电压型PWM逆变器技术资料
三相电压型PWM逆变器的状态空间模型及仿真

中图分 类号 : M4 T 6
宋显锦 韩如成 潘 峰
( 原科 技 大 学 电子 信 息工 程 学院 ,山 西 太 原 0 02 ) 太 3 04
摘 要 : 关模 型 的物理 概 念明确 ,在 其基 础上 分析 了三相 电压 型逆 变器的每 相桥 臂 开 关模 型 ,进 而建 立 开
了变换 器带 阻性 负载 时 的模 型 ,然后 用派 克 变换 对 其进 行 线性 变换 ,从 而得 到 了开 关在 通 态 时的 线性模
用于 负 载 比较平 稳 的运 行 方 式 。为 了让 这 种变 换 器 工 作 在相 应 的状态 ,需 要 对变 换 器 进 行 适 当地 控 制 ,所 以很有 必 要对 其进 行 动态 建 模 。但 是 电
力 电子 系 统 建 模 有 如 下 困难 :( ) 1 电力 电子 电路 的 非线 性 ,其表 现 为 :① 电力 电子 器 件 开 关 非 线 性 ; ② 电力 电子 系 统 其 他 元 件 的 非 线性 。( ) 2 电
文献标 识码 : A
文章 编号 :292 1(0 0 -0 60 0 1.7 32 1)40 1-5 1
0 引言
三 相 电压 型 逆 变器 在 实 际工 作 中应 用 广 泛 。
电压 型逆 变 器 的直 流 电源 经过 大 电容 的滤 波 ,故
压 能力 强 ,频率 可 向上 、 向下 调 节 ,效 率 高 ,适
Ab t a t s r c :Theph i a o c p f s th mo li l a , s d o ysc lc n e to wic de sc e r ba e n whih, e p s —e de ft r e p s c on — ha e lg mo lo h e — ha e v tg o c ola e s ur e PW M n  ̄e sa l e i ve ri nayz d.Furhe ,a t r e ph s ola e s u c t r h e — a e v t g o r e PW M n re o lwih i ve t rm de t r ssi e l a sb l. e itv o d i ui The Pa k ta s o ma i n i p le o t s mo lf ro ani i a ha e n hu t r r n f r to sa p id t hi de o bti ng l ne rc ng sa d t s a ln a de sa h e e . a lb i e nt i i e rmo l c i v d M ta sus d i smulto n l i. i he ai n a ayss
三相交流电压型PWM变频电源及控制方法

特点?
43-17同步调制和异步调制方式
(3)同步调制和异步调制方式:
根据载波频率与调制 波频率的关系, 调制方法又分为:
fsw / Hz
载波比k =fsw/fout
• 同步调制:载波比k为
3 的倍数, 能保证逆变器 输出波形的正、负半波
fout / Hz
对称,也能保证三相平 衡。但低速时,脉冲间隔
▪ 交流电机:
▪ 异步机: 绕线式,鼠笼式 ▪ 同步机: 它激式,自激式,永磁式
43-2变频器的分类
交流交流 (交)直交
矩阵式
相控型 电压型
硬开关 电流型
PAM 两电平
PWM 多电平
软开关
图 6.2.1 变频器的类型
三角波 PWM
空间电压矢量法 其他
重点:电压型, 两电平, PWM, 空间电压矢量法
uA
B : e j120o
F1 uB
uC
C : e j120o O
A : e j0
IM
Fg (t) 2 / 3(FA FB FC )
图 6.2.10 三 相 理 想 电 源 和 空 间 磁 动 势 表 示
2 / 3(
f Ae j0o
f e j120o B
fC e j120o )
空间位置
FA FB
uUN'
Ud
②
2
O
Ud 2
uVN'
Ud
③
2
O
Ud 2
uWN'
Ud
④
2
O
uA0 uB0 uC 0
ura (k) 与 该 周 期 内 矩 形 波 uAO (k ) 的平均值相等。
pwm逆变器工作原理

pwm逆变器工作原理
PWM逆变器是一种将直流电源转换为交流电源的电子器件。
它的基本工作原理是通过一系列的开关操作,将直流电源转换为一系列的脉冲信号,然后再将这个脉冲信号转换成交流信号。
在PWM逆变器中,通常会使用一组开关器件,如晶体管或IGBT,来控制直流电源的通断。
这些开关器件会在一定的频率范围内开关,从而产生一个类似于正弦波的交流信号。
这个交流信号可以用来驱动电机、照明灯具、加热器等交流负载。
PWM逆变器的控制方式通常采用脉宽调制(PWM)技术。
这种技术通过控制开关器件的开关时间,来调节输出电压的频率和幅值。
通过调整PWM信号的占空比,可以控制输出电压的大小和频率,从而实现负载的控制和调节。
在PWM逆变器中,通常会使用高频变压器来将PWM信号转换成交流信号。
这个变压器通常具有多个线圈,可以将PWM信号转换成多个不同电压和频率的交流信号。
这些交流信号可以进一步处理和调节,以满足负载的需求。
总之,PWM逆变器的工作原理是通过一系列的开关操作,将直流电源转换成交流信号,并通过控制PWM信号的占空比来调节输出电压的大小和频率,以满足负载的需求。
pwm逆变电路原理

pwm逆变电路原理
PWM逆变电路是一种经典的功率电子变换电路,用于将直流
电源转换为可控的交流电源。
其原理基于脉宽调制(Pulse Width Modulation)技术,通过控制开关器件的导通时间与断
开时间的比例,可以实现对输出电压的调节。
PWM逆变电路的核心部分是一个全桥逆变器,由4个可控开
关器件组成。
通常,这些开关器件是MOSFET或IGBT,用于控制电流的通断。
在正半周中,两个对角的开关器件同时导通,使得直流电源的正负极与交流负载的两个端点相连接;而在负半周中,另外两个对角开关器件引导电流,实现相反的连接。
通过频繁切换开关状态,可以在负载中产生高频的脉冲信号。
PWM逆变电路的输出电压由导通时间与断开时间的比例决定。
当导通时间较长时,输出电压会接近正电压;反之,断开时间长,则输出电压近似为负电压。
通过调节导通与断开时间的比例,可以实现对输出电压幅值的控制。
此外,通过改变开关频率,还可以调节输出电压的频率。
为了实现精确的输出电压调节,PWM逆变电路通常配备一个
控制电路。
该控制电路可以监测输出电压,并与参考电压进行比较,以生成适当的控制信号。
控制信号通过适当驱动开关器件的导通与断开,从而实现输出电压的稳定调节。
总之,PWM逆变电路利用脉宽调制技术和全桥逆变器构成,
通过控制开关器件的导通与断开时间,实现对直流电源转换为可控的交流电源,并通过控制电路实现对输出电压的精确调节。
pwm逆变器工作原理

pwm逆变器工作原理
PWM逆变器是一种电子装置,可以将直流电能转换为交流电能。
它的工作原理是通过不断调节PWM脉宽的方式,将直流电源产生的电压转化为与输入电压频率和幅值相匹配的交流电压。
PWM逆变器一般由交流输出滤波器、PWM控制器和功率开关组成。
首先,直流电源经过稳压电路,提供稳定的电压给PWM控制器。
PWM控制器根据输入的电压和频率信号,控制功率开关的开关时间,生成PWM脉冲信号。
功率开关根据PWM脉冲信号的控制,周期性地开关,将直流电源的电能转换为脉冲形式的交流电能。
最后,交流输出滤波器将脉冲形式的交流电平滑为平稳的交流电信号。
PWM逆变器工作的关键在于PWM控制器的脉冲宽度调节。
当输出电压需要增大时,PWM脉冲的宽度会增大,增加了功率开关导通的时间,从而提高了电压的平均值。
反之,当输出电压需要减小时,PWM脉冲的宽度会缩短,减小了功率开关导通的时间,从而降低了电压的平均值。
通过这种不断调节PWM脉冲宽度的方式,PWM逆变器可以实现对输出交流电压频率和幅值的精确控制。
同时,由于PWM控制器可以高效地控制功率开关的导通与断开,因此PWM逆变器具有高效率、低失真和高可控性等优点,广泛应用于电力转换和调节等领域。
电压空间矢量PWM(SVPWM)控制技术

高压直流输电(HVDC)
适用于高压直流输电系统的电压调节 和电流控制。
电机控制
用于无刷直流电机(BLDC)、永磁 同步电机(PMSM)等电机的控制。
不间断电源(UPS)
用于不间断电源系统的电压调节和能 量转换。
智能电网
用于智能电网中的分布式电源接入和 能量调度。
电压空间矢量PWM(SVPWM)的特点
高电压输出
高效节能
易于数字化实现
降低谐波干扰
能够实现高电压的输出, 适用于高压直流输电
(HVDC)等应用场景。
通过优化PWM脉冲宽度 和角度,实现更高的电 压输出和更低的损耗。
基于数字信号处理(DSP)等 数字技术,实现SVPWM算法
的快速计算和控制。
通过优化PWM脉冲的形 状和角度,降低对电网
电磁干扰
SVPWM控制技术产生的 电磁干扰较小,对周围环 境的影响较小。
04
电压空间矢量 PWM(SVPWM)控制优 化策略
电压空间矢量分配优化
考虑电机参数
根据电机的具体参数,如电感、 电阻等,优化电压空间矢量的分 配,以提高控制精度和响应速度。
降低谐波影响
通过优化电压空间矢量的分配,降 低PWM控制过程中产生的谐波, 减小对电机和整个系统的负面影响。
电压空间矢量 PWM(SVPWM) 控制技术
目录
• 电压空间矢量PWM(SVPWM)技 术概述
• 电压空间矢量PWM(SVPWM)控 制算法
• 电压空间矢量PWM(SVPWM)控 制性能分析
目录
• 电压空间矢量PWM(SVPWM)控 制优化策略
• 电压空间矢量PWM(SVPWM)控 制技术发展趋势
电流输出精度
三相电压源型逆变器PWM仿真

目录1概述 (1)1.1 逆变电路简介 (1)1.2 PWM简介 (1)2 三相电压源逆变器工作原理 (3)3 Matlab仿真建模与分析 (5)3.1三相SPWM波的产生 (5)3.2 SPWM逆变器仿真 (6)3.3 滤波器粗略分析 (10)三相电压源型SPWM逆变器的设计1概述1.1 逆变电路简介与整流相对应,把直流电变成交流电称为逆变。
当交流侧接在电网上,即交流侧接有电源时,称为有源逆变;当交流侧直接和负载连接时,称为无源逆变。
又逆变电路根据直流侧电源性质不同可分为两种:直流侧是电压源的称为电压型逆变电路;直流侧是电流源的称为电流型逆变电路;它们也分别被称为电压源型逆变电路和电流源型逆变电路。
其中,电压源型逆变电路有以下主要特点:直流侧为电压源,或并联有大电容,相当于电压源,直流侧电压基本无脉动,直流回路呈现低阻抗;由于直流电压源的钳位作用,交流侧输出电压波形为矩形波,并且与负载阻抗角无关。
而交流侧输出电流波形和相位因负载阻抗情况的不同而不同;当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用,为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
1.2 PWM简介PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。
PWM控制技术的重要理论基础是面积等效原理,即:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
下面分析如何用一系列等幅不等宽的脉冲来代替一个正弦半波。
把正弦半波分成N等分,就可以把正弦半波看成由N个彼此相连的脉冲序列所组成的波形。
如果把这些脉冲序列用相同数量的等幅不等宽的矩形脉冲代替,使矩形脉冲的中点和相应正弦波部分的中点重合,且使矩形脉冲和相应的正弦波部分面积(冲量)相等,就可得到图1-1所示的脉冲序列,这就是PWM波形。
第章PWM逆变器控制技术

PWM逆变器控制技术简介PWM逆变器是一种基于现代电力电子技术的调制器,它用直流电源来驱动交流电机等交流负载。
PWM逆变器的基本原理是采用可逆变器将直流电能转换成交流电能,并通过强制控制逆变电压和电流波形实现输出交流电能的调节。
PWM逆变器控制技术是实现PWM逆变器中电压和电流波形控制的关键。
其主要包括基于模拟电路的控制技术和基于数字信号处理器(DSP)的控制技术两种。
基于模拟电路的控制技术基于模拟电路的PWM逆变器控制技术主要是设计PWM逆变器模块的控制电路。
该模块包括直流母线电压检测模块、三相桥式逆变器驱动模块、输出滤波器模块和逆变保护模块等。
其中,直流母线电压检测模块用来检测逆变器所需的直流母线电压;三相桥式逆变器驱动模块负责将直流母线电压转换成交流电压;输出滤波器模块用于对交流电压进行滤波处理,降低输出电压的噪声和杂波;逆变保护模块用于对逆变器进行过流、过温、过压、欠压等的保护。
基于模拟电路的PWM逆变器控制技术具有控制精度高、反应速度快等优点,但是电路复杂度高,稳定性较差。
基于数字信号处理器的控制技术基于数字信号处理器的PWM逆变器控制技术主要是基于现代信息技术和数字信号处理器的技术来实现PWM逆变器的电压和电流波形控制。
它可以通过控制DSP硬件平台或通过软件仿真实现。
该技术的优点是:可通过数字控制实现高度准确的波形控制和滤波功能,提高了逆变器的控制精度;DSP系统具有灵活性,可以实现各种传感器和控制策略的接口控制;DSP系统可通过程序算法进行修正,提高了系统稳定性和抗干扰性。
基于数字信号处理器的PWM逆变器控制技术已经得到广泛应用,尤其是在高档电力电子产品中,如交流电机驱动器、UPS电源、变频空调等。
PWM逆变器控制技术的应用PWM逆变器控制技术已广泛应用于各种电力电子产品中。
以下是其主要应用领域:交流电机驱动器交流电机驱动器是目前应用最广泛的PWM逆变器控制技术之一。
它是通过PWM逆变器实现对电机控制电压、频率等参数的调节,可以实现电机转速的可控,使得电动机具有更好的动态响应和启动能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相并网逆变器交流侧的方程为
逆变部分一般考虑 SPWM 调制的三相电路,三相桥式电路的控制脉冲时序分布和单相的相似,调制信号为三相正弦波 uga、 和 ugco 分析得 ugb 知逆变器输出线电压波形是一个单极性 SPWM 波形,其输出幅值为 Uio 假想直流电源中点 O′,则可推出三相 SPWM 逆变电路相电压基波表达式为
2.2 仿真及试验波形 运用 Matlab 仿真,输入 Ui=311V,电网电压 UN=220V,电感值 LN=6mH。 采用幅值控制的 PI 闭环调节,图 5 是给定电流从 5A 到 20A 时电流和电 网电压的仿真波形,电流乘 10 处理。
图 6 所示是本系统在开环条件下电流和电网电压的试验波形,可以看到电流波形正弦,相位和电网电压接近(为了,便于观看,将电流信号反 相),输出电流大小为 5 A。图 7 为电感两侧电压实验波形。图 8(a)所示是逆变器工作时输出倍频 PWM 波形,8(b路的模型 电压型三相桥式逆变电路的主电路如图 2 所示。由图 2 可以看出三相桥式电路是单相半桥电路的扩展,在拓扑结构上是完全相似的,其中各 相输入电感相等,电网各相电压均为正弦波。
三相并网逆变电路的等效电路模型如图 3(a)所示,0 点为电网中点,0′为直流侧滤波电容中点,Rs 为电感电阻,其他同单相电路。图 3(b)为 a 相等效电路的相量图。
0 引言 随着我国经济的迅速发展,能源问题在当今社会中受到越来越多的关注。 在减缓能源供求矛盾方面,能量回馈系统可以发挥重要作用,主要运 用在功率电子负载、分布式发电和电机再生制动等场合。而电力电子的逆变技术是能量回馈系统的核心部分。
数字化是控制技术发展的趋势,在具体实现能量回馈系统的过程中,也应充分运用数字式控制方式。 在电压型逆变系统中,将数字信号处理器 (DSP)作为控制中心,实现外围电路工作及其控制。
图 9 为 DSP 控制输出脉冲信号,上下桥臂有 5 μ 的死区(低电平有效)。
l 电压型并网逆变器的系统分析 l.l 电压型单相并网逆变器的理想模型 作为并网用的逆变器,一般的理想状态为: 1)网侧功率因数 λ=1,即网侧电流 iN 无畸变且与网侧电压 uN 相位一致,这样回馈至电网的只有有功功率。 2)能够实现回馈电流 iN 的快速调节; 3)具有能量双向流动的能力,除了向电网回馈能量外,在一定条件下,电路还可处于整流模式,从电网吸收能量能够实现上述理想的逆变电路 状态,并认为电路内部没有损耗,则得到理想模型如图 1(a)所示。
第 16867 篇:电压型 PWM 并网逆变器
发布时间:2006 年 8 月 17 日 点击次数:428 来源:电源技术应用 作者:浙江大学 夏小荣 陈辉明 蒋大鹏 详细内容:
摘 要:能源回馈系统对减缓我国能源供求矛盾具有重要的作用,而逆变技术在能量回馈系统中占有重要地位,主要介绍了一种电压型并网逆变 器。首先对电压型的逆变器进行了系统分析,给出了单相电压型和三相电压型两种并网逆变器的理想电路模型。在此基础上,设计了一个基于数 字信号处理器(DSP)TMS320F240 控制的数字化电压型单相并网逆变器,搭建了外围硬件电路,并运用 C 语言进行运算处理,给出原理仿真结果的同 时也给出了它的实验结果,说明这种逆变器的运行效率高,可靠性好,应用也很方便。 关键词:能量回馈;并网逆变器;DSP 关键词
2 电压型 PWM 并网逆变器试验 在前述理论分析的基础上,研制了一台基于数字式 DSP 控制的电压型单相全桥 PWM 并网逆变器。
2.1 主电路的结构及电路参数的选择 数字式电压型能量回馈系统的逆变主电路结构如图 4 所示。 主电路的开关器件选用 IGBT—IPM 模块 PM75CVAl20,交流侧为工频单相 220V,Ui 为直流输入电压,须大于 310 V;Cd1 和 Cd2 为直流滤波电容,LN、为交流侧滤波电感;A1 为电流霍尔元件,V1.为电压检测传感器;K1 为直流接触 器,K2 为交流接触器;Rc 为直流侧缓冲电阻。
对于逆变桥的输入电流 id,由单相电路分析的结果,每个桥臂从直流侧吸取的电流存在二次谐波,三相电路中每个半桥单元从直流侧吸收的 电流为
将三相电流叠加后即可得到直流侧电流 id 的表达式为
由式(4)可知,当电路在三相对称条件下,逆变器的输入电流为恒定的直流,而不存在二次电流分量,电路的直流侧输入不需要二次谐波吸收 电路。 三相逆变器的输人瞬时功率也随之恒定,而单相逆变器的输入电流存在二次电流分量,输入功率也不恒定,如图 l 所示。 这点是三相逆变器 不同于单相逆变器之处,因此,单相逆变器的直流侧滤波电容需要滤除高频和低频的纹波,而三相逆变器的直流侧滤波电容仅需要滤除高频纹波 即可,其容量可以比单相的小。
直流输入电压 Ui 经滤波电容 Cdl 和 Cd2 稳压滤波后输入逆变器,单相全桥逆变器输出经滤波储能电感直接并人电网。 电阻 Rc 是电路启动时 缓冲滤波电容充电用,在充电完成后,接触器 K1 闭合,短接电阻 Rco。整个系统由 DSP 芯片 TMS320F240 控制,对同步电网信号、输入电压(V1)和 输出电流(A1)检测,根据给定触发控制脉冲,并通过接触器 K2 决定并网的时刻。