最新高中数学必修二第三章知识点总结

合集下载

高考数学必修二第三章知识点大全

高考数学必修二第三章知识点大全

高考数学必修二第三章知识点大全水滴石穿,绳锯木断。

备考也需要一点点积累才能到达好的效果。

接下来小编在这里给大家分享一些关于高考数学必修二知识点,供大家学习和参考,希望对大家有所帮助。

高中数学必修二第三章知识点1.用符号表示公理1,2,3。

P21,22;2.公理及其推论的作用?3.做P29.T10.12;4.异面直线成角、直线和平面成的角、二面角的平面角的范围?作图说明。

5.直线和平面平行的性质和判定定理的符号表示?6. 直线和平面垂直的性质和判定定理的符号表示?7.平面和平面平行的性质和判定定理的符号表示?8. 平面和平面垂直的性质和判定定理的符号表示?9.上述定理易错点分析?10.如图,在直三棱柱中,,点分别为的中点。

(1)证明:∥平面;(2)证明:平面⊥平面。

做一下练练手:证明:查一查,得多少分?第一问:证明线面平行,证法一是通过线线平行加以证明,一般应交代3个条件,本次阅卷中,缺“因为A1B平面AA1B1B”不扣分,缺“OE平面AA1B1B”扣1分.证法二通过面面平行证明,一般应交代两个条件,本次阅卷中,缺“因为OE平面OEF”不扣分.在证法二中,若通过线线平行直接得到面面平行,扣2分.第二问:(1)证法一中,利用线线垂直证明线面垂直(原则上5个条件,其中两个条件ODB1CODBC1,B1C∩BC1=O不可以缺少),若缺“B1C平面BB1C1C,BC1平面BB1C1C”,不扣分,若缺“B1C∩BC1=O”,扣1分.再利用线面垂直证明面面垂直(原则上两个条件:OD平面BB1C1C,OD平面B1DC不可以缺少),若缺“OD平面B1DC”,扣1分.(2)证法二中,若先证明AG平面平面BB1C1C,再利用AG ∥OD直接得到OD平面BB1C1C,这里的6分只能得4分(AG ∥OD给2分,线面垂直给2分).其他要求规范书写同证法一要求.《必修2》210.什么叫三棱柱、三棱锥、三棱台?什么叫圆柱,圆锥,圆台?P5,6,8;作图并下定义;11.思考三棱台的三条棱的延长线是否交于一点?反之。

高中数学必修二第三章直线与方程知识点总结

高中数学必修二第三章直线与方程知识点总结

高一数学总复习学案 必修2第三章:直线与方程一、知识点 倾斜角与斜率1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<.2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两点1122(,),(,)P x y P x y ,则有斜率公式2121y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. 这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题.两条直线平行与垂直的判定1. 对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,有:(1)12//l l ⇔12k k =;(2)12l l ⊥⇔121k k ⋅=-.2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x 轴;…. 直线的点斜式方程1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+.3. 点斜式和斜截式不能表示垂直x 轴直线. 若直线l 过点000(,)P x y 且与x 轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为00x x -=,或0x x =.4. 注意:00y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.直线的两点式方程1. 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=--, 2. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x ya b+=.3. 两点式不能表示垂直x 、y 轴直线;截距式不能表示垂直x 、y 轴及过原点的直线.4. 线段12P P 中点坐标公式1212(,)22x x y y ++. 直线的一般式方程1. 一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A Cy x B B=--,表示斜率为A B -,y 轴上截距为C B -的直线.2. 与直线:0l Ax By C ++=平行的直线,可设所求方程为10Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为10Bx Ay C -+=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别:(1)1212120l l A A B B ⊥⇔+=; (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠;(3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠.如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B CA B C ⇔==;1l 与2l 相交1122A B A B ⇔≠. 两条直线的交点坐标1. 一般地,将两条直线的方程联立,得到二元一次方程组11122200A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点.两点间的距离1. 平面内两点111(,)P x y ,222(,)P x y,则两点间的距离为:12||PP .特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;点到直线的距离及两平行线距离1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为d =.2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d ,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020Ax By C ++=,即002Ax By C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为d =二、直线方程对应练习 一.选择题1.(安徽高考) 过点(1,0)且与直线x-2y=0平行的直线方程是( ) A.x-2y-1=0 B. x-2y+1=0 C. 2x+y-2=0 D. x+2y-1=02. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A. 012=-+y x B.052=-+y x C. 052=-+y x D. 072=+-y x 3. 已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A. 0 B. 8- C. 2 D. 104.(安徽高考)直线过点(-1,2),且与直线2x-3y+4=0垂直,则直线的方程是( )A . 3x+2y-1=0 B. 3x+2y+7=0 C. 2x-3y+5=0 D. 2x-3y+8=05.设直线ax+by+c=0的倾斜角为θ,切sin cos 0θθ+=则a,b 满足 ( ) A. a+b=1 B. a-b=1 C. a+b=0 D. a-b=06. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= A 、 -3 B 、-6 C 、23- D 、327.点P (-1,2)到直线8x-6y+15=0的距离为( ) A 2 B 21 C 1 D 278. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)9. (上海文,15)已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 值是( )A. 1或3B.1或5C.3或5D.1或210、若图中的直线L 1、L 2、L 3的斜率分别为K 1A 、K 1﹤K 2﹤K 3B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 211、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0 12. 若直线ax + by + c = 0在第一、二、三象限,则( )A. ab >0,bc >0B. ab >0,bc <0C. ab <0,bc >0D. ab <0,bc <013. 如果直线 l 经过两直线2x - 3y + 1 = 0和3x - y - 2 = 0的交点,且与直线y = x 垂直,则原点到直线 l 的距离是( )A. 2B. 1C.2D. 22 14. 原点关于x - 2y + 1 = 0的对称点的坐标为( )A. ⎪⎭⎫ ⎝⎛52 ,54- B. ⎪⎭⎫ ⎝⎛54 ,52- C. ⎪⎭⎫ ⎝⎛52 ,54 D. ⎪⎭⎫ ⎝⎛54 ,52- 二、填空题1. 点(1,1)P -到直线10x y -+=的距离是________________。

人教版高中数学选修2-3知识点汇总

人教版高中数学选修2-3知识点汇总

人教版高中数学必修2-3知识点第一章计数原理1.1分类加法计数与分步乘法计数分类加法计数原理:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法。

分类要做到“不重不漏”。

分步乘法计数原理:完成一件事需要两个步骤。

做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法。

分步要做到“步骤完整”。

n元集合A={a1,a2⋯,a n}的不同子集有2n个。

1.2排列与组合1.2.1排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列(arrangement)。

从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号表示。

排列数公式:n个元素的全排列数规定:0!=11.2.2组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合(combination)。

从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号或表示。

组合数公式:∴规定:组合数的性质:(“构建组合意义”——“殊途同归”)1.3二项式定理1.3.1二项式定理(binomial theorem)*注意二项展开式某一项的系数与这一项的二项式系数是两个不同的概念。

1.3.2“杨辉三角”与二项式系数的性质*表现形式的变化有时能帮助我们发现某些规律!(1)对称性(2)当n 是偶数时,共有奇数项,中间的一项取得最大值;当n 是奇数时,共有偶数项,中间的两项,同时取得最大值。

(3)各二项式系数的和为(4)二项式展开式中,奇数项二项式系数之和等于偶数项二项式系数之和:(5)一般地,第二章随机变量及其分布2.1离散型随机变量及其分布(n ∈N *)其中各项的系数(k ∈{0,1,2,⋯,n})叫做二项式系数(binomial coefficient);2.1.1离散型随机变量随着试验结果变化而变化的变量称为随机变量(random variable)。

最新人教版高中数学必修2第三章《直线的点斜式方程》教材梳理

最新人教版高中数学必修2第三章《直线的点斜式方程》教材梳理

疱丁巧解牛知识·巧学一、直线的点斜式方程1.已知直线过点P 0(x 0,y 0),斜率为k ,则其方程为y-y 0=k(x-x 0).2.注意公式的应用前提是直线的斜率存在,若斜率不存在,则不能应用此式.3.当直线与x 轴平行或重合时,直线的倾斜角为0°,斜率k=0,仍可用上述公式.此时可简写为y-y 0=0或y=y 0.特别地,x 轴的方程是y=0.当直线与y 轴平行或重合时,直线的倾斜角为90°,斜率不存在,不能应用点斜式方程.此时根据直线上每个点的横坐标都相等,可将方程写成x-x 0=0或x=x 0.特别地,y 轴的方程是x=0.点斜式方程中的点只要是直线上的点,哪一个都可以.辨析比较 过点P(x 0,y 0)的所有直线是x=x 0或y-y 0=k(x-x 0).k x x y y =--00与y-y 0=k(x-x 0)的区别:前者不包含点P(x 0,y 0),后者包含点P(x 0,y 0). 二、直线的斜截式方程1.已知直线过点P 0(0,b),斜率为k ,则其方程为y=kx+b ,其中b 叫做直线在y 轴上的截距,也叫纵截距.2.“截距”不同于日常生活中的“距离”,截距是一个点的(纵)坐标,是一个实数,可以是正数,也可以是负数或零;而距离是一个非负数.3.斜截式方程的应用前提也是直线的斜率存在,并且给出的已知点是直线与y 轴的交点.当b=0时,y=kx 表示过原点的直线;当k=0时,y=b 表示与x 轴平行(或重合)的直线;当k=0且b=0时,y=0即表示x 轴.辨析比较 斜截式方程与一次函数的解析式相同,都是y=kx+b,但有区别:当斜率不为0时,y=kx+b 即为一次函数,当k=0时,y=b 不是一次函数;一次函数y=kx+b(k≠0)必是一条直线的斜截式方程.问题·探究问题1 若直线l经过点P 0(x 0,y 0),且与x 轴垂直,其直线方程怎样表示?若直线l经过点P 0(x 0,y 0),且与y 轴垂直,其直线方程怎样表示?探究:与x 轴垂直的直线上的所有点的横坐标都相等且等于x 0,纵坐标任意,方程可表示为x=x 0;与y 轴垂直的直线上的所有点的纵坐标都为y 0,而横坐标任意,所以方程可表示为y=y 0. 问题2 是否任何直线都存在y 轴上的截距?探究:不是任何直线都存在y 轴上的截距,平行于y 轴的直线与y 轴没有交点,所以不存在纵截距,其他的直线都有y 轴上的截距,即纵截距.问题3 直线的斜截式方程的截距指纵截距,是否也可以导出横截距的直线方程?探究:直线的斜截式方程是由点斜式自然推出y=kx+b.若k≠0,可化为x=k 1(y-b)=k b y k -1,这时对k 的要求更多,而当k 不存在时,也存在在x 轴上有截距的直线;k=0时,这样的直线与x 轴或者平行或者重合,此时在x 轴上的截距不存在.典题·热题例1 分别求出经过点P(3,4)且满足下列条件的直线方程,并画出图形.(1)斜率k=2;(2)与x 轴平行;(3)与x 轴垂直.思路解析:经过一个点求直线的方程,若所求直线与x 轴或y 轴垂直,则可直接写出所求直线的方程,其他情形可直接用公式求出.过一点求直线的方程,若斜率不存在或斜率为零时,可直接写出直线的方程,将此作为一种特殊情况熟练掌握.解:(1)这条直线经过点P(3,4),斜率k=2,点斜式方程为y-4=2(x-3),可化为2x-y-2=0.如图3-2-1(1)所示.(2)由于直线经过点P(3,4)且与x 轴平行,所以直线方程为y=4.如图3-2-1(2)所示.(3)由于直线经过点P(3,4)且与x 轴垂直,所以直线方程为x=3.如图3-2-1(3)所示.图3-2-1深化升华 本题是对直线的点斜式方程公式的直接应用,在倾斜角不为90°,即斜率存在时,直接代入直线的点斜式方程即可.若直线倾斜角为90°时方程可直接写出.例2 已知直线l 1:(m 2-m-2)x+2y+m-2=0,l 2:2x+(m-2)y+2=0,求m取何值时,l 1∥l 2?l 1⊥l 2? 思路解析:可以通过两直线斜率的关系来判断,但要注意直线斜率不存在的情况. 解:当m=2时,直线l 2的斜率不存在,可验证l 1的斜率为0,此时两直线垂直.当m≠2时,可把直线方程化为斜截式求出直线斜率和在y 轴上的截距,k 1=222---m m ,k 2=m -22.所以当k 1=k 2时解得m=3或m=0.但m=0时可得两直线方程相同,即直线重合.所以当m=3时l 1∥l 2.当k 1k 2=-1时两直线垂直,解得m=-2.综上可知,当m=3时l 1∥l 2;当m=±2时两直线垂直.拓展延伸 在前面我们已研究了两直线的平行与判定,如果给出两条直线的斜截式方程l 1:y=k 1x+b 1,l 2:y=k 2x+b 2,来判断两直线位置关系,则l 1∥l 2⇔k 1=k 2且b 1≠b 2,l 1⊥l 2⇒k 2k 1=-1.当一直线的斜率不存在时,若两直线平行,则另一直线的斜率也不存在;若两直线垂直,则另一直线的斜率等于0.如果给出的方程不是斜截式,可先化为斜截式,在化时要注意等价性(不要丢解).利用此性质,也可求与已知直线平行或垂直的直线.变式:直线2x-y+k=0和4x-2y+1=0的位置关系是( )A.平行B.垂直C.平行或重合D.既不平行也不重合解析:把两直线的方程化为斜截式为y=2x+k 和y=212+x ,其斜率相等.当k=21时,两直线重合,当k≠21时,两直线平行. 答案:C例3 直线经过点A(2,1),B(0,-3),求此直线的斜截式方程.若将A(2,1)换成A(2+a 2,1+a 2),要使k AB 最大,其直线方程又怎样?思路解析:已知两点,可先求出斜率,再写出斜截式方程.要使k AB 最大,需对参数进行取值研究.解:先求出此直线的斜率k AB =2231=+,再由斜截式写出方程y=2x-3.当A(2,1)变成A(2+a 2,1+a 2)时,k AB =221231222++=+++a a a ,当a 2=0时,k AB 取最大值2.此时直线的方程仍为y=2x-3.误区警示 由于斜截式方程和点斜式方程都是用斜率k 表示的,故这两类直线方程不能用来表示垂直于x 轴的直线,这在解题中应注意,否则会产生漏解.。

(完整版)新人教版高中数学必修2知识点总结

(完整版)新人教版高中数学必修2知识点总结

高中数学必修 2 知识点总结 (2)画三视图的原则:长对齐、高对齐、宽相等( 1)棱柱:定义 :有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体。

分类 :以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱 ABCDE A 'B 'C 'D 'E ' 或用对角线的端点字母,如五棱柱 AD 几何特征 :两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于 底面的截面是与底面全等的多边形。

(2)棱锥定义 :有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类 :以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示 :用各顶点字母,如五棱锥 P A 'B 'C 'D 'E '几何特征 :侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高 的比的平方。

( 3)棱台:定义 :用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类 :以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示 :用各顶点字母,如五棱台 P A 'B 'C 'D 'E '几何特征 :①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 ( 4)圆柱:定义 :以矩形的一边所在的直线为轴旋转 ,其余三边旋转所成的曲面所围成的几何体 几何特征 :①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

( 5)圆锥:定义 :以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征 :①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

( 6)圆台:定义: 用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征: ①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

最新人教版高中数学必修2第三章《两条平行直线间的距离》

最新人教版高中数学必修2第三章《两条平行直线间的距离》

3.3.4 两条平行直线间的距离1.掌握两条平行直线间距离的定义.2.会求两条平行直线间的距离.两条平行直线间的距离(1)定义:夹在两条平行直线间__________的长叫做这两条平行直线间的距离.(2)求法:转化为求__________的距离,即在其中任意一条直线上任取一点,这点到另一条直线的距离就是这两条平行直线间的距离.【做一做】 两条平行直线x +y +2=0与x +y -3=0的距离等于( ) A.52 2 B.22 C .5 2 D. 2答案:(1)公垂线段 (2)点到直线【做一做】 A两条平行直线间的距离公式剖析:对于直线l 1:A 1x +B 1y +C 1=0,直线l 2:A 2x +B 2y +C 2=0.当直线l 1∥l 2时,它们的方程可以化为以下形式:直线l 1:A x +B y +D 1=0,直线l 2:A x +B y +D 2=0. 在直线l 1上任取一点P(x 0,y 0),则有l 1:A x 0+B y 0+D 1=0,即A x 0+B y 0=-D 1.所以点P 到直线l 2的距离d =|Ax 0+By 0+D 2|A 2+B 2=|-D 1+D 2|A 2+B 2=|D 1-D 2|A 2+B 2, 即直线l 1,l 2的距离d =|D 1-D 2|A 2+B 2.(1)使用两条平行直线间的距离公式的前提条件:①把直线方程化为直线的一般式方程;②两条直线方程中x ,y 系数必须分别相等.(2)求两条平行直线间的距离通常转化为其中一条直线上任意一点到另一条直线的距离,且两条平行线间距离与其中一条直线上点的选取无关.(3)当两条直线都与x 轴(或y 轴)垂直时,可利用数形结合方法来解决.①两条直线都与x 轴垂直时,l 1:x =x 1,l 2:x =x 2,则两条平行直线间的距离d =|x 2-x 1|;②两条直线都与y 轴垂直时,l 1:y =y 1,l 2:y =y 2,则两条平行直线间的距离d =|y 2-y 1|.题型一:求两条平行线间的距离【例1】 求两条平行线l 1:3x +4y -5=0和l 2:6x +8y -9=0间的距离.反思:求两条平行直线间距离有两种思路:①利用“化归”思想将两条平行直线间的距离转化为求其中一条直线上任意一点到另一条直线的距离.由于这种求法与点的选择无关,因此,选点时,常选取一个特殊点,如直线与坐标轴的交点等,以便于运算,如本题解法一.②利用两条平行直线间的距离公式d =|C 1-C 2|A 2+B 2,如本题解法二. 题型二:两条平行直线间距离公式的应用【例2】 平行于直线x -3y =0,且与其距离为3的直线l 的方程是__________. 反思:求平行于直线A x +B y +C =0的直线方程时,常设为A x +B y +m =0(m ≠C),利用待定系数法来解决.有关平行直线间距离问题,常利用两条平行直线间的距离公式列出方程来解决.题型三:易错辨析易错点 利用两条平行直线间的距离公式求距离时,常忽略方程的系数【例3】 求两条平行直线l 1:3x +4y +2=0,l 2:12x +16y -8=0之间的距离.错解:d =|2-(-8)|32+42=105=2. 错因分析:错解中,没有把l 2的方程化为3x +4y +m =0的形式,导致出错.反思:使用两条平行线间的距离公式求距离时,应把直线方程化为一般式,同时要使两个直线方程中x ,y 的系数对应相等.答案:【例1】 解:解法一:在直线l 1:3x +4y -5=0上任取一点,不妨取点P (0,54), 则点P 到直线l 2:6x +8y -9=0的距离即为两条平行直线间的距离.因此d =|0×6+8×54-9|62+82=110. 解法二:把l 2:6x +8y -9=0化为3x +4y -92=0, 由两条平行直线间的距离公式,得d =|-5-(-92)|32+42=110. 【例2】 x -3y +6=0或x -3y -6=0【例3】 正解:l 2:12x +16y -8=0可化为3x +4y -2=0,根据两条平行线间的距离公式,可得d =|2-(-2)|32+42=45.1.直线46x y -=1与y =32x +1之间的距离为( )A.13B.13C.2D.242.平行直线x-y=0与x-y+m=0,则实数m=__________.3.直线l与两条平行直线l1:x-3y+1=0,直线l2:x-3y+5=0的距离相等,则直线l的方程是__________.4.两条平行线3x+4y+5=0与6x+a y+30=0间的距离为d,则a+d=__________.5.求与直线l:5x-12y+6=0平行且到l的距离为2的直线方程.答案:1.B 2.±2 3.x-3y+3=0 4.105.解:设所求直线的方程为5x-12y+m=0(m≠6),由两条直线的距离为2=2.则m=32或m=-20,故所求直线方程为5x-12y+32=0或5x-12y-20=0.。

必修二数学第三章知识点归纳

必修二数学第三章知识点归纳

必修二数学第三章知识点归纳必修二数学第三章的主要知识点归纳如下:1. 余弦定理:用于计算三角形的边长和角度。

余弦定理表示为:c^2 = a^2 + b^2 - 2ab*cosC,其中c是对边的边长,a和b是与对边夹角相邻的两边的边长,C是夹角。

2. 正弦定理:用于计算三角形的边长和角度。

正弦定理表示为:sinA/a = sinB/b = sinC/c,其中A、B、C分别为三角形的角度,a、b、c分别为对应的边长。

3. 合角公式:两角的和的正弦、余弦、正切关系公式。

例如:sin(A + B) = sinAcosB + cosAsinB,cos(A + B) = cosAcosB - sinAsinB,tan(A + B) = (tanA + tanB) / (1 - tanAtanB)。

4. 二次函数:函数的一种形式,表示为y = ax^2 + bx + c,其中a、b、c是常数,a 不等于0。

二次函数的图像是抛物线,开口方向取决于a的正负。

5. 判别式:二次函数的判别式用于判断二次方程的根的性质。

判别式表示为Δ = b^2 - 4ac,当Δ大于0时,方程有两个不等实根,当Δ等于0时,方程有一个重根,当Δ小于0时,方程无实根。

6. 因式分解:将二次函数拆解为两个一次函数的乘积。

根据二次函数形式及反推求解法,可以得到二次函数的因式分解形式。

7. 配方法:一种求解二次方程的方法,通过改变二次函数的形式,使其变为一个完全平方后进行因式分解。

该方法适用于二次方程的判别式大于0。

8. 平移变换:对函数图像进行水平或垂直方向的平移,改变函数的图像位置。

平移变换表达式为f(x + h) + k,其中h为水平方向平移量,k为垂直方向平移量。

9. 轴对称:函数图像以某条直线为对称轴,两边关于该轴对称。

二次函数的对称轴方程为x = -b/ 2a,其中a、b为二次函数的系数。

这些是必修二数学第三章的主要知识点,希望对你有帮助!。

人教A版高中数学必修二课件:第三章章末小结

人教A版高中数学必修二课件:第三章章末小结


a≠1
时,直线
l2
的斜率为- 1 ,
������-1
由-������×(- 1 )=-1 得 a=2.
2
������-1
3
数学(RA-GZ) -必修2
【小结】掌握两条直线平行或垂直的充要条件是关键,平行与垂 直的问题转化为方程的系数之间的关系的问题,把几何问题转化为代
数的问题,注意斜率不存在的情况.
5
数学(RA-GZ) -必修2
【小结】常见的直线系方程有(1)平行的直线系方程,与直线
Ax+By+C=0 平行的直线系方程为 Ax+By+M=0(M≠C)或与 y=kx+b 平行的 直线系方程为 y=kx+n(n≠b);(2)垂直的直线系方程,与直线 Ax+By+C=0 垂直的直线系方程为 Bx-Ay+N=0;(3)经过两条直线交点的 直线系方程,经过直线 l1:A1x+B1y+C1=0 与 l2:A2x+B2y+C2=0 的交点的直 线系方程为(A1x+B1y+C1)+m(A2x+B2y+C2)=0(其中 m 为实数),方程不包 括直线 l2.
况,进而可求出这些量的变化范围.
数学(RA-GZ) -必修2
题型五:考查直线系方程的应用
【例 5】求过直线 l1:x-2y+3=0 与直线 l2:2x+3y-8=0 的交点,且 分别满足下列条件的直线方程.
(1)与直线 l:3x+4y-2=0 平行. (2)到点 P(0,4)的距离为 2.
数学(RA-GZ) -必修2
+ +
������1 ������2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修二第三章知识点总结
一、直线与方程
1.直线的倾斜角
定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180° 2.直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k
当[) 90,0∈α时,0≥k ; 当() 180
,90∈α时,0<k ; 当 90=α时,k 不存在。

②过两点的直线的斜率公式:)(211
212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

3.直线方程
①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x
注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b
③两点式:
112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b
+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。

⑤一般式:0=++C By Ax (A ,B 不全为0)
注意:○
1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); 4.直线系方程:即具有某一共同性质的直线
(1)平行直线系
平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)
(2)垂直直线系
垂直于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系: 00-+=0B x A y m (m为常数)
(3)过定点的直线系
(ⅰ)斜率为k 的直线系:
()00x x k y y -=-,直线过定点()00,y x ; (ⅱ)过两条直线0:
1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程
为 ()()0222111=+++++C y B x A C y B x A λ(λ为参数)
,其中直线2l 不在直线系中。

5.两直线平行与垂直
(1)当111:b x k y l +=,222:b x k y l +=时,
212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l
(2)当11112222:+y+0,:++0l A x B C l A x B y C ==
1212121212-0-0l l A B B A AC C A ⇔=≠且
121212+0l l A A B B ⊥⇔=
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

6.两条直线的交点
0:1111=++C y B x A l 0:2222=++C y B x A l 相交
交点坐标即方程组⎩⎨⎧=++=++0
0222111C y B x A C y B x A 的一组解。

方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合
7.两点间距离公式:设1122(,),A x y B x y ,()
是平面直角坐标系中的两个点,
则||AB =
8.点到直线距离公式:一点)00,y x P 到直线0:1=++C By Ax l 的距离2200B
A C By Ax d +++=
9.两平行直线距离公式
(1)在任一直线上任取一点,再转化为点到直线的距离进行求解。

(2)两条平行直线Ax+By+m=0,Ax+By+n=0的距离
d
二同步检测
(一)选择题
1.点P (-1,2)到直线8x-6y+15=0的距离为( )
(A )2 (B )21 (C )1 (D )2
7 2.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是( )
A 3x-y-8=0 B 3x+y+4=0 C 3x-y+6=0 D 3x+y+2=0
3.图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ).
A .k 1<k 2<k 3
B .k 3<k 1<k 2
C .k 3<k 2<k 1
D .k 1<k 3<k 2
4.如果AC <0,且BC <0,那么直线Ax +By +C =0不通过( ).
A .第一象限
B .第二象限
C .第三象限
D .第四象限 5.直线mx-y+2m+1=0经过一定点,则该点的坐标是 ( )
A (-2,1)
B (2,1)
C (1,-2)
D (1,2)
6.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( )
(A )x+5y-15=0 (B)x=3 (C) x-y+1=0 (D)y-3=0
(第2题)
7..将直线l 沿y 轴的负方向平移a (a >0)个单位,再沿x 轴正方向平移a +1个单位得直线l',此时直线l' 与l 重合,则直线l' 的斜率为( ).
A .1+a a
B .1+-a a
C .a a 1+
D .a
a 1+- 8.点(4,0)关于直线x +y +2=0的对称点是( ).
A .(-6,8)
B .(-8,-6)
C .(6,8)
D .(-2,-6) 9.直线0202=++=++n y x m y x 和的位置关系是
(A )平行 (B )垂直 (C )相交但不垂直 (D )不能确定
10.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )
A .360x y +-=
B .320x y -+=
C .320x y +-=
D .320x y -+=
(二)填空题
11.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 . 12.直线10x y -+=上一点P 的横坐标是3,若该直线绕点P 逆时针旋转090得直线l ,则直线l 的方程是 .
13.直线5x+12y+3=0与直线10x+24y+5=0的距离是 . 14.若方程02222=++-y x my x 表示两条直线,则m 的取值是
(三)解答题
15.∆ABC 中,A (0,1),AB 边上的高线方程是x+2y-4=0,AC 边上的中线方程是2x+y-3=0,求直线AB,BC,AC 所在的中线方程
16..已知点(1,1)A ,(2,2)B ,点P 在直线x y 2
1=上,求22PB PA +取得 最小值时P 点的坐标。

17.求经过点(2,2)A 并且和两个坐标轴围成的三角形的面积是1的直线方程。

18.直线l 过点(1,2)和第一、二、四象限,若直线l 的横截距与纵截距之和为6,求直线l 的方程.
19.过点(2,3)的直线l被两条直线1l :2x-5y+9=0,2l :2x-5y-7=0所截得的线段AB 的中
点恰好在直线x-4y-1=0上,求直线l的方程
20.已知直线l:2x-y+1=0和点A(-1,2),B(0,3),在l上找一点P ,使得|PA |+|PB |
的值最小,并求出最小值。

相关文档
最新文档