运筹学博弈论
博弈论百度百科

博弈论约翰·冯·诺依曼博弈论的概念博弈论又被称为对策论(Game Theory),它是现代数学的一个新分支,也是运筹学的一个重要组成内容。
在《博弈圣经》中写到:博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的意义。
按照2005年因对博弈论的贡献而获得诺贝尔经济学奖的Robert Aumann教授的说法,博弈论就是研究互动决策的理论。
所谓互动决策,即各行动方(即局中人[player])的决策是相互影响的,每个人在决策的时候必须将他人的决策纳入自己的决策考虑之中,当然也需要把别人对于自己的考虑也要纳入考虑之中……在如此迭代考虑情形进行决策,选择最有利于自己的战略(strategy)。
博弈论的应用领域十分广泛,在经济学、政治科学(国内的以及国际的)、军事战略问题、进化生物学以及当代的计算机科学等领域都已成为重要的研究和分析工具。
此外,它还与会计学、统计学、数学基础、社会心理学以及诸如认识论与伦理学等哲学分支有重要联系。
按照Aumann所撰写的《新帕尔格雷夫经济学大辞典》“博弈论”辞条的看法,标准的博弈论分析出发点是理性的,而不是心理的或社会的角度。
不过,近20年来结合心理学和行为科学、实验经济学的研究成就而对博弈论进行一定改造的行为博弈论(behavoiral game theory )也日益兴起。
博弈论的发展博弈论思想古已有之,我国古代的《孙子兵法》就不仅是一部军事著作,而且算是最早的一部博弈论专著。
博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展,正式发展成一门学科则是在20世纪初。
1928年冯·诺意曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。
1944年,冯·诺意曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统的应用于经济领域,从而奠定了这一学科的基础和理论体系。
运筹学博弈论

i a 2 1 3 a c 1 3 a c c 1 3 a c 9 1 a c 2
产量博弈的古诺模型是一种囚徒困境,无法实现 博弈方总体和各个博弈方各自最大利益的结论,对 于市场经济组织、管理,对于产业组织和社会经济 制度的效率判断,都具有非常重要的意义。说明对 市场的管理,政府对市场的调控和监管都是必须的。
纳什均衡(Nash Equilibrium)
通俗地说,纳什均衡的含义 就是:
给定你的策略,我的策略是 最好的策略;给定我的策略, 你的策略也是你的最好的策 略。即双方在给定的策略下 不愿意调整自己的策略。
1. 纯战略Nash均衡
策略空间:每个博弈方的全部可选策略的集合 S1,Sn
博弈方 i的第 j个策略: si j Si 博弈方 i的得益:u i
每个参与人都想猜透对方的战略,而每个参与人又 不愿意让对方猜透自己的战略。
这种博弈的类型是什么?如何找到均衡?
请举一些这样的例子:
✓石头、剪子、布游戏 ✓老虎、杠子、鸡、虫子游戏 ✓扑克游戏 ✓橄榄球赛 ✓战争中
大猪先到:大猪吃到9个单位,小猪吃到1个单位; 小猪先到:小猪吃到4个单位,大猪吃到6个单位; 同时到达:大猪吃到7个单位,小猪吃到3个单位。
局中人:大猪和小猪 行动:按按钮吃东西
小猪
按
不按
大
猪
按 (5, 1) (4, 4)
不按 (9, -1) (0, 0)
24
大猪 按 等待
小猪的上策
寡头产量竞争——以两厂商产量竞争为例 Qq1 q2 PP(Q) aQ
u 1 q 1 P ( Q ) c 1 q 1 q 1 [ a ( q 1 q 2 ) c ]1q
u 2 q 2 P ( Q ) c 2 q 2 q 2 [ a ( q 1 q 2 ) c ]2q
博弈论(TheGamesTheory)是运筹学学科的一个重要分支。

博弈论(The Games Theory)是运筹学学科的一 个重要分支。具有竞争或对抗性质的行为称为博 弈行为,在这类行为中,参与斗争或竞争的各方 各自具有不同的目标和利益,为了达到各自的目 的,各方必须考虑对手的各种可能的行动方案, 并力图选取对自己最为有利或最合理的方案。 博弈论就是研究博弈行为中,斗争各方是否存在 最合理的行动方案,以及如何找到这个合理方案 的理论和方法。
囚徒困境问题
甲和乙两个小偷联手作案,因私入民宅被警方抓住 但未获证据。警方将两人分别置于两间房间分开审 讯,政策是若一人招供但另一人未招,则招者立即
被释放,未招者判入狱10年;若二人都招,则两人 各判刑8年;若两人都不招,则未获证据但因私入 民宅各拘留1年。将这些数据列出,如下:
囚徒困境博弈
在现实生活中,经常可以看到一些具有对抗和竞争性 的现象,如体育比赛、军事斗争中双方兵力的对抗, 各公司企业之间的经济谈判以及为争夺市场而进行的 竞争等等。在竞争过程中,各方为了达到自己的目标 和利益,必须考虑对手的各种可能的行动方案,并力 图选取对自己最为有利或最为合理的方案,也就是说 要研究采取对抗其他竞争者的策略。从数学角度来说, 博弈论就是研究竞争行为中的竞争各方是否存在着最 合理的行动方案,以及如何找到这个合理的行动方案 的数学理论和方法。
5.1 博弈论的基本概念
博弈论是矛盾和合作的规范研究,是系统研究决策主 体的行为发生直接相互作用情况下的决策以及这种决 策均衡的理论. 也就是说,当一个决策主体的选择受 到其他决策主体选择的影响,并且它的.
博弈论思想的主要特征是各参与人所实施的行为方案 (策略)相互依存,各方在冲突或合作后所实现的得 失结果不仅取决于自己所采用的行为方案,同时也依 赖于其他参与人所采用的行为方案,它是各参与人行 为方案组合的函数.
《运筹学》ch12博弈论

1的最优 策略(行)
目录
博弈论的基本概念 纯策略矩阵博弈
混合策略矩阵博弈
其它类型博弈简介(多人博弈、非零和博弈)
基本概念
设矩阵博弈G {S1, S2 , A} 的支付矩阵是 A (aij )mn ,其中S1 {A1, , Am}
S2 {B1, , Bn }
多人非合作博弈
(1)局中人集合 I {1, , n} ; (2)每个局中人i有一个纯策略的有限集:
Si
{s(i)} {s1i , s2i ,
,
si mi
}
i 1, , n
Hale Waihona Puke (3)每个局中人i有一个支付函数u i ,i 1, , n 。
记为此博弈为G {I , Si ,ui }。
第十二章 博弈论
教学要求:
了解博弈论的基本分析方法 掌握二人零和博弈模型和求解方法 会运用该模型分析一些经济和管理问题
目录
博弈论的基本概念 纯策略矩阵博弈 混合策略矩阵博弈 其它类型博弈简介(多人博弈、非零和博弈)
目录
博弈论的基本概念
纯策略矩阵博弈 混合策略矩阵博弈 其它类型博弈简介(多人博弈、非零和博弈)
同越理小,越若好局,中所人以,2选局择中策人略2可B j以,选则择他至B j ,多使失他去失m1ia去mx a的ij 。不因大局于中1m ji人nm m21i希amx望aij aij
鞍点:如果存在 i*, j* 使支付矩阵 (aij ) 的元素满足:
max
1im
min
1 jn
动态博弈 微分博弈
最常见
目录
博弈论的基本概念
运筹学第13章博弈论

动态博弈(dynamic game) 指局中人的行动有先后顺序,且后行动者能 够观察到先行动者所选择的行动。
“石头、剪刀、布”的游戏;
下棋、打牌等游戏。
运筹学第13章博弈论
第1节 博弈论概论│博弈分类
1.2.2 博弈分类详解
完全信息博弈(completeⅠinformation)
将各博弈方都完全了解所有博弈方各种情况 下得益的博弈称为“完全信息博弈” 。
运筹学第13章博弈论
第1节 博弈论概论│什么是博弈论
1.1.2 引例 囚徒困境是图克(Tucker)1950年提出的,该博弈是博弈论最经典、著名的博弈。该博弈本身
讲的是一个法律刑侦或犯罪学方面的问题,但可以扩展到许多经济问题,以及各种社会问题。
坦白
囚徒 B
不坦白
囚徒 A
坦白 不坦白
-5, -5 -10, -1
运筹学第13章博弈论
第1节 博弈论概论│什么是博弈论
1.1.5 博弈论的基本概念
博弈方的得益(Payoffs)
博弈的参加者(Player)
四个核心
各博弈方的策略(Strategies) 或行为(Actions)
博弈的次序(Order)
运筹学第13章博弈论
2 博弈的分类
运筹学第13章博弈论
第1节 博弈论概论│博弈分类
1.2.2 博弈分类详解
零和博弈
在博弈中一组局中人所得到的支付(或收益) 恰好是另一组局中人的损失。通俗地说,博 弈结果总和为零的博弈称为零和博弈。
非零和博弈 非零和博弈指所有局中人的支付(或收益) 的代数和不为零。为正或为负。
赢钱与输钱为零和博弈;
工会与厂方达成增加工资的协议双方获得“双 赢”。反之,罢工导致“两败俱伤”。
第九章-运筹学博弈论

乙 石头 布
甲
石头
0
-1
布
1
0
剪刀
-1
1
剪刀
1 -1 0
21
例2 写出齐王和田忌赛马中齐王的收益矩阵. 赢一场得一千金.
解:
S1 a1,a2,a3,a4,a5,a6,S2 b1,b2,b3,b4,b5,b6
a1 (上,中,下),a2 (上,下,中),a3 (中,上,下), a4 (中,下,上),a5 (下,中,上),a6 (下,上,中). S2中的各策 S1对 略应 与的策.略相同
史密斯(Vernon L. Smith)
获奖理由:在心理和实验经济学研究方面做出了开创性工
作。
2001年 三位美国学者乔治-阿克尔洛夫(George A.
Akerlof)、迈克尔-斯彭斯(Michael Spence)和约瑟夫-斯
蒂格利茨(Joseph E. Stiglitz)
获奖理由:在“对充满不对称信息市场进行分析”领域
11
1986年 美国人詹姆斯-布坎南(James M. Buchanan Jr.)
获奖理由:将政治决策的分析同经济理论结 合起来,使经济分析扩大和应用到社会,政治法 规的选择
1985年 意大利人弗兰科-莫迪利安尼 (Franco Modigliani)
获奖理由:第一个提出储蓄的生命周期假 设,这一假设在研究家庭和企业储蓄中得到了 广泛应用。
完全信息是指所有局中人对其他局中人各自策略 集以及不同局势下的收益函数都有完全的了解.
18
博弈的三个要素的矩阵表示(局中人A的收益)
局中人B
局中人A
策 a1 a2
略
am
b 1
c11 c 21
运筹学博弈论 PPT

6. 2005年二位获诺奖的博弈论学者
Robert Aumann
Thomas Shelling
10.1.2 博弈及博弈论
博弈就是策略对抗,或策略有关键作用的游戏
博弈Game,博弈论Game Theory,Game即游戏、竞技 游戏和经济等决策竞争较量的共同特征:规则、结果、策
略选择,策略和利益相互依存,策略的关键作用 游戏——下棋、猜大小 经济——寡头产量决策、市场阻入、投标拍卖 政治、军事——美国和伊拉克、以色列和巴勒斯坦
囚徒困境
坦白是B的 占优战略
坦白
囚徒 B
抵赖
坦白
坦白是A的 囚徒A 占优战略
抵赖
占优策略(上策)均衡
占优策略(上策)通俗来说是:
• “我所做的是不管你做什么我所能做的最好的” • “你所做的是不管我做什么你所能做的最好的”
占优策略均衡指博弈中的所有参与者的占优策 略组合所构成的均衡。
囚徒困境( Prisoners’Dilemma )
运筹学博弈论
第一节 博弈论概述
一、博弈论的产生和发展
1. 博弈在中国 田忌赛马Байду номын сангаас弈
华容道博弈
从孙子兵法到三十六计 从田忌赛马到孙庞斗智 从运筹帷幄到韬光养晦 从曹刿论战到论持久战
2. 博弈论的开山之作
1943 年 , 冯 ·诺 依 曼 和 摩 根斯顿发表《博弈论和经 济行为》的一书,
标志着博弈论作为一门独立科学的开始, 也标志着新古典经济学进入了一个新的发 展阶段。
10.2.2 重复剔除的占优战略均衡
首先找出某一博弈参与人的严格劣战略,将它剔除 掉,重新构造一个不包括已剔除战略的新的博弈; 然后继续剔除这个新的博弈中某一参与人的严格劣 战略;重复进行这一过程,直到剩下唯一的参与人 战略组合为止。这个唯一剩下的参与人战略组合, 就是这个博弈的均衡解,称为“重复剔除的占优战 略均衡”(iterated dominance equilibrium).
应用运筹学-博弈论

待宰的猴群
在一个笼子里关了一群猴子,主人每过一天就 打开笼子抓一只猴子去杀掉。每天主人来时, 每个猴子都紧张,它们不敢有任何举动,怕引 起主人的注意而被主人选中。当主人把目光落 在其中一只猴子身上时,其余的猴子就希望主 人赶快决定。当主人最终作出决定时,没有被 选中的猴子非常高兴。那个被选中的猴子拼命 反抗,其余猴子在一旁幸灾乐祸地观看,这只 猴子被杀掉了。这样的过程日复一日地进行着 ,最终猴子全部被宰杀掉了。
策略性思维 ——博弈概论
决策无处不在
工作,即便只是社交生活,也可以看做是一 个永无止息的决策过程; 通常人们的决策面临两种决策环境:比较伐 木工人和一个将军的决策会有什么区别:
– 伐木工人的工作环境是中立的,没有对抗; – 而将军的任何一种行动都会遭遇对手的抵抗;
研究前者的方法是决策论 研究后者的是博弈论
光天化日之下的违法
在现实社会中,窃贼在公共场所比如公共 汽车上偷东西时,车上的乘客看到了,但 不敢吭声。没有被偷的人想,反正被偷的 待宰猴群的结局人不是我,我反抗了,我 得不到任何好处,反而遭到伤害;而不反 抗虽不得益,但也不受损,我何必要反抗 呢?这就是光天化日之下的偷窃行为为什 么总能成功的原因。
囚徒困境说明了什么
在(坦白、坦白)这个组合中,两囚徒A和B 都不能通过单方面的改变行动增加自己的收益 ,于是谁也没有动力游离这个组合,因此这个 组合是纳什均衡,也叫非合作均衡。
囚徒困境反映了个人理性和集体理性的矛盾。 如果A和B都选择抵赖,各判刑1年,显然比 都选择坦白各判刑8年好得多。当然,A和B 可以在被警察抓到之前订立一个"攻守同盟", 但是这可能不会有用,因为它不构成纳什均衡 ,没有人有积极性遵守这个协定,显然最好的策 略是双方都抵赖.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不完全信息
不完全信息静态博弈 贝叶斯纳什均衡
代表人物:海萨尼(1967-1968)
动态
完全信息动态博弈 子博弈精炼纳什均衡 代表人物:泽尔腾(1965)
不完全信息动态博弈 精炼贝叶斯纳什均衡 代表人物:泽尔腾(1975) 克瑞普斯和威尔逊(1982) 费登伯格和泰勒尔(1991)
精品
智猪博弈(大小猪博弈)
精品
5. 2001年诺贝尔经济 学奖得主:迈克尔 ·斯 宾塞:在不对称信息市 场分析方面所做出开创 性研究。
精品
6. 2005年二位获诺奖的博弈论学者
Robert Aumann
Thomas Shelling
精品
10.1.2 博弈及博弈论
博弈就是策略对抗,或策略有关键作用的游戏
博弈Game,博弈论Game Theory,Game即游戏、竞技 游戏和经济等决策竞争较量的共同特征:规则、结果、策
略选择,策略和利益相互依存,策略的关键作用 游戏——下棋、猜大小 经济——寡头产量决策、市场阻入、投标拍卖 政治、军事——美国和伊拉克、以色列和巴勒斯坦
精品
定义:博弈就是参与人(可能是个人,也可能是团体, 如国家、企业、国际组织等)在一定得规则下,同时 或先或后,一次或多次,从各自允许选择的行动或战 略中进行选择并加以实施,而取得相应结果(支付函 数)的过程。
精品
10.2.2 重复剔除的占优战略均衡
首先找出某一博弈参与人的严格劣战略,将它剔除 掉,重新构造一个不包括已剔除战略的新的博弈; 然后继续剔除这个新的博弈中某一参与人的严格劣 战略;重复进行这一过程,直到剩下唯一的参与人 战略组合为止。这个唯一剩下的参与人战略组合, 就是这个博弈的均衡解,称为“重复剔除的占优战 略均衡”(iterated dominance equilibrium).
第10章 博弈论
10.1博弈论概述 10.2完全信息静态博弈
精品
第一节 博弈论概述
精品
一、博弈论的产生和发展
1. 博弈在中国 田忌赛马博弈
华容道博弈
精品
从孙子兵法到三十六计 从田忌赛马到孙庞斗智 从运筹帷幄到韬光Biblioteka 晦 从曹刿论战到论持久战精品
2. 博弈论的开山之作
1943 年 , 冯 ·诺 依 曼 和 摩 根斯顿发表《博弈论和经 济行为》的一书,
精品
参与人或局中人(Players) :独立决策、独 立承担博弈结果的个人或组织 博弈规则面前博弈方之间平等,不因博弈方 之间权利、地位的差异而改变 博弈方数量对博弈结果和分析有影响 根据博弈方数量分单人博弈、两人博弈、多 人博弈等。最常见的是两人博弈,单人博弈 是退化的博弈
精品
策略或战略(strategies) :博弈中各博 弈方的选择内容。 策略有定性定量、简单复杂之分 不同博弈方之间不仅可选策略不同,而且可选策 略数量也可不同 有限博弈:每个博弈方的策略数都是有限的 无限博弈:至少有某些博弈方的策略有无限多个
标志着博弈论作为一门独立科学的开始,也 标志着新古典经济学进入了一个新的发展阶 段。
精品
3. 1994年三位获诺奖的博弈论学者
John Nash
John Harsany
精品
Leihaden Selten
4. 1996年诺贝尔经 济学奖得主:詹姆 斯·莫里 斯:主要 贡献:不对称信息 条件下的激励理论
都有一定的规则 都有一个结果 策略至关重要,游戏者不同的策略选择常会带来不同的游戏
结果 策略和利益有相互依存性
博弈论:博弈论就是系统研究具有上述特征的博弈问 题,寻求各博弈方合理选择战略情况下博弈的解,并 对这些解进行讨论分析的理论。
精品
博弈的分类及对应的均衡概念
完全信息
静态
完全信息静态博弈 纳什均衡
精品
囚徒困境
坦白是B的 占优战略
坦白
囚徒 B
抵赖
坦白
坦白是A的 囚徒A 占优战略
抵赖
-5,-5 0,-8
-8,0 -1,-1
精品
占优策略(上策)均衡 占优策略(上策)通俗来说是:
• “我所做的是不管你做什么我所能做的最好的” • “你所做的是不管我做什么你所能做的最好的”
占优策略均衡指博弈中的所有参与者的占优策 略组合所构成的均衡。
精品
支付函数(Payoffs function) :各博弈方从 博弈中所获得的利益。 得益对应博弈的结果,也就是各博弈方策略的组合 得益是各博弈方追求的根本目标及行为和判断的主 要依据 根据得益的博弈分类:零和博弈、常和博弈、变和 博弈
精品
例10.1 囚徒困境博弈
囚徒的困境是图克(Tucker)1950年提出的 该博弈是博弈论最经典、著名的博弈 该博弈本身讲的是一个法律刑侦或犯罪学方面
精品
囚徒困境( Prisoners’Dilemma )
只达到效率很差的个体理性解,没有实现团体 理性解。 前者是稳定的,是自动实施的;尽管团体理性 解对大家都好,但它是不能自动实施的,需要改变 条件。
提示:该博弈揭示了个体理性与团体理性之间的矛 盾。——从个体利益出发的行为往往不能实现团体的最 大利益,同时也揭示了个体理性本身的内在矛盾——从 个体利益出发的行为最终也不一定能真正实现个体的 最大利益,甚至得到相当差的结果。
精品
10.2 完全信息静态博弈
10.2.1 策略型博弈模型及占优战略博弈 10.2.2 重复剔除的占优战略博弈 10.2.3 纳什均衡
精品
10.2.1 策略型博弈模型及占优战略博弈
非合作博弈模型从模型自身形式上可分为扩展型和 策略型两种,一般用策略型模型描述完全信息静态 博弈模型。
构成策略型博弈模型的三个要素: 局中人、策略、支付函数
的问题,但可以扩展到许多经济问题,以及各 种社会问题,可以揭示市场经济的根本缺陷
精品
基本模型
经典的囚徒困境如下: 警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人 入罪。于是警方分开囚禁嫌疑犯,分别和二人见面,并向双 方提供以下相同的选择: 若一人认罪并作证检举对方(相关术语称“背叛”对方), 而对方保持沉默,此人将即时获释,沉默者将判监8年。 若二人都保持沉默(相关术语称互相“合作”),则二人同 样判监1年。 若二人都互相检举(互相“背叛”),则二人同样判监5年。