乘除法中的速算与巧算

合集下载

乘除法的速算与巧算

乘除法的速算与巧算
小 学 奥 数 专 题 讲 座
速算与巧算 (二)
专题简析:
乘、除法的巧算方法主要是利用 乘、除法的运算定律和运算性质以及 积、商的变化规律,通过对算式适当 变形,将其中的数转化成整十、整百、 整千…的数,或者使这道题计算中的 一些数变得易于口算,从而使计算简 便。
一、乘法中的巧算
1.两数的乘积是整十、整百、整千的,要先乘.
如:12×9=120-12=108 12×99=1200-12=1188 12×999=12000-12=11988
习题6 计算(1) 34×9 (2)67×99
例7 一个偶数乘以5,可以除以2添上0。
如:6×5=30 16×5=80 116×5=580。
习题7 计算(1) 34×5 (2)66×5
习题2 计算(1) 16×25 (2) 40×25
3.应用乘法分配律。
例3 计算① 175×34+175×66 ②67×12+67×35+67×52+67 解:①式=175×(34+66) =175×100=17500 ②式=67×(12+35+52+1) = 67×100=6700
(原式中最后一项67可看成 67×1)
解:①13÷9+5÷9=(13+5)÷9=18÷9=2 ②21÷5-6÷5=(21-6)÷5=15÷5=3
③2090÷24-482÷24=(2090-482)÷24=1608÷24=67 ④187÷12-63÷12-52÷12=(187-63-52)÷12 =72÷12=6
习题13① 137÷9+2÷9 ②21÷14-7÷14
② 25×125×8×9×4
2.分解因数,凑整先乘。
例 2计算① 24×25 ② 56×125 ③ 125×5×32×5

(完整)三年级乘除法速算巧算

(完整)三年级乘除法速算巧算

一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=1025×4=100125×8=1000例1计算①123×4×25②125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。

例2计算①24×25②56×125③125×5×32×5解:①式=6×(4×25)=6×100=600②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。

例3计算①175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4计算①123×101②123×99解:①式=123×(100+1)=123×100+123=12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。

四年级乘法除法速算巧算(最新整理)

四年级乘法除法速算巧算(最新整理)

第2讲:乘除法巧算速算本讲,我们来学习一些比较复杂的用凑整法和分解法等方法进行的乘除的巧算。

这些计算从表面上看似乎不能巧算,而如果把已知数适当分解或转化就可以使计算简便。

对于一些较复杂的计算题我们要善于从整体上把握特征,通过对已知数适当的分解和变形,找出数据及算式间的联系,灵活地运用相关的运算定律和性质,从而使复杂的计算过程简化。

实际进行乘法、除法以及乘除法混合运算时,可利用以下性质进行巧算:①乘法交换律:A×B=B×A②乘法结合律:A×B×C=A×(B×C)③乘法分配律:(A+B)×C=A×C+B×C由此可以推出:A×B+A×C=A×(B+C)(A-B) ×C =A×C-B×C④除法的性质:A÷B÷C=A÷C÷B=A÷(B×C)利用乘法、除法的这些性质,先凑整得10、100、1000……会使计算更简便。

例1:计算236×37×27分析:在乘除法的计算过程中,除了常常要将因数和除数“凑整”,有时为了便于口算,还要将一些算式凑成特殊的数。

例如,可以将27变为“3×9”,将37乘3得111,这是一个特殊的数,这样就便于计算了。

解:原式=236×(37×3×9)=236×(111×9) =236×999=236×(1000-1) =236000-236 =235764随堂小练:计算下面各题:(1)132×37×27 (2)315×77×13例2:计算333×334+999×222分析:表面上,这道题不能用乘除法的运算定律、性质进行简便计算,但只要对数据作适当变形即可简算。

(完整版)整数乘除法速算巧算教师版

(完整版)整数乘除法速算巧算教师版

本节课主要学习乘、除法的速算与巧算.要求学生理解乘、除法的意义及其关系,能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质,并能合理利用,解决相关问题.一、乘法凑整思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。

例如:425100⨯=,81251000⨯=,520100⨯=123456799111111111⨯= (去8数,重点记忆) 711131001⨯⨯=(三个常用质数的乘积,重点记忆) 理论依据:乘法交换率:a×b=b×a 乘法结合率:(a×b) ×c=a×(b×c) 乘法分配率:(a+b) ×c=a×c+b×c 积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即: ()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家). 例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即 ()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷ 上面的三个性质都可以推广到多个数的情形.二、乘除法巧算与速算(1)凑整:2×5;4×25;8×125……;知识点拨教案目标整数乘除法速算与巧算(2)构造整数:99999......9101k =-k 个;(3)乘法分配律:()a b c a b a c ⨯+=⨯+⨯; (4)提取公因数:()a b a c a b c ⨯+⨯=⨯+; 注意:除法算式中公因数只能用为除数。

三年级思维拓展- 速算与巧算(二)

三年级思维拓展- 速算与巧算(二)

速算与巧算(二)知识要点上一章我们学习了加减法的运算技巧,本章我们将学习乘除法的巧算方法。

下面,我们介绍乘法的一些运算定律,它们是乘法巧算的理论依据,并给出一些巧算方法。

一、乘法运算定律1.乘法交换律:两个数相乘,交换因数的位置,积不变。

即:a×b=b×a。

2.乘法结合律:三个数相乘,可以先把前两个数相乘,再与后一个数相乘,或者先把后两个数相乘,再与第一个数相乘,积不变。

即:(a×b)×c=a×(b×c)。

3.乘法分配律:两个数的和与一个数相乘,可以用这两个数分别与这个数相乘,再把所得的积相加。

即a×(b+c) =a×b+a×c变式:a×(b-c) =a×b-a×ca×b+a×c = a×(b+c)a×b-a×c = a×(b-c)二、乘除混合运算中的巧算技巧1. 带着符号搬家:在乘除混合运算中,运算的次序可以交换,运算的结果不会改变。

但必须在交换位置时,连同前面的运算符号一起“搬家”。

2. 去括号:乘除混合运算中,如果括号前面是“×”号,去掉括号的时候不改变括号里面的符号;如果括号前面是“÷”号,去掉括号的时候要改变括号里面的符号:即“×”变“÷”,“÷”变“×”。

3. 添括号:乘除混合运算中,可通过添加括号来改变运算顺序,添加括号时,如果括号前面是“×”号,不改变括号里面的符号;如果括号前面是“÷”号,要改变括号里面的符号:即“×”变“÷”,“÷”变“×”。

三、除法中的特殊的性质1. 商不变性质:除法算式中,被除数和除数同时扩大或缩小相同的倍数,商不变。

即:a÷b=(a×n)÷(a×n) ,a÷b=(a÷n)÷(a÷n) (n≠0)2. 运用除法的性质进行巧算:(a±b)÷c=a÷c±b÷c四、乘法中的好朋友同学们应该记住一些特殊的乘积,他们的结果为整十、整百……,我们称这些数为乘法中的好朋友:2×5=10 4×25=1008×125=1000 16×625=10000精选例题☝【例1】:请用简便方法计算下列各题。

乘除法中的速算与巧算

乘除法中的速算与巧算

乘除法中的速算与巧算知识储备整数乘除法的速算与巧算,一条最基本的原则就是“凑整”。

要达到“凑整”的目的,就要将一些数分解、变形,再运用乘法的交换律、结合律、分配律以及四则运算中的一些规则,把某些数组合到一起,使复杂的计算过程简便化。

1、乘法的运算定律乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc2、除法的运算性质(1)a÷b=(a×c)÷(b×c) (c≠0)(2)a÷b=(a÷c)÷(b÷c) (c≠0)(3)a÷b÷c=a÷(b×c)(4)a÷(b÷c)=a÷b×c3、乘除分配性质(1)(a+b)×c=a×c+b×c(2)(a-b)×c=a×c-b×c(3)(a+b)÷c=a÷c+b÷c(4)(a-b)÷c=a÷c-b÷c注意:除数不能为零。

4、两数之和乘以这两数之差的积等于这两个数的平方差。

(a+b)×(a-b)=a2-b25、乘法凑整法:这是利用特殊数的乘积特性进行速算,如5×2=10,25×4=100,125×8=1000,625×8=5000,625×16=10000等等。

大家要记住这些结果。

思维引导例1、计算:(1)999+999×999 (2)1111×9999(3)125×25×32 (4)576×422+576+577×576跟踪练习:计算:(1)9999+9999×9999 (2)140×299(3)808×125 (4)461+5×4610+461×49例2、计算:34×172-17×71×2-34跟踪练习:计算:42×68+61×2×34-3×68例3、用简便方法计算:8700÷25÷4跟踪练习:9600÷25÷4例4、用简便方法计算:625÷25跟踪练习:42800÷25例5、简算:29×31跟踪练习:简算:68×72例6、计算:11111×11111跟踪练习:计算:22222×22222例7、计算:63×275÷7÷11跟踪练习:计算:123×456÷789÷456×789÷123例8、计算:1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)跟踪练习:计算:15÷(9÷11)÷(11÷34)÷(34÷63)例9、计算:99999×22222+33333×33334跟踪练习:计算:9999×7778+3333×6666例10、计算:98989898×÷÷跟踪练习:计算:199999998×2200220022÷18÷100010001例11、计算:19981999×19991998-19981998×跟踪练习:计算:1997×1999-1996×2000例12、末尾有几个零?跟踪练习:计算:能力对接1、 将相应的序号填入括号中。

小数乘除法速算巧算(学生版)

小数乘除法速算巧算(学生版)

本节课主要学习乘、除法的速算与巧算.要求学生理解乘、除法的意义及其关系,能根据乘、除法之间的关系验算乘除法;并且掌握积的变化规律以及商不变的性质,并能合理利用,解决相关问题.一、乘法凑整 思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。

例如:425100⨯=,81251000⨯=,520100⨯=123456799111111111⨯= (去8数,重点记忆)711131001⨯⨯=(三个常用质数的乘积,重点记忆)理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)二、乘、除法混合运算的性质⑴商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即:()()()()0a b a n b n a m b m m ÷=⨯÷⨯=÷÷÷≠ ,0n ≠⑵在连除时,可以交换除数的位置,商不变.即:a b c a c b ÷÷=÷÷⑶在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家). 例如:a b c a c b b c a ⨯÷=÷⨯=÷⨯⑷在乘、除混合运算中,去掉或添加括号的规则知识点拨教学目标小数乘除法速算巧算去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷ ②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c ÷⨯=÷÷÷÷=÷⨯ 添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()()a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷ ⑸两个数之积除以两个数之积,可以分别相除后再相乘.即()()()()()()a b c d a c b d a d b c ⨯÷⨯=÷⨯÷=÷⨯÷上面的三个性质都可以推广到多个数的情形.一, 乘5、15、25、125【例 1】 计算:2.1257.532⨯⨯【巩固】 计算:0.1250.250.564⨯⨯⨯二,乘9、99、999三,乘11、111、101四,其它乘法五,除法【例 2】 已知1.08 1.2 2.310.8÷÷=÷□,其中□表示的数是 。

常用的巧算和速算方法

常用的巧算和速算方法

小学数学速算与巧算方法例解【转】速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。

速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。

一、“凑整〞先算1.计算:〔1〕24+44+56〔2〕53+36+47解:〔1〕24+44+56=24+〔44+56〕=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.〔2〕53+36+47=53+47+36=〔53+47〕+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:〔1〕96+15〔2〕52+69解:〔1〕96+15=96+〔4+11〕=〔96+4〕+11=100+11=111 这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.〔2〕52+69=〔21+31〕+69=21+〔31+69〕=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:〔1〕63+18+19〔2〕28+28+28解:〔1〕63+18+19=60+2+1+18+19=60+〔2+18〕+〔1+19〕=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.〔2〕28+28+28=〔28+2〕+〔28+2〕+〔28+2〕-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+〞、“-〞号的混合算式中,运算顺序可改变计算:〔1〕45-18+19〔2〕45+18-19解:〔1〕45-18+19=45+19-18=45+〔19-18〕=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.〔2〕45+18-19=45+〔18-19〕=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:〔1〕计算:1+2+3+4+5+6+7+8+9 =5×9 中间数是5=45 共9个数〔2〕计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数〔3〕计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数〔4〕计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数〔5〕计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:〔1〕计算:1+2+3+4+5+6+7+8+9+10=〔1+10〕×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.〔2〕计算:3+5+7+9+11+13+15+17=〔3+17〕×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.〔3〕计算:2+4+6+8+10+12+14+16+18+20=〔2+20〕×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法〔1〕计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3〞,所以再加上“3〞;19按20计算多加了“1〞,所以再减去“1〞,以此类推.〔2〕计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进展巧算. 102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:〔实际上就是把有的加数带有符号搬家〕102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5. 加法中的巧算1.什么叫“补数〞?两个数相加,假设能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数〞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乘除法中的速算与巧算
知识储备
整数乘除法的速算与巧算,一条最基本的原则就是“凑整” 。

要达到“凑整”的目的,
就要将一些数分解、 变形,再运用乘法的交换律、 结合律、分配律以及四则运算中的一些规 则,把某些数组合到一起,使复杂的计算过程简便化。

1、 乘法的运算定律
乘法交换律:a>b=b 冶
乘法结合律:(a >b) >c=a >(b >C)
乘法分配律:(a + b) >C=ac + bc
2、 除法的运算性质
(1) a -b=a >C 说b > c) (c 工 0)
(2) a — b=(a 十 c)十(b 十 c 芳(0)
(3) a — b — c=a —(t ))
(4) a — (b — c)=a ->
3、 乘除分配性质 (1) (a + b ) X c=a X c + b
c (2) (a — b ) X c=a X c — b
X c (3) (a + b ) —c=a —+ b —
c (4) (a — b ) —c=a ——
b —
c 注意: 除数不能为零。

4、 两数之和乘以这两数之差的积等于这两个数的平方差。

2 . 2 (a + b) > (a — b)= a — b
5、 乘法凑整法:这是利用特殊数的乘积特性进行速算, 如5> 2 = 10, 25 X 4 = 100,
125
> 8 = 1000, 625X 8= 5000 , 625X 16= 10000等等。

大家要记住这些结果。

思维引导
例1、计算: (1) 999+ 999X 999 (2) 1111X 9999
(3) 125X 25X 32 (4) 576X 422 + 576 + 577 X 576
跟踪练习:计算:(1) 9999 + 9999 X 9999 (2) 140X 299
(3) 808X 125 (4) 461 + 5 X 4610 + 461 X 49
例 2、计算:34X 172— 17X 71 X 2—
34
跟踪练习:计算:42X 68+ 61 X 2 X 34- 3X 68
例3、用简便方法计算:8700-25十4
跟踪练习:9600 - 25-4
例4、用简便方法计算:625- 25
跟踪练习:42800 - 25
例5、简算:29 X 31
跟踪练习:简算:68 X 72
例6、计算:11111 X 11111
跟踪练习:计算:22222 X 22222
例7、计算:63 X 275 - 7 - 11
跟踪练习:计算:123X 456 - 789 - 456 X 789 - 123
例& 计算:1+( 2- 3)-( 3 - 4)-( 4 - 5)-( 5 - 6)
跟踪练习:计算:15+( 9 + 11) + ( 11 + 34) + ( 34 + 63) 例9、计算:99999 X 22222 + 33333 X 33334
跟踪练习:计算:9999 X 7778+ 3333 X 6666
例10、计算:98989898 X + +
跟踪练习:计算:199999998 X 2200220022 + 18+ 100010001
例 11、计算:19981999 X 19991998 — 19981998 X
跟踪练习:计算:1997 X 1999 — 1996 X 2000
3、 计算。

①7227 - 73 ②97 X 2000— 96 X 2001
③ 9999 X 7+ 1111 X 37
④ 999 X 778+ 333 X 666 4、 计算
① 9- 13+ 13- 9+ 11- 13+ 14-9 + 6- 13
② 156+ 78 X 1983 + 22 X 1985
③ 999 X 99 X 9
④ 11X 11 X 11— 11 X 11 — 10
5、 计算
① 245 + 432 — 4X 8+ 330- 6
② (1999 X 99+ 2000 X 100+ 1999 + 2000— 1900)- 4000
例12、
99…9X 99・・9+ 199^9 末尾有几个零? 跟踪练习:计算:
66...6X 66 (67)
1、 将相应的序号填入括号中。

①45 X 26 = 26 X 45
③ 14 X 8X 5= 8X ( 14X 5) 运
用了乘法交换律的算式是( 运用
了乘法结合律的算式是( 运用了
乘法分配律的算式是(
2、 用简便方法计算。

①十 125-32- 25 ③ 347 X 69+ 653 X 31 + 306 X 能力对接
②25X 7 X 4= 25X 4X 7 ④20 X 7 + 5X 7=( 20+ 5)X 7 ) ) ) ②3456X 998
④ 125 X 25X 3232 X 99
1992 个 9
1992 个 9 1992 个
9
③199772 X 199911 —199771 X 199912
6、巧算
①X
②28X 29X 30—28X 29X 5—25X 28X 19
③2002X 20032003—20022002X2003
7、计算:(1 + 23+ 34)X( 23 + 34 + 65) — ( 1 + 23+ 34 + 65)X( 23+ 34)
8、不要算出结果,比较下面两个乘积的大小。

A= 987654321 X123456789 B=987654322X 123456788
9、计算:111111 X 999999 + 999999 X 777777
10、计算:19961997 X 19971996 —19961996 X
11、计算:123456789 X 987654321 —123456788 X 987654322。

相关文档
最新文档