四色定理
科技馆 四色定理

科技馆四色定理一、四色定理的背景与意义四色定理,又称四色猜想,是图论中一个著名的未解决的问题。
它表述的是:对于平面上的任何一个封闭图形,只需用四种颜色进行着色,就可以保证任意两个相邻的区域都有不同的颜色。
这个问题源于19世纪,引起了无数数学家的兴趣,最终在20世纪70年代由Kenneth Appel和Wolfgang Haken证明。
四色定理的证明不仅解决了图论中的一个重要问题,也推动了数学的发展。
同时,它在计算机科学、工程学、电子工程和其他领域都有着广泛的应用。
二、四色定理的起源与发展四色定理的起源可以追溯到19世纪。
当时,英国的一位年轻地图绘制员Francis Guthrie提出,为什么地图上从未出现过五个或更多颜色的地图。
这引发了他对四色定理的思考。
然而,这个问题在接下来的几十年里一直未能得到解决。
尽管有数学家尝试证明或反驳这个定理,但都没有成功。
直到20世纪70年代,Kenneth Appel 和Wolfgang Haken利用计算机和复杂的数学工具,完成了四色定理的证明。
三、四色定理的证明方法Kenneth Appel和Wolfgang Haken采用了计算机辅助证明的方法,利用了大量的组合数学和图论知识。
他们通过构造一个庞大的表格,记录了所有可能的情况,然后利用计算机对这些情况进行检查,最终证明了四色定理。
四、四色定理在地图绘制中的应用四色定理在地图绘制中有着广泛的应用。
它保证了可以用四种颜色对任意一个封闭的地图进行着色,从而避免了因颜色重复而产生的混淆。
这大大简化了地图绘制的过程,使得地图更加准确和易于理解。
五、四色定理在计算机图形学中的应用在计算机图形学中,四色定理也被广泛应用。
例如,在绘制复杂的图形或模拟自然现象(如气候模型)时,可以利用四色定理进行着色。
此外,在计算机图形学中,四色定理也常被用于检测和纠正几何形状的错误。
六、四色定理在电路板设计中的应用在电路板设计中,四色定理也有着重要的应用。
学校活动课四色定理

网络路由优化
总结词
网络路由优化是四色定理在网络领域的 应用,通过合理规划路由器的颜色配置 ,可以提高网络的性能和稳定性。
VS
详细描述
在网络路由优化中,四色定理的应用可以 帮助设计人员合理规划路由器的颜色配置 ,以确保网络的性能和稳定性。通过将路 由器分为四种颜色,可以有效地减少路由 器的配置复杂性和网络拥堵情况,提高网 络的传输效率和可靠性。这一应用在网络 工程和通信领域具有广泛的应用价值。
介绍四色定理在其他领域的应用,引 导学生探索更多的数学奥秘。
反思与改进
引导学生对实践活动进行反思,提出 改进意见和建议,以便于进一步提高 活动效果。
07 结论与展望
四色定理的重要性和影响
A
简化地图绘制
四色定理证明了给定任何平面地图,只需四种 颜色就可以确保相邻地区不会发生颜色冲突, 从而简化了地图绘制过程。
缩图法的关键在于如何有效地将地图分割成小块,并确保每 块都能用尽量少的颜色完成染色。这需要学生不断尝试和优 化,以找到最佳的分割方案。
反证法
反证法是一种通过假设四色定理不成立,然后推导出矛盾 ,从而证明四色定理的方法。这种方法有助于培养学生的 逆向思维和逻辑推理能力。
反证法的关键在于如何找到合适的矛盾点,并逐步推导出 与假设相矛盾的结论。这需要学生深入理解四色定理的本 质,并能够灵活运用所学知识进行推理。
05 四色定理的应用实例
地图染色问题
总结词
地图染色问题是四色定理最常见的应用实例,通过使用四色定理,可以确保给定地图只需要四种颜色 即可完成染色,避免了颜色过多导致混淆的情况。
详细描述
地图染色问题是一个经典的几何问题,它涉及到如何使用最少的颜色对地图进行染色,使得任意两个 相邻的区域都不同色。四色定理证明了一个平面地图可以使用四种颜色进行染色,无论地图的复杂性 如何。这一理论广泛应用于地图制作、地理信息系统等领域。
820 四色定理

四色定理Four Color Theorem“四色定理”——“一张各国地域连通,并且相邻国家有一段公共边界的平面地图上,可以用四种颜色为地图着色,使得相邻国家着有不同的颜色”它在图论发展史上起到过巨大的推动作用A1852年,佛朗西斯·古思里(Francis Guthrie)在绘制英格兰分郡地图时,发现许多地图都只需用四种颜色染色,就能保证有相邻边界的分区颜色不同他将这个发现告诉了他的弟弟弗雷德里克·古思里弗雷德里克将他哥哥的发现作为一个猜想向老师德·摩根提出德·摩根对此很感兴趣,当天就和爱尔兰数学家哈密尔顿通信,将这个问题向他提出而哈密尔顿则与之相反,对它丝毫不感兴趣,他在三天后的回信中告诉德·摩根,他不会尝试解决这个问题1879年,肯普(Alfred Kempe)宣布证明了四色定理在1890年,希伍德(Heawood)指出了肯普的证明存在漏洞,而且他使用肯普的方法证明了“五色定理”。
直到1976年四色猜想才最终由数学家阿佩尔(Kenneth Appel)和哈肯(Wolfgang Haken)在科克(J. Koch)的帮助下证明他将地图上的无限种可能情况归纳为1936种状态再由电脑逐个检查过程共用了一千多个小时四色定理是第一个主要由电脑证明的理论,但这一证明并不被所有的数学家接受,因为采用的方法不能由人工直接验证在证明四色猜想过程中,研究者还发现了平面哈密尔顿图和面着色之间的一个有趣联系:哈密尔顿回路将平面分成若干个回路内部面和若干个回路外部面使用颜色A和B交替将内部面着色使用颜色C和D交替将外部面着色得到了一个使用4种颜色的面着色一般地讲,每个平面哈密尔顿图都可以使用4种颜色进行面着色E nd。
空间四色定理

空间四色定理全文共四篇示例,供读者参考第一篇示例:空间四色定理是一种关于地图着色的数学定理,它指出任何平面图都可以用四种颜色进行着色,使得相邻的区域颜色不同。
这个定理是对四色定理在三维空间的推广,是由英国数学家哈佛·约瑟夫·萨福德和其学生乔治·法莫斯于1976年首次提出的。
在平面地图着色中,我们可以将地图上的不同区域用不同的颜色进行着色,但是要求相邻的区域颜色不能相同。
四色定理指出,任何一个平面图都可以用四种颜色进行着色,使得相邻的区域不会相同,即使图形非常复杂也是如此。
而空间四色定理则是在平面图的基础上推广到了三维空间,也就是说对于任意的三维几何图形或者复杂的几何体,我们也可以用四种颜色进行着色,使得相邻的部分颜色不同。
这个定理在实际应用中具有非常广泛的意义,可以被应用于地图着色问题、计算机图形学、密码学等领域。
对于空间四色定理的证明是非常复杂和困难的,因为三维空间的几何形状比平面图形更加复杂,其结构也更为多样化。
萨福德和法莫斯在提出这个定理之后,并没有给出详细的证明方法,而是留下了一个给数学家们解决的难题。
直到1982年,美国数学家凯恩·麦克蒂基成功地证明了空间四色定理,他在证明中使用了复杂的数学方法和技巧,包括拓扑学、图论、组合数学等。
这个证明过程非常漫长和复杂,耗费了大量的时间和精力。
空间四色定理的证明对于数学领域的发展具有重要的意义,它不仅解决了一个重要的数学难题,而且对于数学的推理和证明方法也有着深远的影响。
这个定理的提出和证明,为数学家们提供了一个全新的研究方向,也激发了更多的数学思考和探索。
空间四色定理是一个非常重要的数学定理,它指出了在三维空间中对图形着色的规律,为地图着色问题、计算机图形学等领域提供了有力的理论支持。
虽然证明过程非常困难,但是通过数学家们的辛苦努力,最终成功解决了这个难题,为数学领域的发展做出了重要的贡献。
希望这个定理能够继续激发更多人对数学的兴趣和热爱,推动数学领域不断发展和进步。
四色定理算法

四色定理算法四色定理(four color map theorem)是一个著名的数学定理[1],即对任意的(平面上的)地图染色,要求相邻的国家颜色不同,四种颜色即可完成着色。
南非数学家法兰西斯·古德里在1852年提出“四色问题”或“四色猜想”。
证明宽松一点的“五色定理”(即“只用五种颜色就能为所有地图染色”)很容易,但是四色定理证明持续了很长时间。
四色定理不是地图学的定理,四色定理是第一个由计算机证明的数学定理。
1976年,哈肯及其学生在伊利诺伊大学(即现在UIUC)的IBM360电脑上编程,经过电脑1200小时的验证,他们终于在6月证明四色定理。
1976年6月22日,哈肯和阿佩尔在于多伦多大学召开的美国数学学会(A.M.S.)夏季会议公布他们的结果。
不久,伊利诺伊大学数学系的邮戳上加上了“四种颜色就够了”(FOUR COLORS SUFFICE)的一句话,以庆祝四色猜想得到解决。
1977年,哈肯和阿佩尔将结果写成名为《任何平面地图都能用四种颜色染色》(Every planar map is four colorable)的论文,分成上下两部分,发表在《伊利诺伊数学杂志》(Illinois Journal of Mathematics)上[2][3].这是现在伊利诺伊大学大学厄巴纳香槟分校数学系主楼(离我们CyberGIS办公楼大约2分钟步行距离)。
我和同事曾在午饭后参观过UIUC数学楼,学术氛围非常浓厚。
四色定理被证明后,经历了十几年争议、修正和改进的过程。
1986年,哈肯和阿佩尔应《数学情报》杂志的邀请,发表了1篇清晰易懂的证明总结文章,1989年的最终的定稿超过400页(貌似图论中的经典定理证明都比较长)。
四色定理不是地图学定理,但它是地图学的经典问题。
地图设计的专著中对四色定理描述很少。
四色定理在地图中的应用其实没有想象的那么广,其实原因比较多,第一个是地图着色中可能会有飞地,即两个不连通的区域属于同一个国家(例如美国的阿拉斯加州),而地图着色时仍需要这两个区域涂上同样颜色。
四色定理

四色定理是一个著名的数学定理:如果在平面上划出一些邻接的有限区域,那么可以用四种颜色来给这些区域染色,使得每两个邻接区域染的颜色都不一样。另一个通俗的说法是:每个地图都可以用不多于四种颜色来染色,而且没有两个邻接的区域颜色相同。“是否只用四种颜色就能为所有地图染色”的问题最早是由一位英国制图员在1852年提出的,被称为“四色问题”或“四色猜想”。1976年,数学家凯尼斯·阿佩尔和沃夫冈·哈肯借助电子计算机首次得到了一个完全的证明,四色问题也终于成为了四色定理。这是首个主要借助计算机证明的定理。这个证明一开始并不为许多数学家接受,因为不少人认为这个证明无法用人手直接验证。尽管随着计算机的普及,数学界对计算机辅助证明更能接受,但仍有数学家希望能够找到更简洁或不借助计算机的证明。
四色定理

谢谢观看
不过,郝伍德没有彻底否定肯普论文的价值,运用肯普发明的方法,郝伍德证明了较弱的五色定理。一方面, 五种颜色已足够,另一方面,确实有例子表明三种颜色不够。
肯普是用归谬法来证明的,大意是如果有一张正规的五色地图,就会存在一张国数最少的“极小正规五色地 图”,如果极小正规五色地图中有一个国家的邻国数少于六个,就会存在一张国数较少的正规地图仍为五色的, 这样一来就不会有极小五色地图的国数,也就不存在正规五色地图了。这样肯普就认为他已经证明了“四色问 题”,但是后来人们发现他错了。四色Βιβλιοθήκη 理世界近代三大数学难题之一
01 简史
目录
02 影响
四色定理(世界近代三大数学难题之一),又称四色猜想、四色问题,是世界三大数学猜想之一。
四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。”也就是说在 不引起混淆的情况下一张地图只需四种颜色来标记就行。
用数学语言表示即“将平面任意地细分为不相重叠的区域,每一个区域总可以用1234这四个数字之一来标记 而不会使相邻的两个区域得到相同的数字。”这里所指的相邻区域是指有一整段边界是公共的。如果两个区域只 相遇于一点或有限多点就不叫相邻的。
人们发现四色问题出人意料地异常困难,曾经有许多人发表四色问题的证明或反例,但都被证实是错误的。 后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目,其实 是一个可与费马猜想相媲美的难题。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。
1913年,美国著名数学家、哈佛大学的伯克霍夫利用肯普的想法,结合自己新的设想;证明了某些大的构形 可约。后来美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。
四色猜想简介

四色猜想
四色问题,又称四色定理,是一个著名的图论问题,提出的问题是:是否可以使用四种颜色来给地图上的每两个相邻的国家着色,使得相邻的国家颜色不同?以下是对四色问题的详细介绍:
历史:四色问题最早可以追溯到19世纪,当时英国数学家弗朗西斯·格斯特提出了这个问题。
随后,数学家们开始尝试寻找问题的解决方法。
这个问题一直引发数学家和研究人员的兴趣,成为了数学领域中的一个经典问题。
问题陈述:四色问题的陈述是,给定一个平面地图,可以使用四种颜色来着色地图上的每一个国家,使得任意相邻的两个国家使用的颜色不同。
研究和尝试:四色问题在长时间内没有得到解决。
许多数学家试图寻找解决方法,但都没有成功。
该问题被证明是非常复杂的,需要复杂的图论和计算方法。
定理证明:直到1976年,美国数学家肯尼斯·阿佩尔(Kenneth Appel)和沃夫冈·哈肯(Wolfgang Haken)使用计算机辅助证明了四色问题的一个特殊情况,也就是每个地图都可以用四种颜色来着色。
这个证明引发了一些争议,因为它涉及到大规模的计算机搜索,不是传统的数学证明方法。
尽管如此,该证明被广泛接受,四色问题也被认为已经解决。
问题的一般化:尽管四色问题的一个特殊情况已经得到解决,但问题的一般化仍然是一个开放的数学问题。
研究人员继续探讨类似的问题,例如在三维空间中的着色问题。
总的来说,四色问题代表了数学中一个重要的解决问题的历程。
虽然该问题的证明涉及了计算机的使用,但它引导了图论和离散数学等领域的研究,对计算机科学和数学有着深远的影响。
四色问题的解决也是数学中的一个重要里程碑。
2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四色定理四色定理(Four color theorem)最先是由一位叫古德里(Francis Guthrie)的英国大学生提出来的。
德·摩尔根(Augustus De Morgan,1806~1871)1852年10月23日致哈密顿的一封信提供了有关四色定理来源的最原始的记载。
四色问题又称四色猜想,是世界近代三大数学难题之一。
基本介绍四色问题又称四色猜想、四色定理是世界近代三大数学难题之一。
地图四色定理(Four color theorem)最先是由一位叫古德里FrancisGuthrie的英国大学生提出来的。
德·摩尔根Augustus De Morgan180618711852年10月23日致哈密顿的一封信提供了有关四色定理来源的最原始的记载。
他在信中简述了自己证明四色定理的设想与感受。
一个多世纪以来数学家们为证明这条定理绞尽脑汁所引进的概念与方法刺激了拓扑学与图论的生长、发展。
1976年美国数学家阿佩尔K.Appel与哈肯W.Haken宣告借助电子计算机获得了四色定理的证明又为用计算机证明数学定理开拓了前景。
地图四色定理(Four color theorem)最先是由一位叫古德里Francis Guthrie的英国大学生提出来的。
四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。
”用数学语言表示即“将平面任意地细分为不相重叠的区域每一个区域总可以用1234这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。
”这里所指的相邻区域是指有一整段边界是公共的。
如果两个区域只相遇于一点或有限多点就不叫相邻的。
因为用相同的颜色给它们着色不会引起混淆。
四色问题的内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。
”也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行发展历史:来自地图的启示相传四色问题是一名英国绘图员提出来的此人叫格思里。
1852年他在绘制英国地图的发现如果给相邻地区涂上不同颜色那么只要四种颜色就足够了。
需要注意的是任何两个国家之间如果有边界那么其边界不能只是一个点否则四种颜色就可能不够。
格思里把这个猜想告诉了正在念大学的弟弟。
弟弟认真思考了这个问题结果既不能证明也没有找到反例于是向自己的老师、著名数学家德·摩根请教。
德·摩根解释不清当天就写信告诉自己的同行、天才的哈密顿。
可是直到哈密顿1865年逝世为止也没有解决这个问题。
从此这个问题在一些人中间传来传去当时三等分角和化圆为方问题已在社会上“臭名昭著”而“四色瘟疫”又悄悄地传播开来了。
问题的证明一波三折1878年凯莱正式向伦敦数学会提出了这个问题。
凯莱可是英国响当当的数学家他看中的问题必定不同凡响。
消息传到了律师肯普的耳朵里引起了他的极大兴趣。
不到一年肯普就提交了一篇论文声称证明了四色问题。
人们以为事情到此就已经完结了。
谁知到1890年希伍德在肯普的文章中找到一处不可饶恕的错误。
不过让数学家感到欣慰的是希伍德没有彻底否定肯普论文的价值运用肯普发明的方法希伍德证明了较弱的五色定理。
这等于打了肯普一记闷棍又将其表扬一番总的来说是贬大于褒。
真不知可怜的肯普律师是什么心情。
追根究底是数学家的本性。
一方面五种颜色已足够另一方面确实有例子表明三种颜色不够。
那么四种颜色到底够不够呢这就像一个淘金者明明知道某处有许多金矿结果却只挖出一块银子你说他愿意就这样回去吗接下去的戏就得由闵可夫斯基来演了。
这里得说他几句好话他虽然没有成功可自认第一流倒也并非自不量力。
要知道19世纪末20世纪初德国格丁根大学能成为世界数学中心就是由于他和希尔伯特、克莱因“三巨头”的努力。
四色瘟疫在英国蔓延时还真没有一个研究过它的数学家比得上闵可夫斯基。
令闵可夫斯基尴尬的一堂课19世纪末德国有位天才的数学教授叫闵可夫斯基他曾是爱因斯坦的老师。
爱因斯坦因为经常不去听课便被他骂作“懒虫”。
万万没想到就是这个“懒虫”后来创立了著名的狭义相对论和广义相对论。
闵可夫斯基受到很大震动他把相对论中的时间和空间统一成“四维时空”这是近代物理发展史上的关键一步。
在闵可夫斯基的一生中把爱因斯坦骂作“懒虫”恐怕还算不上是最尴尬的事…… 一天闵可夫斯基刚走进教室一名学生就递给他一张纸条上面写着“如果把地图上有共同边界的国家涂成不同颜色那么只需要四种颜色就足够了您能解释其中的道理吗”闵可夫斯基微微一笑对学生们说“这个问题叫四色问题是一个著名的数学难题。
其实它之所以一直没有得到解决仅仅是由于没有第一流的数学家来解决它。
” 为证明纸条上写的不是一道大餐只是小菜一碟,闵可夫斯基决定当堂掌勺问题就会变成定理……下课铃响了可“菜”还是生的。
一连好几天他都挂了黑板。
后来有一天闵可夫斯基走进教室时忽然雷声大作他借此自嘲道“哎上帝在责备我狂妄自大呢,我解决不了这个问题。
”缓慢的进展当时由大数学家黎曼、康托尔、庞加莱等创立的拓扑学之发展可谓一日千里后来竟盖过大数学家高斯宠爱的数论成为雍容华贵的数学女王。
四色问题就是属干拓扑学范畴的一个大问题。
拓扑学不仅引进了全新的研究对象也引进了全新的研究方式。
对数学来说它不啻是一场革命。
回顾拓扑学的历史就可以说明为什么四色问题对于20世纪数学来说是重要的。
通俗地说连续变换就是你可以捏、拉一个东西但不能将其扯破也不能把原先不在一起的两个点粘在一起。
比如对于26个大写英文字母一些拓扑学家就认为可将其分成3类第一类ADOPOR 第二类B第三类CEFGHlJKLMNSTUVWXYZ。
第一类在连续变换下都可以变成O第三类则都可变成I。
因为4是平面的色数它也是一种示性数可见示性数有很多种体现了平面的拓扑性质与国家的形状无关将平面弯成曲面也没关系。
数学家必须确定这个数究竟是5还是4这很重要。
如果国家分布在一个环面上画地图最多得要七种颜色。
吊起数学家胃口的还有一个原因。
乍一看环面似乎更复杂事实上环面的七色定理却比较容易证明希伍德当时就做到了到1968年其他所有复杂曲面的色数均已确定唯有平面或球面的四色问题依然故我。
看来平面没有人们想象的那么简单1913年伯克霍夫引进了一些新的技巧导致1939年弗兰克林证明22国以下的地图都可以用四色着色。
1950年温恩将22国提高为35。
1968年奥尔又达到了39国。
1975年有报道52国以下的地图用四色足够。
可见其进展极其缓慢。
计算机帮助人们圆梦不过情况也不是过分悲观。
数学家希奇早在1936年就认为讨论的情况是有限的不过非常之大大到可能有10000种。
对于巨大而有限的数最好由谁去对付今天的人都明白计算机。
从1950年起希奇就与其学生丢莱研究怎样用计算机去验证各种类型的图形。
这时计算机才刚刚发明。
两人的思想可谓十分超前。
1972年起黑肯与阿佩尔开始对希奇的方法作重要改进。
到1976年他们认为问题已经压缩到可以用计算机证明的地步了。
于是从1月份起他们就在伊利诺伊大学的IBM360机上分1482种情况检查历时1200个小时作了100亿个判断最终证明了四色定理。
在当地的信封上盖“Four colorssutfice”四色足够了的邮戳就是他们想到的一种传播这一惊人消息的别致的方法。
人类破天荒运用计算机证明著名数学猜想应该说是十分轰动的。
赞赏者有之怀疑者也不少因为真正确性一时不能肯定。
后来也的确有人指出其错误。
1989年黑肯与阿佩尔发表文章宣称错误已被修改。
1998年托马斯简化了黑肯与阿佩尔的计算程序但仍依赖于计算机。
无论如何四色问题的计算机解决给数学研究带来了许多重要的新思维。
解决历程四色猜想的诞生:地图四色定理(Four color theorem)最先是由一位叫古德里Francis Guthrie 的英国大学生提出来的。
德·摩尔根Augustus De Morgan180618711852年10月23日致哈密顿的一封信提供了有关四色定理来源的最原始的记载。
四色问题又称四色猜想是世界近代三大数学难题之一。
四色猜想的提出来自英国。
1852年毕业于伦敦大学的弗南西斯·格思里来到一家科研单位搞地图着色工作时发现了一种有趣的现象“看来每幅地图都可以用四种颜色着色使得有共同边界的国家都被着上不同的颜色。
”这个现象能不能从数学上加以严格证明呢他和在大学读书的弟弟格里斯决心试一试。
兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠可是研究工作没有进展。
1852年10月23日他的弟弟就这个问题的证明请教了他的老师、著名数学家德·摩尔根摩尔根也没有能找到解决这个问题的途径于是写信向自己的好友、著名数学家哈密顿爵士请教。
汉密尔顿接到摩尔根的信后对四色问题进行论证。
但直到1865年汉密尔顿逝世为止问题也没有能够解决。
四色问题的提出1872年英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题于是四色猜想成了世界数学界关注的问题。
世界上许多一流的数学家都纷纷参加了四色猜想的大会战。
1878--1880年两年间著名的律师兼数学家肯普(Alfred Kempe)和泰勒(Peter Guthrie Tait)两人分别提交了证明四色猜想的论文宣布证明了四色定理大家都认为四色猜想从此也就解决了。
肯普的证明是这样的首先指出如果没有一个国家包围其他国家或没有三个以上的国家相遇于一点这种地图就说是“正规的”左图。
如为正规地图否则为非正规地图右图。
一张地图往往是由正规地图和非正规地图联系在一起但非正规地图所需颜色种数一般不超过正规地图所需的颜色如果有一张需要五种颜色的地图那就是指它的正规地图是五色的要证明四色猜想成立只要证明不存在一张正规五色地图就足够了。
四色问题的证明肯普是用归谬法来证明的大意是如果有一张正规的五色地图就会存在一张国数最少的“极小正规五色地图”如果极小正规五色地图中有一个国家的邻国数少于六个就会存在一张国数较少的正规地图仍为五色的这样一来就不会有极小五色地图的国数也就不存在正规五色地图了。
这样肯普就认为他已经证明了“四色问题”但是后来人们发现他错了。
不过肯普的证明阐明了两个重要的概念对以后问题的解决提供了途径。
第一个概念是“构形”。
他证明了在每一张正规地图中至少有一国具有两个、三个、四个或五个邻国不存在每个国家都有六个或更多个邻国的正规地图也就是说由两个邻国三个邻国、四个或五个邻国组成的一组“构形”是不可避免的每张地图至少含有这四种构形中的一个。
证明Np=[(7+√1+48p)/2].数学家用了78年。
肯普提出的另一个概念是“可约”性。
“可约”这个词的使用是来自肯普的论证。
他证明了只要五色地图中有一国具有四个邻国就会有国数减少的五色地图。
自从引入“构形”“可约”概念后逐步发展了检查构形以决定是否可约的一些标准方法能够寻求可约构形的不可避免组是证明“四色问题”的重要依据。