速算与巧算-凑整法和分解法

合集下载

二年级奥数速算、巧算方法及习题

二年级奥数速算、巧算方法及习题

⼆年级奥数速算、巧算⽅法及习题速算与巧算1、凑整:43+88+572、带符号搬家:43+88-333、变加为乘: 8+8+8+8+8+8+8+74、加减抵消: 92-16+23-23+165、减法巧算: 100-36-24,88-(28+15)6、找基准数: 52+50+49+467、分组: 90-89+88-87+86-85+84-838、等差数列(⾼斯公式): 1+2+3+……+998+999+1000单数项的等差数列: 3+5+7+9+11 = 7×59、⾦字塔数列: 1+2+3+……+98+99+100+99+98+……+3+2+1速算第⼀步:观察!(是否能⽤公式,数字有什么特点,符号有什么特点,是否有别的简便⽅法……)速算思想:1、“整”⽐“散”好!(100+200 ⽐ 156+288好算)2、“⼩”⽐“⼤”好!(1+2 ⽐ 1257+3658好算)掌握理论:(理论对于三年级的孩⼦来说⽐较晦涩,通过简单的例⼦让他们记忆深刻,会⽤就可以了)1、加法交换律:1+2 = 2+12、加法结合律:(1+2)+3 = 1+(2+3)3、带符号搬家:加减法中数字就像逛超市,每⼈推着⾃⼰的⼩车,去哪⼉都推着(即符号在前⾯) 43+88-33 = 43-33+88 = 88+43-335、减括号:5+(3-2)= 5+3-2, 5-(3+2)=5-3-2=5-(3+2⼀、分组凑整法例:(1350+249+468)+(251+332+1650)=1350+249+468+251+332+1650=(1350+1650)+(249+251)+(468+332)=3000+500+800=4300894-89-111-95-105-94=(894-94)-(89+111)-(95+105)=800-200-200=400567+231-267+269=(567-267)+(231+269)=8002000-99-9-98-8-97-7-96-6-95-5-94-4-93-3-92-2-91-1=2000-(99+9+98+8+97+7+96+6+95+5+94+4+93+3+92+2+91+1)=2000-[(99+1)+(98+2)+(97+3)+(96+4)+(95+5)+(94+6)+(93+7)+(92+8)+(91+9)]=2000-900=11001+2-3-4+5+6-7-8+9+……+1998-1999-2000+2001=1+(2-3-4+5)+(6-7-8+9)+……+(1998-1999-2000+2001)=1⼆、加补凑整法适⽤于:接近于整百(整千……)的数例:165+199 或=165+200-1 =164+1+199=364 =364198+96+297+10=200+100+300-2-4-3+10 注:也可将10拆成2、4、3与198、96、297凑整,最后剩1 =600-9+10=601895-504-97=900-5-500-4-100+3 在减法中,孩⼦很容易将-504拆成-500+4,将-97拆成-100-3。

小学数学速算和巧算中的“凑整”法

小学数学速算和巧算中的“凑整”法

小学数学速算和巧算中的“凑整”法这周我教学了《运算律》这一单元内容,这一内容涉及了大量的巧算速算的题型,所以上课之后又搜集了大量的关于这方面的题型作为补充教学。

运算定律是巧算的支架,是巧算的理论依据,根据式题的特征,运用相关的定律和性质“凑整”运算数据,能使计算比较简便。

运用“凑整”的思路,我整理了如下一些方法。

1、加法“凑整”。

利用加法交换律、结合律“凑整”。

观察加法算式中,有能凑整的数,先加起来凑整,再计算。

例如:673+689+327+311=(673+327)+(689+311)=1000+1000=20002、减法“凑整”。

观察一个连减算式,如果要减的两个数加起来可以凑整,就可以利用减法性质先“凑整”再算。

例如:319―26―74=319―(26+74)=319―100=2193、乘法“凑整”。

利用乘法交换律、结合律、分配律“凑整”。

例如:125×25×8×4 =(125×8)×(25×4)=1000×100=1000004、拆数“凑整”法。

根据运算定律和数字的特点,常常灵活地把算式中的数进行拆分,重新组合,分别凑成整十数、整百数、整千数。

例如:998+9989+413,给998添上2就能凑成1000,给9989添上11,就能凑成10000,所以就把413拆分成400、2与11三个数的和。

例如:998+9989+413=(998+2)+(9989+11)+(413-2-11)=1000+10000+400=114005、符号搬家法“凑整”法在加减混合,乘除混合同级运算中,可以根据运算的需要和题目的特点,交换数字的位置,使计算变得简便。

但这个过程中一定要牢记:带着要交换的数字前面的运算符号一起“搬家”。

836―545+464―455如果按本来的运算顺序来计算,会比较复杂,但仔细观察两个要加的数相加,能等于一个几千几百的数,两个要减的数相加,刚好能等于1000,再用两个加起来的答案减两个减数加起来的答案,计算就变得轻松多了。

二年级速算与巧算

二年级速算与巧算

二年级速算与巧算一、“凑整”先算1、计算:【1】24+44+56【2】53+36+47解:【1】24+44+56=24+【44+56】=24+100=124这样想:因为44+56=100是个整百的数.所以先把它们的和算出来。

【2】53+36+47=53+47+36=【53+47】+36=100+36=136这样想:因为53+47=100是个整百的数.所以先把+47带着符号搬家.搬到+36前面;然后再把53+47的和算出来。

2、计算:【1】96+15【2】52+69解:【1】96+15=96+【4+11】=【96+4】+11=100+11=111这样想:把15分拆成15=4+11.这是因为96+4=100.可凑整先算。

【2】52+69=【21+31】+69=21+【31+69】=21+100=121这样想:因为69+31=100.所以把52分拆成21与31之和.再把31+69=100凑整先算。

3、计算:【1】63+18+19【2】28+28+28解:【1】63+18+19=60+2+1+18+19=60+【2+18】+【1+19】=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算。

【2】28+28+28=【28+2】+【28+2】+【28+2】-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整.但最后要把多加的三个2减去。

二、改变运算顺序:在只有“+”、“-”号的混合算式中.运算顺序可改变计算:【1】45-18+19【2】45+18-19解:【1】45-18+19=45+19-18=45+【19-18】=45+1=46这样想:把+19带着符号搬家.搬到-18的前面。

然后先算19-18=1。

【2】45+18-19=45+【18-19】=45-1=44这样想:加18减19的结果就等于减1。

三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数.又叫等差数列.如:1.2.3.4.5.6.7.8.91.3.5.7.92.4.6.8.103.6.9.12.154.8.12.16.20等等都是等差连续数。

一年级数学下册:速算与巧算(一)

一年级数学下册:速算与巧算(一)

一年级数学下册:速算与巧算(一)凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。

二年级奥数:《速算与巧算》

二年级奥数:《速算与巧算》

二年级奥数:《速算与巧算》(预热)前铺知识复习一、凑整法(计算的核心)好朋友:两个数相加(相减)和为整十、整百、整千的两个数,我们称之为好朋友。

1)加法凑整:好朋友:个位相加和为十。

口诀:看个位,手拉手,凑完整,再计算。

例:13+27=402)减法凑整:好朋友:个位相同。

例:132-32=100二、递等式按照运算顺序把计算过程依次用等式表示出来,这样的等式叫做递等式。

写法:在算式下面、第一个数的左边写等号“=”;等号后面写计算过程,第一个数要与算式的第一个数上下对齐;每一步的等号对整齐,等号的两条线要平行。

例:52+36-23=88-23=65三、抱符号搬家抱符号搬家可以改变运算顺序,抱着前面的符号搬家。

每个数前面都有符号,第一个数前面的加号被省略了;数搬家时不要忘记带上它前面的符号。

例:=100-45=55四、变加为乘相同的数相加变乘法。

例:5+5+5+5+5+6=5x5+6=25+6=31五、认识小括号“()”小括号能改变运算顺序,小括号里面的要先算。

例:53+(36-16)【先算小括号里面的“36-16”】=53+20=73新授一、添(去)括号(1)括号前面是减号,括号里面要变号;例:9=19(2)括号前面是加号,括号里面不变号。

例:=9+()=9+10=19二、拆补凑整任意数可以写成一个整数(整十,整百,整千)加(减)一个数的形式。

例:9+999最接近的整十数:1099最接近的整百数:100则原式=10-1+100-1=110-2=108三、基准数法特点:算式中的数都接近同一个整十(百)数基准数只有一个例:-1 +2 +319+22+23 【算式中的数都最接近20】20 +20 +20=3×20-1+2+3=64如何预习?为了保护孩子课前的好奇心和学习兴趣,以及保证课堂效果,家长在给孩子预习的时候,一定要把握好度。

预习,切忌给孩子讲解书本上的例题和知识点,因为孩子容易先入为主,如果家长选取的方式方法不当,那么孩子很难转换思路了;另外,家长给孩子讲过例题后,孩子可能会觉得自己已经学会了,上课的时候就不愿意认真听了。

一年级速算与巧算(讲义教案+测试)

一年级速算与巧算(讲义教案+测试)

速算与巧算之初步知识本源我们一起的目标:1.提高孩子的数字敏感度2.提高孩子5倍的计算速度和计算能力●解题方法:1.凑整法:把两个数加起来可以凑成整十、整百、整千、整万…,使得计算简便。

2.分组法:把有规律的一些数字进行分组,便于计算。

3.用已知求未知:通过记住一些常用的计算结果,来解决一些未知的计算题。

4.最少分析法:先从最少的情况出发去考虑,可以得到一个解,再做适当地调整。

补充知识:● 1.去括号添括号在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”.● 2.带符号搬家在同级运算中,任何数字都可以带着符号移动.典型例题例1、计算:2+4+6+8+10+12+14+16+18+20=________.【练习1.1】5+7+9+11+13+15+17+19+21+23=_______.【练习1.2】2+3+4+5+15+16+17+18+20=________.例2、计算:147-81+25-19+46+75+54-17=________.【练习2.1】145+142+37+118-17+55=________. 【练习2.2】99+132-27+18-113-9=_______. 例3、计算:6996+999+97+97=________.【练习3.1】9+19+199+1999=_____. 【练习3.2】6998+999+995+99+97+9=________. 例4、计算:22-20+18-16+14-12+10-8+6-4+2-0=________.【练习4.1】10-9+8-7+6-5+4-3+2-1=_______. 【练习4.2】19-17+15-13+11-9+7-5+3=______. 例5、算:28-27-26+25+24-23-22+21+20-19-18+17+16=________.【练习5.1】1.13-12-11+10+9-8-7+6+5-4-3+2=________.【练习5.2】29-28+27+26-25+24+23-22+21+20-19+18=__________.例6、计算:10-20+30-40+50-60+70-80+90=________.【练习6.1】1-2+3-4+5-6+7-8+9-10+11=_______.【练习6.2】11-12+13-14+15-16+17-18+19=_______.例7、计算:(2+4+6+....+100)-(1+3+5+....+99)=_______. 【练习7.1】(2+4+6+8+10)-(1+3+5+7+9)=________.【练习7.2】(2+4+6+....+20)-(1+3+5+...+19)=________.例8、计算:5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20=______【练习8.1】1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20=________.【练习8.2】5+6+7+8+9+10=_________.例9、(1)把16只小鸡分别装进5个笼子里,每个笼子里都要有鸡,而且每个笼子里的鸡的只数也不能相同,如何分装?(2)按同样要求,把15只小鸡装进5个笼子能办得到吗?(3)按同样要求,把14只小鸡装进5个笼子能办得到吗?【练习9.1】(单选题)星期天,小明家来了9名客人,小明拿出一包糖,里面有54块。

第2讲巧算与速算

第2讲巧算与速算
(1)灵活利用乘法交换律,在交换时数字和符号同时带 走。
(2)同上利用交换律,将13乘在最后。
(3)一个数连续除以几个数就等于这个数除以这几个数 的积,用100000除以32、125和25的积。 (4)可以将2600和25同时乘以4,利用“商不变”的性 质进行巧算。
解:(1)241×345÷678÷345×678÷241 =(241÷241)×(345÷345)×(678÷678) =1×1×1 =1
(2)(13×4×5×6)÷(4×5×6) =13×4×5×6÷4÷5÷6 =13×(4÷4)×5÷5×(6÷6) =13
(3)100000÷32÷125÷25 =100000÷(32×125×25) =1
(4)2600÷25 =2600×4÷(25×4) =104
【例2】用简便方法计算。 (1)6666×6666 (2)999×222+333×334 (3)999×999+1999
第2讲 巧算与速算(二)
凑整法;分组求和
乘法分配律:a×(b+c)=a×b+a×c或a×(bc)=a×b-a×c 乘法分配律逆运算:a×b+a×c=a×(b+c)或 a×b-a×c=a×(b-c)
课前测试
1. 187+63+37-87 2. 93+90+89+87+93+95+88+91
3. 163×175-163×34-163×41 4. 8888×125 5. 6544+8953-4544-5953 6. 995+994+993+…+3+2+1-2-3-4-…-993-994
1. 456÷123×798÷456÷798×123 2. (12×5×7×13×7)÷(7×7×13) 3. 45000÷8÷125 4. 1037000÷125 5. 1976÷19 6. 9999×2222+3333×3334 7. 28×36+48×54 8. 19999+9999×9999

常用的巧算和速算方法

常用的巧算和速算方法

巧算和速算方法,包括:九九乘法口诀:通过记忆乘法口诀表格,可以快速算出两个数的积。

平方差公式:对于两个整数 $a$ 和 $b$,可以快速计算 $(a+b)^2$ 和$(a-b)^2$,分别为 $a^2+2ab+b^2$ 和 $a^2-2ab+b^2$。

除法倒数法:通过求出某个数的倒数,然后用这个倒数乘以需要除的数,可以快速计算除法结果。

11乘法口诀:对于两位数相乘,可以通过将这两个数字的和放在中间,例如$24 \times 11$ 可以计算为 $2$ 和 $4+2$ 和 $4$,得到 $264$。

规律判断法:在一些数列中,如果存在规律,可以通过观察规律推算出下一个数字。

四舍五入法:在进行精确计算不必要的时候,可以使用四舍五入法,保留一定的有效数字即可。

近似取整法:在进行大致计算的时候,可以使用近似取整法,将一个数字取整到最接近的整数,例如 $23.6$ 取整到 $24$。

连加连乘法:对于一些需要进行连加或连乘的数列,可以通过提取公因子,将计算过程简化。

小数移位法:在对小数进行计算时,可以通过移位小数点来将小数转换为整数,然后进行整数运算,最后再将小数点移回原位。

分式化简法:在进行分式运算时,可以通过化简分数,将分式化为最简形式,简化运算。

凑整法:将一个数凑整为最近的整数或10的倍数,然后再进行计算,最后再进行减法运算补回凑整时的误差。

差积因式法:在进行乘法或除法时,将数字拆分为其因子的乘积,然后再进行计算。

近似数法:在进行加减运算时,将数近似为离它最近的10、100、1000等倍数,然后再进行计算。

最后,再将结果还原为原数的近似值。

线性加减法:对于两个数 $a$ 和 $b$,如果它们的差为 $k$,那么 $a\pmb$ 就等于 $a\pm k\pm (b-k)$,其中 $k$ 是某个整数,使得 $b-k$ 或$a-k$ 是一个整数。

平方法:在进行乘法时,如果两个数都离平方数的差不远,那么可以利用公式$(a+b)^2=a^2+2ab+b^2$ 来简化计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

速算与巧算(三)
专题简析:
这一周,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。

这些计算从表面上看似乎不能巧算,而如果把已知数适当分解或转化就可以使计算简便。

对于一些较复杂的计算题我们要善于从整体上把握特征,通过对已知数适当的分解和变形,找出数据及算式间的联系,灵活地运用相关的运算定律和性质,从而使复杂的计算过程简化。

例1:计算236×37×27
分析与解答:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。

236×37×27
=236×(37×3×9)
=236×(111×9)
=236×999
=236×(1000-1)
=236000-236
=235764
计算下面各题:
132×37×27 315×77×13 6666×6666
例2:计算333×334+999×222
分析与解答:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。

333×334+999×222
=333×334+333×(3×222)
=333×(334+666)
=333×1000
=333000
计算下面各题:
9999×2222+3333×3334 37×18+27×42 46×28+24×63
例3:计算20012001×2002-20022002×2001
分析与解答:这道题如果直接计算,显得比较麻烦。

根据题中的数的特点,如果把20012001变形为2001×10001,把20022002变形为2002×10001,那么计算起来就非常方便。

20012001×2002-20022002×2001
=2001×10001×2002-2002×10001×2001
=0
计算下面各题:
1,192192×368-368368×192
2,19931993×1994-19941994×1993 3,9990999×3998-59975997×666
例4:不用笔算,请你指出下面哪个得数大。

163×167 164×166 165×165
分析与解答:仔细观察可以发现,第二个算式中的两个因数分别与第一个算式中的两个因数相差1,根据这个特点,可以把题中的数据作适当变形,再利用乘法分配律,然后进行比较就方便了。

163×167 164×166
=163×(166+1)=(163+1)×166
=163×166+163 =163×166+166
所以,163×167<164×166
练习四
1,不用笔算,比较下面每道题中两个积的大小。

(1)242×248与243×247
(2)A=987654321×123456789
B=987654322×123456788
2,计算:8353×363-8354×362
例5:888…88[1993个8]×999…99[1993个9]的积是多少?
分析将999…99[1993个9]变形为“100…0[1993个0]-1”,然后利用乘法分配律来进行简便计算。

888…88[1993个8]×999…99[1993个9]
=888…88[1993个8]×(100…0[1993个0]-1)
=888…88[1993个8]000…0[1993个0]-888…88[1993个8]
=888…88[1993个8]111…1[1992个1]2
练习五
1,666…6[2001个6]999…9[2001个9]的积是多少?
2,999…9[1988个9]×999…9[1988个9]+1999…9[1988个9]的末尾有多少个0?
3,999…9[1992个9]×999…9[1992个9]+1999…9[1992个9]的末尾有多少个0?。

相关文档
最新文档