地图上的数学问题——四色猜想
四色问题又称四色猜想,是世界近代三大数学难题之一

四色问题又称四色猜想,是世界近代三大数学难题之一。
四色问题的内容是:“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。
”用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字。
”(右图)这里所指的相邻区域,是指有一整段边界是公共的。
如果两个区域只相遇于一点或有限多点,就不叫相邻的。
因为用相同的颜色给它们着色不会引起混淆。
四色猜想的提出来自英国。
1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。
”这个现象能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。
兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家汉密尔顿爵士请教。
汉密尔顿接到摩尔根的信后,对四色问题进行论证。
但直到1865年汉密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。
世界上许多一流的数学家都纷纷参加了四色猜想的大会战。
1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图)。
如为正规地图,否则为非正规地图(右图)。
一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。
地图的“四色猜想”

地图的“四色猜想”任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。
”用数学语言表示,即“将平面任意地细分为不相重迭的区域,每一个区域总可以用1,2,3,4这四个数字之一来标记,而不会使相邻的两个区域得到相同的数字(右图)这里所指的相邻区域,是指有一整段边界是公共的。
如果两个区域只相遇于一点或有限多点,就不叫相邻的。
因为用相同的颜色给它们着色不会引起混淆。
四色猜想的提出来自英国。
1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。
”这个现象能不能从数学上加以严格证明呢他和在大学读书的弟弟格里斯决心试一试。
兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家汉密尔顿爵士请教。
汉密尔顿接到摩尔根的信后,对四色问题进行论证。
但直到1865年汉密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。
世界上许多一流的数学家都纷纷参加了四色猜想的大会战。
1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
肯普的证明是这样的:首先指出如果没有一个国家包围其他国家,或没有三个以上的国家相遇于一点,这种地图就说是“正规的”(左图)。
如为正规地图,否则为非正规地图(右图)。
一张地图往往是由正规地图和非正规地图联系在一起,但非正规地图所需颜色种数一般不超过正规地图所需的颜色,如果有一张需要五种颜色的地图,那就是指它的正规地图是五色的,要证明四色猜想成立,只要证明不存在一张正规五色地图就足够了。
四色猜想四色猜想四色定理

四色猜想-四色猜想四色定理地图四色定理(Four color theorem)最先是由一位叫古德里Francis Guthrie 的英国大学生提出来的。
四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。
”用数学语言表示即“将平面任意地细分为不相重叠的区域每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。
”这里所指的相邻区域是指有一整段边界是公共的。
如果两个区域只相遇于一点或有限多点就不叫相邻的。
因为用相同的颜色给它们着色不会引起混淆。
四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。
”也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行发展历史不过情况也不是过分悲观。
数学家希奇早在1936年就认为讨论的情况是有限的不过非常之大大到可能有10000种。
对于巨大而有限的数,最好由谁去对付?今天的人都明白:计算机。
从1950年起希奇就与其学生丢莱研究怎样用计算机去验证各种类型的图形。
这时计算机才刚刚发明。
两人的思想可谓十分超前。
1972年起黑肯与阿佩尔开始对希奇的方法作重要改进。
到1976年他们认为问题已经压缩到可以用计算机证明的地步了。
于是从1月份起他们就在伊利诺伊大学的IBM360机上分1482种情况检查历时1200个小时,作了100亿个判断最终证明了四色定理。
在当地的信封上盖“Four colorssutfice”四色,足够了的邮戳就是他们想到的一种传播这一惊人消息的别致的方法。
人类破天荒运用计算机证明著名数学猜想应该说是十分轰动的。
赞赏者有之,怀疑者也不少,因为真正确性一时不能肯定。
后来也的确有人指出其错误。
1989年,黑肯与阿佩尔发表文章宣称错误已被修改。
1998年托马斯简化了黑肯与阿佩尔的计算程序但仍依赖于计算机。
无论如何四色问题的计算机解决给数学研究带来了许多重要的新思维。
问题影响一个多世纪以来,数学家们为证明这条定理绞尽脑汁,所引进的概念与方法刺激了拓扑学与图论的生长、发展。
地图着色的四色猜想

地图着色的四色猜想
人人都熟悉地图,可并不是人人都知道,绘制一张地图最少要用几种颜色,才能把相邻的国家或不同的区域区分开来。
这个地图着色问题,是一个著名的数学难题,它曾经吸引了好几代优秀的数学家为之奋斗,并且从中获得了一个又一个杰出的成就,为数学的发展增添了光辉。
在地图上区分两个相邻的国家或地区,要用不同的颜色来涂这两个国家或区域。
如上图表示某个国家的省区地图,图中虚线表示各省界。
可见,用两种颜色是区分不开的,三种颜色就够了。
A、B、C三省各用一色,D省和B省用同样的颜色。
又如上图所示的地图,1,2,3,4表示四个国家。
因为这张地图的四个国家中任何两个都有公共边界,所以必须用四种颜色才能把它们区分开。
于是,有的数学家猜想,任何地图着色只需四种颜色就足够了。
正式提出地图着色问题的时间是1852年。
当时伦敦大学的一名学生法朗西斯向他的老师、著名的数学家、伦敦大学数学教授莫根提出了这个问题。
莫根无法解答,求助于其他的数学家,也没能解决。
于是,这个问题一直传下来。
直到1976年9月,《美国数学会通告》宣布了一件需撼全球数学界消息:美国伊利诺斯大学的两位教授阿贝尔和哈根,利用电子计算机证明了地图的四色猜想是正确的! 他们将地图的四色问题化为2000个特殊的图的四色问题,然后在电子计算机上计算了1200个小时,终于证明了四色问题。
四色问题

四色问题
英国人格思里于1852年提出四色问题(four colour problem,亦称四色猜想),即在为一平面或一球面的地图着色时,假定每一个国家在地图上是一个连通域,并且有相邻边界线的两个国家必须用不同的颜色,问是否只要四种颜色就可完成着色。
1878年英国数学家凯莱重新提出这问题,引起人们关注。
次年,英国数学家肯普提出用可约构形证明四色问题,虽然他的证明过程有漏洞,但为该问题的解决指出方向。
1890年英国人希伍德沿着这方向证明了任何地图只用五种颜色着色便够了,取得初步进展。
1913年美国数学家伯克霍夫发现一些新的可约构形。
1968年挪威数学家奥雷等人证明了用四种颜色一定可以把不超过四十个国家的地图着色,推进了四色问题的研究。
70年代初人们努力寻找可约构形中的不可免完备集,因为用它可以通过数学归纳法证明四色问题。
1976年美国数学家哈肯和阿佩尔花了1200多小时的电子计算器工作时间,找到一个由1936个可约构形所组成的不可免完备集,因而在美国数学会通报上宣称证明了四色猜想。
后来他们又将组成不可免完备集的可约构形减至1834个。
四色问题的研究对平面图理论、代数拓扑论、有限射影几何和计算器编码程序设计等理论的发展起了推动作用。
数学经典问题-四色问题

数学经典问题·四色猜想世界近代三大数学难题之一――四色猜想的提出来自英国。
1852年,毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。
”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。
兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。
1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。
哈密尔顿接到摩尔根的信后,对四色问题进行论证。
但直到1865年哈密尔顿逝世为止,问题也没有能够解决。
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。
世界上许多一流的数学家都纷纷参加了四色猜想的大会战。
1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。
11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。
不久,泰勒的证明也被人们否定了。
后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。
于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。
1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。
1950年,有人从22国推进到35国。
1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。
看来这种推进仍然十分缓慢。
四色问题的简介
四色问题的简介
四色问题是一道关于地图着色的问题,即如何用最少的颜色给一个地图的各个区域着色,使相邻的区域颜色不同。
这道问题最初由英国数学家弗朗西斯·戈登(Francis Guthrie)在1852年提出,他被他的朋友挑战,问是否可以将英国地图分成四个不同的颜色,使得相邻的区域不同色。
戈登尝试了很多方案,但是都无法满足这个要求,于是他将这个问题提交给了他的哥哥格雷厄姆·戈登(Graham Guthrie),后者随即将问题传给了他的朋友华尔夫·卡洛·海廷(August Wilhelm Kienzel)。
海廷经过长时间的思考和实验,最终证明了四色问题的正确性,即任何地图都可以只用四种颜色完成着色。
这个问题引起了数学界的广泛关注和研究,直到1976年,美国数学家肯尼斯·阿普尔(Kenneth Appel)和沃夫冈·哈肯(Wolfgang Haken)才用计算机证明了四色问题的正确性。
这个问题的解决不仅推动了计算机算法和图论等领域的发展,也为其他类似的问题提供了思路和方法。
- 1 -。
四色猜想定义的微分解析
四色猜想定义的微分解析
1 什么是四色猜想?
四色猜想是指,任何地图都可以用四种或更少颜色着色,使得相邻区域颜色不同。
这个猜想是由英国人弗朗西斯·伯克(Francis Guthrie)在1852年提出来的。
2 什么是微分解析?
微分解析是一种用微积分方法将函数进行分析的方法。
微分就是对函数进行微小的变化,从而研究函数的性质。
解析就是指用公式和函数进行计算和分析。
3 四色猜想的微分解析
研究“四色猜想”是一个十分复杂的问题,需要用到许多数学工具,其中包括微分解析。
具体来说,解决“四色猜想”问题的方法是在平面上建立一个图形模型,然后对这个模型进行数学分析,最终得出结论。
在模型分析中,微分解析的主要作用是通过微分几何方法,建立各个区域与相邻区域之间的关系,从而进一步推断出各个区域颜色的分布情况。
例如,可以用微分方程模拟着色过程中的颜色变化,然后利用微积分方法计算出各个区域的颜色分布方式。
这样就可以避免色彩混淆,使得每个区域的颜色都可以清晰明了地呈现出来。
除了微分解析外,还要借助其他数学工具,如图论、拓扑等方法,才能完整地解决这个问题。
因此,“四色猜想”一直是数学家们努力
探究的难题,也是一个充满挑战和创新的领域。
4 结论
在数学研究中,微分解析是一个十分重要的工具,尤其是在解决
如“四色猜想”这样的难题中发挥着至关重要的作用。
通过对微积分
方法的应用,可以对函数进行精细的分析,并从中获得有关函数性质
的重要信息。
未来,如果能够进一步发展微分解析技术,也许我们将
有更多机会解决更加复杂、深奥的数学问题。
选修课之四色问题课件
在学校或企业的时间表安排中,为避免同一时间段内的冲突,可以 将时间段视为节点,利用四色定理进行着色,从而合理安排各项活 动。
交通规划
在交通规划中,可以利用四色定理对交通网络进行划分和着色,以便 更有效地组织交通流,降低交通拥堵的风险。
05
课程总结与回顾
课程知识点总结
四色问题的提出与背景
四色学史上的一个著名 难题,其解决过程推动了数学理 论和方法的发展,尤其是图论和
组合数学领域。
实际应用
四色问题的解决方案在地图制作 、电路板设计、时间表安排等方 面有着广泛的应用,提高了这些
领域的效率和优化程度。
计算机科学价值
在证明四色问题的过程中,数学 家们开创了使用计算机辅助证明 数学定理的先河,对计算机科学
• 证明难点:四色问题的证明是数学史上的一个著名难题,难点在于如何找到一 种普遍适用的着色方法,以及如何严格证明该方法的正确性。
• 早期尝试:早期的研究者通过大量的实验和观察,提出了一些猜想和局部证明 ,但均未能给出完整的解决方案。
• 现代证明:借助计算机技术和高级数学理论,Appel和Haken在1976年提出 了一种基于计算机辅助的证明方法,被公认为是四色问题的首个完整证明。但 此方法涉及大量计算和复杂的数学理论,难以被一般人所理解。
相关定理与推论
介绍与四色问题相关的定理和推论, 如五色定理、六色定理等,拓展学生 的视野。
课程学习过程中的回顾与反思
1 2 3
学习方法的探索
回顾在学习过程中尝试的不同方法,如阅读教材 、听讲座、与同学讨论等,分析各种方法的优缺 点。
遇到的挑战与解决策略
反思在学习过程中遇到的挑战,如概念理解困难 、证明过程复杂等,并分享解决这些挑战的策略 。
四色猜想
COLORS SUFFICE),加盖在当时的信件上。
拓展了人们对“证明”的理解
• 由于这是第一次用计算机证明数学定理,所以哈肯
和阿佩尔的工作,不仅是解决了一个难题,而且从
根本上拓展了人们对“证明”的理解,引发了数学
家从数学及哲学方面对“证明”的思考。
•
德•摩根很容易地证明了三种颜色是不够的,至少
要四种颜色。下图就表明三种颜色是不够的。
• 但德· 摩根未能解决这个问题,就又把这个问题转给了其他数
学家,其中包括著名数学家哈密顿。
• 但这个问题当时没有引起数学家的重视。 • 直到1878年,英国数学家凯莱对该问题进行了一番思考后, 认为这不是一个可以轻易解决的问题,并于当年在《伦敦数 学会文集》上发表了一篇《论地图着色》的文章,才引起了
更大的注意。
• 1879年,一位英国律师肯泊在《美国数学杂志》上 发表论文,宣布证明了“四色猜想”。
• 但十一年后,一位叫希伍德的年轻人指出,肯泊的 证明中有严重错误。
• 一个看来简单,且似乎容易说清楚的问题,居然如此困难,
这引起了许多数学家的兴趣,体现了该问题的魅力。 • 实际上,对于地图着色来说,各个地区的形状和大小并不重 要,重要的是它们的相互位置。 • 下图中的三个地图对地图着色来说都是等价的。从数学上看,
Hale Waihona Puke 四色问题的解决• 直到1972年,美国依利诺大学的哈肯和阿佩尔在前
人给出算法的基础上,开始用计算机进行证明。
• 到1976年6月,他们终于获得成功。他们使用了3台
IBM360型超高速电子计算机,耗时1200小时,终于证
明了四色猜想。
• 这是一个惊人之举。当这项成果在1977年发表时, 当地邮局特地制作了纪念邮戳"四色足够"(FOUR
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讲评2:解决问题
1、小蕾家装修地面花了6300元,比计划节约了
10%,就是少花了多少元?
?元
计划:
“1”
10%
实际:
方法1:6300÷(1-10)=7000(元) 7000-6300=700(元)
方法2:6300÷9×1=700(元)
6300元
要关求键少句花中了,多(少)元是,单就位是“求1”(? )的10%。
同学们,下课
停课不停教不停学
地图上的数学问题 ——四色定理
分析讲评
பைடு நூலகம் 数学中的密码
(1)明文“SHUXUE”加密后的密文是什么?
凯撒大帝法加密时对应编码要先加( )?
12
19
数学中的密码
(2)密文“-CBZA,TB”去密后的明文是什么?
讲评1:选择填空
将这些数按照从小到大的顺序排列。 ( )<( )<( )<( )
实际花的钱数
计划花的钱数
讲评2:解决问题
分数问题的关键: 核心→( )是( )的(( ))。
【例】关键句: 实际比计划节约了10%
四色猜想
考考你
截至2019年,世界上共有233个国家和 地区。根据故事,要求相邻的国家涂上 不同的颜色,至少需要( )种颜色?
4
5
大家了解了吗?
布置作业:
(1)一起作业APP; (2)下节课准备直尺,圆规,剪刀,卡纸,胶带。