SPSS还提供了多种工具来检验回归方程的显著性。

例如,可以通过F检验来判断整个回归方程是否显著。

此外,还可以使用t检验来判断每个自变量的回归系数是否显著。

在进行线性回归分析时,还需要注意一些统计前提条件。

例如,线性回归要求因变量与自变量之间的关系是线性的。

此外,还需要注意是否存在多重共线性,即自变量之间存在高度相关性。

SPSS相关性分析

SPSS相关性分析

回归分析

一元线性回归模型:
y 0 1 x
为截距,即常 其中x为自变量;y为因变量; 0 1 量; 为回归系数,表明自变量对因变量的影 响程度。

用最小二乘法求解方程中的两个参数,得到
1
( x x )( y y ) (x x)
i i 2 i
0 y bx
等级相关分析

等级相关分析 等级相关是指以等级次序排列 或以等级次序表示的变量之间的相关。主要包 括斯皮尔曼二列等级相关和肯德尔和谐系数多 列等级相关。
Spearman等级相关系数—定序变量之 间的相关性的度量

斯皮尔曼等级相关系数:


两个变量为定序变量。 一个变量为定序变量,另一个变量为尺度数据,且 两总体不是正态分布,样本容量n不一定大于30。 数据的秩:秩rank,是一种数据排序的方式,可以 知道某变量值在该列所有值中的名次。秩是对应数 值由大到小的,例如有100个数据都不一样的话, 最大的数值对应的秩就是100,最小的就是1。有重 复数据时候,会按同名称排列。

残差是指由回归方程计算得到的预测值与实际 样本值之间的差距,定义为:
ˆi yi (0 1x1 2 x2 ... p x p ) ei yi y
对于线性回归分析来讲,如果方程能够较好的 反映被解释变量的特征和规律性,那么残差序 列中应不包含明显的规律性。残差分析包括以 下内容:残差服从正态分布,其平均值等于0 ;残差取值与X的取值无关;残差不存在自相 关;残差方差相等。



设样本量为n,考察两个变量X和Y之间的相关 关系,X和Y的取值记为xi,yi。所有像(xi,yi) 2 对的个数为n(n-1)/2(也就是 Cn)。和分别 表示和的秩次,如果对于任意k,有我们称 (xk,yk)为同序对;否则,称为逆序对。 总的同序对的个数记为U,逆序对的个数记为V, 则Kendall的Tau系数的定义为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
父高 X 150 153 155 158 161 164 165 167 168 169
子高 Y 159 157 163 166 169 170 169 167 169 170
父高 X 170 171 172 174 175 177 178 181 183 185
子高 Y 173 170 170 176 178 174 173 178 176 180
2.等级变量的相关分析 :
例2.某地方病防治所作病因研究,对一些地区水质的 平均碘含量与甲状腺肿患病率进行了调查,结果如下, 问甲状腺肿患病率是否和碘含量有关? 患病率(%): 40.5 37.7 39.0 20.0 22.0 37.4 31.5 15.6 21.0 6.3 7.1 9.0 碘含量(μg/L): 1.0 2.0 2.5 3.5 3.5 4.0 4.4 4.5 4.6 7.7 8.0 8.0
选择Y轴和X轴变量。
190
180
170
160
150
140
150
160
170
180
190
X
Y
2.相关分析:
Analyze Correlate Bivariate
Bivariate过程:它用于两个变量间的线性 相关分析。
Partial 过 程 : 作 偏 相 关 分 析 , 计 算 出 的 相 关系数为偏相关系数。
Simple是简单散点图,只显示一对相关变量的散点图。 Overlay是重叠散点图,可显示多对相关变量的散点 图。 Matrix是矩点,在矩阵中显示多个相关变量之间的散 点图。 3-D是三维散点图,可显示三个变量之间的散点图。
选择Simple,单击define,进入下一对 话窗Scatterplot。
二. 线性回归 (Linear regression)
描述一个变量随着另一个变量变化 的线性关系。 自变量(independent variable):可自 由取值的变量。如儿童年龄,记为X。 因变量(dependent variable):受另一 变量制约的变量。如儿童身高,记为Y。
线性回归的条件:
Distances过程:作距离分析。
建立数据文件取名为“EXA3.SAV”。
试计算数学成绩与智商、语文成绩与智 商以及数学与语文成绩的相关系数,并检 验总体相关系数是否为零。能否认为数学 好的原因是语文好,或者语文好的原因是 数学好?
4.一元线性回归分析:
例4: (用例1资料)测得20名男生和其父 亲的身高如下,试做线性相关分析。数据 文件文件取名为“EXA1.SAV” 。
同简单线性相关一样,仅当X1,X2,…, Y为多元正态分布的随机变量时才能考虑相 关性分析。
复相关系数:度量随机变量Y和一组随机变量 (X1,X2,…,Xp)之间线性联系的程度。
偏相关系数:Y和X扣除Z的线性影响后的,记为 rxy.z。
四.例型:
1.连续变量的直线相关分析: 例1: 测得20名男生和其父亲的身高如下, 试做线性相关分析。数据文件文件取名为 “EXA1.SAV” 。
77.88
18.07
1976
3772
34.1
92.62
17.96
1977
3846
42.2
86.57
18.31
1978
3866
38.1
84.29
18.41
……
……
……
……
……
五.直线相关回归的主要步骤:
1.绘制散点图(Scatterplot):
Graphs Scatter Scatterplot
智商得分 Z 95 100 100 75 105 97 110 120 76
编号
10 11 12 13 14 15 16 17 18
数学成绩 X 73 48 45 67 75 95 88 99 81
语文成绩 Y 75 53 43 70 78 97 92 92 88
智商得分 Z 92 61 60 88 96 125 113 126 102
X3
────Байду номын сангаас────────────────────────
1970
6349
49.8
94.25
19.84
1971
6519
38.1
98.50
20.37
1972
5952
36.6
89.86
18.80
1973
5230
36.0
86.00
16.34
1974
5411
32.3
83.29
16.91
1975
5277
37.8
1)线性(linear) 2)独立(independent) 3)正态(normal) 4)等方差(equal variance) 资料要求:
因变量为正态随机变量,自变量为正 态随机变量或人为取值。
三.多重线性回归与相关:
1.多重回归:
Y |x 1 , x 2 ,x .p . ., 0 1 X 1 2 X 2 p X p
相关与回归
一.线性相关 (Linear correlation)
在医学研究中,常常需要分析两个 因素间是否存在线性关系。 例如:身高与体重、父子身高的关系。
1. 线性相关分析: 条件:两变量为正态随机变量。
2.等级相关(Spearmam 等级相关)
(1)不服从双变量正态分布; (2)总体分布未知; (3)原始数据用等级表示时。
建立数据文件为: “EXA2.SAV”
3.偏相关分析:
例3 某学校随机抽取18名学生,测定其 智商(IQ)值,连同当年数学和语文两科 总成绩如下:
编号
12 3 45 6 7 8 9
数学成绩 X 78 84 61 52 93 89 98 98 65
语文成绩 Y 83 76 70 58 82 78 89 95 61
5.多元线性回归分析:
例5:重庆医科大学附属第二医院的资料, 住院人数与门诊人数、病床利用率和病床周 转次数的回归关系分析。
建立数据文件取名为“某医院资料.SAV”。
─────────────────────────────
年份 住院人数 门诊人数(万人) 病床利用率(%)
病床周转次数
Y
X1
X2
0:回归方程常数项(截距,意义同); 1,2,…,p:偏回归系数(partial regression coefficient)。 i表示在除Xi以外的其它自变量固定的条件下, Xi每改变一个单位后Y的平均变化。
样本回归方程:
Y ˆ a b 1 X 1 b 2 X 2 b p X p
2.多重线性相关:
相关文档
最新文档