数学人教版七年级下册7.2.2用坐标表示平移训练题

合集下载

人教版七年级数学下册7.2.2用坐标表示平移同步测试(含答案)

人教版七年级数学下册7.2.2用坐标表示平移同步测试(含答案)

绝密★启用前用坐标表示平移班级:姓名:一、单项选择题1.已知点A( 5,﹣ 1),现将点 A 沿 x 轴正方向挪动 1 个单位长度后抵达点B,那么点 B 的坐标是()A.( 6,﹣ 1)B.( 5,0)C.(4,﹣ 1)D.(﹣ 5, 1)2.将点A 2, 1 向左平移 3 个单位长度,在向上平移4 个单位长度获得点B,则点B的坐标是()A.5,3B.5,5C.1, 5D.1,33.如图,已知点,的坐标分别为( 3,0 ),( 0,4),将线段平移到,若点的对应点的坐标为( 4,2 ),则的对应点的坐标为()A.( 1,6)B.( 2,5)C.( 6, 1)D.( 4, 6)4.将某图形的各极点的横坐标保持不变,纵坐标减去3,可将该图形()A.横向向右平移3个单位B.横向向左平移3个单位C.纵向向上平移3个单位D.纵向向下平移3个单位5.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A.向右平移了 3 个单位B.向左平移了 3 个单位C.向上平移了 3 个单位D.向下平移了 3 个单位6.在内的随意一点经过平移后的对应点为,已知在经过此次平移后对应点的坐标为,则的值为()A.B.C.D.7.已知线段AB 在平面直角坐标系中,A, B 坐标分别为( m, n),( 2, 3),将线段AB 平移至A1B1, A1, B1坐标为( n-1,3-m ),( -1, -2),则 A 点的坐标是()A.( -5, 3)B.( -3, 5)C.( 3, -5)D.( 5, 3)8.如图,将点 A 先向右平移 3 个单位长度,在向下平移 5 个单位长度,获得A’;将点 B 先向下平移5 个单位长度,再向右平移 4 个单位长度,获得B’,则 A’与 B’相距()A. 4 个单位长度B. 5 个单位长度C.6 个单位长度D.7 个单位长度二、填空题9.在平面直角坐标系中,将点A(5,﹣8)向左平移获得点B( x+3,x﹣ 2),则点 B 的坐标为 _____.10.如图,将直角三角形ABC 沿 BC 方向平移必定距离获得三角形DEF ,若AB 8 , BE 3 ,DG 2 则图中暗影部分面积为_____.11.在平面直角坐标系中,将点Q 向下平移 4 个单位长度后获得点2, 6 ,则点 Q 的坐标是__________.12.如图,在△AOB 中, AO=AB,在直角坐标系中,点 A 的坐标是(2,2),点 O 的坐标是( 0,0),将△AOB 平移获得△ A′O′,B使′得点 A′在 y 轴上.点 O′、 B′在 x 轴上.则点 B'的坐标是 ______三、解答题13.如图,在平面直角坐标系中,△ ABC的三个极点的坐标分别为:A( -1, 2), B(-2, -1), C (2,0).( 1)作图:将△ ABC先向右平移4 个单位,再向上平移 3 个单位,则获得△ A1B1C1,作出△A1B1C1;(不要求写作法)(2)写出以下点的坐标: A1______ ;B1______; C1______.(3)求△ ABC 的面积 .一、单项选择题1.在平面直角坐标系中,将点A(﹣ 1,﹣ 2)向右平移 3 个单位长度获得点B,则点 B 对于 x 轴的对称点 B′的坐标为()A.(﹣ 3,﹣ 2)B.( 2, 2)C.(﹣ 2, 2)D.( 2,﹣ 2)2.在直角坐标系中 ,某三角形三个极点的横坐标不变,纵坐标都增添 2 个单位长度 ,则所得三角形与原三角形对比()A.形状不变 ,面积扩大 2 倍B.形状不变 ,地点向上平移 2 个单位长度C.形状不变 ,地点向右平移 2 个单位长度D.以上都不对3.将三角形 ABC的三个极点的纵坐标都加上3,横坐标不变,表示将该三角形()A.沿 x 轴的正方向平移了3个单位长度B.沿 x 轴的负方向平移了3个单位长度C.沿 y 轴的正方向平移了3个单位长度D.沿 y 轴的负方向平移了3个单位长度4.如图,已知一个直角三角板的直角极点与原点重合,另两个极点A, B 的坐标分别为(-1, 0),( 0, 3 ).现将该三角板向右平移使点 A 与点 O 重合,获得△ OCB’,则点 B 的对应点B’的坐标是()A.(1,0)B.(3, 3 )C.(1,3)D.(-1, 3 )5.如图,在 x 轴的正半轴和与x 轴平行的射线上各搁置一块平面镜,发光点(0,1)处沿如下图方向发射一束光,每当遇到镜面时会发生反射(反射时反射角等于入射角,认真看光芒与网格线和镜面的夹角),当光芒第20 次遇到镜面时的坐标为()A.( 60,0)B.( 58,0 )C.( 61,3)D.( 58,3)6.在平面直角坐标系中,线段CF是由线段AB 平移获得的;点A( -1,4)的对应点为C( 4, 1);则点 B( a, b)的对应点 F 的坐标为()A.( a+3, b+5)B.( a+5, b+3)C.( a-5,b+3)D.( a+5,b-3)7.将某图形的横坐标都减去2,纵坐标不变,则该图形()A.向右平移 2 个单位B.向左平移 2 个单位C.向上平移 2 个单位D.向下平移 2 个单位8.点 A(-3, -5)向右平移 2 个单位,再向下平移 3 个单位到点B,则点 B 的坐标为()A.(-5,-8)B. (-5,-2)C. (-1,-8)D. (-1,-2)二、填空题9.如图,△ ABC的极点都在网格点上,将△ ABC向右平移 3 个单位长度,再向上平移 2 个单位长度,则平移后获得的△ A′B′三C个′极点 A′、 B′、C′的坐标分别是 _____.10.如图,线段AB 经过平移获得线段A'B' ,此中点A,B的对应点分别为点A', B' ,这四个点都在格点上,若线段AB 上有一个点P a,b ,则点P在A'B'上的对应点P'的坐标为______.11.若将P 1,m向右平移 2 个单位长度后,再向上平移 1 个单位长度获得点Q n,3 ,则点 m,n的实质坐标是 ______ .12.线段 CD 是由线段 AB 平移获得的,此中点 A(﹣ 1,4)平移到点 C(﹣ 3, 2),点 B( 5,﹣ 8)平移到点 D,则 D 点的坐标是 ________.三、解答题13.如图,△ ABC在直角坐标系中,(1)请写出△ ABC各点的坐标 .(2)求出△ ABC的面积 .(3)若把△ ABC向上平移 2 个单位,再向右平移 2 个单位得△ A′B′,C在′图中画出△ ABC 变化地点。

人教版七年级下册 第七章 7.2.2 用坐标表示平移 同步练习题.docx

人教版七年级下册 第七章 7.2.2 用坐标表示平移 同步练习题.docx

人教版七年级下册第七章7.2.2用坐标表示平移同步练习题1.若将点A(1,3)向左平移2个单位长度,再向下平移4个单位长度得到点B,则点B的坐标为( )A.(-2,-1) B.(-1,0) C.(-1,-1) D.(-2,0)2.如果点P(a,b)向上平移3个单位长度,再向左平移2个单位长度后得到的点的坐标是(-2,-3),那么a,b的值分别是( )A.a=0,b=0 B.a=0,b=-6 C.a=0,b=4 D.a=5,b=-13.如图,将三角形PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是( )A.(-2,-4) B.(-2,4) C.(2,-3) D.(-1,-3)4.已知三角形ABC顶点坐标分别是A(0,6),B(-3,-3),C(1,0),将三角形ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为( )A.(7,1) B.(1,7) C.(1,1) D.(2,1)5.如果将三角形ABC三个顶点的横坐标都减2,纵坐标都加6,得到三角形A′B′C′,则三角形A′B′C′是由三角形ABC先向____平移____个单位长度,再向____平移____个单位长度得到.6.已知三角形ABC三个顶点的坐标为(-2,1),(2,3),(-3,-1),把三角形ABC平移到一个确定位置,则平移后各顶点的坐标可能是( ) A.(0,3),(0,1),(-1,-1)B.(-3,2),(3,2),(-4,0)C.(1,-2),(3,2),(-1,-3)D.(-1,3),(3,5),(-2,1)7.如图,三角形OAB的顶点A的坐标为(3,5),点B的坐标为(4,0),把三角形OAB沿x轴向右平移得到三角形CDE,如果CB=1,那么点D的坐标为______________.8.如图,点A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,A1,B1的坐标分别为(2,a),(b,3),则a+b=____.9.如图,长方形ABCD四个顶点的坐标分别是A(1,23),B(4,23),C(4,3),D(1,3).(1)求这个长方形的面积;(2)将这个长方形向下平移23个单位长度,再向右平移1个单位长度,得到长方形A′B′C′D′,求长方形A′B′C′D′四个顶点的坐标.答案:1---4 CBAC5. 左 2 上 66. D7. (6,5)8. 29. 解:(1)33(2)A′(2,0),B′(5,0),C′(5,-3) ,D′(2,-3)。

七年级数学下册7.2.2 用坐标表示平移课时训练(含答案)

七年级数学下册7.2.2  用坐标表示平移课时训练(含答案)

7.2.2 用坐标表示平移要点感知1 在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点__________或__________;将点(x,y)向上(或下)平移b个单位长度,可以得到对应点__________或__________.预习练习1-1(2014·大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是( )A.(1,3)B.(2,2)C.(2,4)D.(3,3)要点感知2在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减)一个正数a,相应的新图形就是把原图形__________平移a个单位长度;如果把它各个点的纵坐标都加(或减)一个正数a,相应的新图形就是把原图形__________平移a个单位长度.预习练习2-1已知△ABC在平面直角坐标系中的位置如图所示,将△ABC向右平移6个单位,则平移后点A的坐标是( )A.(-2,1)B.(2,1)C.(2,-1)D.(-2,-1)知识点1 用坐标表示平移1.(2014·日照)将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是( )A.(2,3)B.(2,-1)C.(4,1)D.(0,1)2.如图,如果将△ABC向左平移2格得到△A′B′C′,则顶点A′的位置用数对表示为( )A.(5,1)B.(1,1)C.(7,1)D.(3,3)3.(2014·厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是__________,A1的坐标是__________.4.将点A(-3,1)向右平移5个单位长度,再向上平移6个单位长度,可以得到对应点A′的坐标为__________.知识点2 根据坐标变化确定图形的平移方向和距离5.在平面直角坐标系中,△ABC的三个顶点的横坐标保持不变,纵坐标都减去2个单位长度,则得到的新三角形与原三角形相比向__________平移了__________个单位长度.6.已知△ABC,若将△ABC平移后得到△A′B′C′,且点A(1,0)的对应点A′的坐标是(-1,0),则△ABC是向__________平移__________个单位得到△A′B′C′.7.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1)、B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为__________.知识点3 利用坐标画平移后的图形8.如图所示,一小船,将其向左平移6个单位长度,再向下平移5个单位长度,试确定A,B,C,D,E,F,G平移后对应点的坐标并画出平移后的图形.9.(2014·呼和浩特)已知线段CD是由线段AB平移得到的,点A(-1,4)的对应点为点C(4,7),则点B(-4,-1)的对应点D的坐标为( )A.(1,2)B.(2,9)C.(5,3)D.(-9,-4)10.(2013·泰安改编)在如图所示的单位正方形网格中,△ABC经过平移后得到△A1B1C1,已知在AC上一点P(2.4,2)平移后的对应点为P1,则P1点的坐标为( )A.(1.4,-1)B.(1.5,2)C.(-1.6,-1)D.(2.4,1)11.将点A(-2,1)先向右平移3个单位,再向下平移1个单位后得到点B(a,b),则ab=__________.12.如图所示,在△ABC中,任意一点M(x0,y0)经平移后对应点为M1(x0-3,y0-5),将△ABC 作同样平移,得到△A1B1C1,求△A1B1C1的三个顶点的坐标.13.如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.挑战自我14.如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一实数a,将得到的点先向右平移m个单位,再向上平移n 个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F 重合,求点F的坐标.参考答案课前预习要点感知1(x+a,y) (x-a,y) (x,y+b) (x,y-b)预习练习1-1 C要点感知2向右(或向左) 向上(或向下)预习练习2-1 B当堂训练1.D2.B3.(3,0) (4,3)4.(2,7)5.下 26.左 27.(-5,4)8.由A(1,2),B(3,1),C(4,1),D(5,2),E(3,2),F(3,4),G(2,3)可得平移后对应点为:A′(-5,-3),B′(-3,-4),C′(-2,-4),D′(-1,-3),E′(-3,-3),F′(-3,-1),G′(-4,-2).图略.课后作业9.A 10.C 11.012.由M(x0,y0)平移后变为M1(x0-3,y0-5)得到A1(0-3,5-5),B1(-1-3,2-5),C1(5-3,1-5),即A1(-3,0),B1(-4,-3),C1(2,-4).13.(1)三角形ABC向下平移7个单位得到三角形A1B1C1.A1(-3,-3),B1(-4,-6),C1(-1,-5).(2)三角形ABC向右平移6个单位,再向下平移3个单位得三角形A2B2C2.A2(3,1),B2(2,-2),C2(5,-1).14.易知AB=6,A′B′=3,所以a=1 2 .由(-3)×12+m=-1,得m=12.由0×12+n=2,得n=2.设F(x,y),变换后F′(ax+m,ay+n). 因为F与F′重合,所以ax+m=x,ay+n=y.所以12x+12=x,12y+2=y.解得x=1,y=4.所以点F的坐标为(1,4).。

人教版七年级下册7.2.2 用坐标表示平移(含答案).doc

人教版七年级下册7.2.2 用坐标表示平移(含答案).doc

7.2.2用坐标表示平移一、选择题1.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( )A.(3,1) B.(-1,1) C.(1,3) D.(1,-1)2.在平面直角坐标系中,将点P(-3,2)向下平移4个单位得到点P′,则点P′所在的象限为( ) A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是( )A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)4.如图,把三角形ABC先向右平移3个单位,再向上平移2个单位得到三角形DEF,则顶点C(0,-1)的对应点坐标为( )A.(0,0) B.(1,2) C.(1,3) D.(3,1)5.如图,点A(2,1),将线段OA先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A的对应点A′的坐标是( )A.(-3,2) B.(0,4) C.(-1,3) D.(3,-1)6.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为( )A.(1,3) B.(5,1) C.(1,3)或(3,5) D.(1,3)或(5,1)7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,3).现将该三角板向右平移使点A与点O重合,得到三角形OCB′,则点B的对应点B′的坐标是( )A.(1,0) B.(3,3) C.(1,3) D.(-1,3)二、填空题8.点N(-1,3)可以看作由点M(-1,-1)向平移个单位所得到的.9.已知点M(3a-9,1-a),将点M向左平移3个单位长度后落在y轴上,则a=. 10.如图,三角形OAB的顶点A,B的坐标分别为(3,5),(4,0),把三角形OAB沿x轴向右平移得到三角形CDE.如果CB=1,那么点D的坐标为.11.如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(-1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(-4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,-4)……按此做法进行下去,则点A10的坐标为.12.如图①是一个斜角坐标系,水平放置的轴称为横轴(记作a轴),斜向放置的轴称为斜轴(记作b轴).类似于直角坐标系,对于斜角坐标平面内的任意一点P,过点P分别作b轴、a轴的平行线交a轴、b轴于点M,N,若点M,N分别在a轴、b轴上所对应的实数为m与n,则称有序实数对(m,n)为点P的坐标.如图②,三角形ABC中,A(1,4),C(3,5),如果平移三角形ABC 得到三角形A′B′C′,使点A′与点C重合,在三角形ABC内部,有一任意点D(x,y),则平移后点D的对应点D′的坐标为________________.三、解答题13.如图,三角形ABC的顶点坐标分别为A(-2,3),B(-3,0),C(-1,-1).将三角形ABC 平移后得到三角形A′B′C′,且点A的对应点是A′(2,3),点B,C的对应点分别是B′,C′.(1)点A,A′之间的距离是;(2)请在图中画出三角形A′B′C′.14.如图,已知坐标平面内的三个点A(1,3),B(3,1),O(0,0).(1)平移三角形ABO至三角形A1B1O1,当点A1和点B重合时,求点O1的坐标;(2)平移三角形ABO至三角形A2B2O2,需要至少向下平移超过单位,并且至少向左平移超过个单位,才能使三角形A2B2O2位于第三象限.15.在平面直角坐标系中,三角形A′B′C′是由三角形ABC平移后得到的,已知三角形ABC内部的一点P(x0,y0)经平移后的对应点为P′(x0+5,y0-2).(1)三角形A′B′C′是由三角形ABC如何平移得到的?(2)若已知A(-1,2),B(-4,5),C(-3,0),请写出A′,B′,C′的坐标;(3)在(2)的条件下,求三角形A′B′C′的面积.16.如图,第一象限内有两点P(m-3,n),Q(m,n-2),将线段PQ平移,使点P,Q分别落在两条坐标轴上,求点P平移后的对应点的坐标.17.如图,在平面直角坐标系中,A(1,4),B(3,2),O为坐标原点,且OC∥AB,OC=AB.试用平移的知识求C点的坐标,并求四边形ABCO的面积.参考答案一、选择题1.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是( A)A.(3,1) B.(-1,1) C.(1,3) D.(1,-1)2.在平面直角坐标系中,将点P(-3,2)向下平移4个单位得到点P′,则点P′所在的象限为( C) A.第一象限B.第二象限C.第三象限D.第四象限3.在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点B,则点B的坐标是( A)A.(-1,1) B.(3,1) C.(4,-4) D.(4,0)4.如图,把三角形ABC先向右平移3个单位,再向上平移2个单位得到三角形DEF,则顶点C(0,-1)的对应点坐标为( D)A.(0,0) B.(1,2) C.(1,3) D.(3,1)5.如图,点A(2,1),将线段OA先向上平移2个单位长度,再向左平移3个单位长度,得到线段O′A′,则点A的对应点A′的坐标是( C)A.(-3,2) B.(0,4) C.(-1,3) D.(3,-1)6.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB平移,使其一个端点到C(3,2),则平移后另一端点的坐标为( D)A.(1,3) B.(5,1) C.(1,3)或(3,5) D.(1,3)或(5,1)7.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,3).现将该三角板向右平移使点A与点O重合,得到三角形OCB′,则点B的对应点B′的坐标是( C)A.(1,0) B.(3,3) C.(1,3) D.(-1,3)二、填空题8.点N(-1,3)可以看作由点M(-1,-1)向平移个单位所得到的.【答案】上 49.已知点M(3a-9,1-a),将点M向左平移3个单位长度后落在y轴上,则a=. 【答案】410.如图,三角形OAB的顶点A,B的坐标分别为(3,5),(4,0),把三角形OAB沿x轴向右平移得到三角形CDE.如果CB=1,那么点D的坐标为.【答案】(6,5)11.如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A1(1,1);把点A1向上平移2个单位,再向左平移2个单位,得到点A2(-1,3);把点A2向下平移3个单位,再向左平移3个单位,得到点A3(-4,0);把点A3向下平移4个单位,再向右平移4个单位,得到点A4(0,-4)……按此做法进行下去,则点A10的坐标为.【答案】(-1,11)12.如图①是一个斜角坐标系,水平放置的轴称为横轴(记作a轴),斜向放置的轴称为斜轴(记作b轴).类似于直角坐标系,对于斜角坐标平面内的任意一点P,过点P分别作b轴、a轴的平行线交a轴、b轴于点M,N,若点M,N分别在a轴、b轴上所对应的实数为m与n,则称有序实数对(m,n)为点P的坐标.如图②,三角形ABC中,A(1,4),C(3,5),如果平移三角形ABC 得到三角形A′B′C′,使点A′与点C重合,在三角形ABC内部,有一任意点D(x,y),则平移后点D的对应点D′的坐标为________________.【答案】(x+2,y+1)三、解答题13.如图,三角形ABC的顶点坐标分别为A(-2,3),B(-3,0),C(-1,-1).将三角形ABC 平移后得到三角形A′B′C′,且点A的对应点是A′(2,3),点B,C的对应点分别是B′,C′.(1)点A,A′之间的距离是;(2)请在图中画出三角形A′B′C′.解:(1)4(2)如图所示,三角形A′B′C′即为所求.14.如图,已知坐标平面内的三个点A(1,3),B(3,1),O(0,0).(1)平移三角形ABO至三角形A1B1O1,当点A1和点B重合时,求点O1的坐标;(2)平移三角形ABO至三角形A2B2O2,需要至少向下平移超过单位,并且至少向左平移超过个单位,才能使三角形A2B2O2位于第三象限.解:(1)点O1的坐标为(2,-2).(2)3 315.在平面直角坐标系中,三角形A′B′C′是由三角形ABC平移后得到的,已知三角形ABC内部的一点P(x0,y0)经平移后的对应点为P′(x0+5,y0-2).(1)三角形A′B′C′是由三角形ABC如何平移得到的?(2)若已知A(-1,2),B(-4,5),C(-3,0),请写出A′,B′,C′的坐标;(3)在(2)的条件下,求三角形A′B′C′的面积.解:(1)三角形ABC先向右平移5个单位长度,再向下平移2个单位长度(或先向下平移2个单位长度,再向右平移5个单位长度)得到三角形A′B′C′.(2)A′(4,0),B′(1,3),C′(2,-2).(3)将三角形A ′B ′C ′补成如图所示的长方形,则S 三角形A ′B ′C ′=3×5-12×5×1-12×2×2-12×3×3=6.16.如图,第一象限内有两点P (m -3,n ),Q (m ,n -2),将线段PQ 平移,使点P ,Q 分别落在两条坐标轴上,求点P 平移后的对应点的坐标.解:设平移后点P ,Q 的对应点分别是P ′,Q ′.分两种情况:①P ′在y 轴上,Q ′在x 轴上,则P ′的横坐标为0,Q ′的纵坐标为0.∵0-(n -2)=-n +2,∴n -n +2=2.∴点P 平移后的对应点的坐标是(0,2).②P ′在x 轴上,Q ′在y 轴上,则P ′的纵坐标为0,Q ′的横坐标为0.∵0-m =-m ,∴m -3-m =-3.∴点P 平移后的对应点的坐标是(-3,0).综上可知,点P 平移后的对应点的坐标是(0,2)或(-3,0).17.如图,在平面直角坐标系中,A (1,4),B (3,2),O 为坐标原点,且OC ∥AB ,OC =AB .试用平移的知识求C 点的坐标,并求四边形ABCO 的面积.解:∵把A 点向左平移1个单位长度,再向下平移4个单位长度可得到原点O (0,0),又∵OC ∥AB ,OC =AB ,∴OC 可由AB 向左平移1个单位长度,再向下平移4个单位长度得到.∴点B (3,2)向左平移1个单位长度,再向下平移4个单位长度得到点C (2,-2).分别过A ,C 作x 轴的平行线,过B 作y 轴的平行线,交点为D ,E ,F ,G ,如图所示.S 四边形ABCO =S 长方形DEFG-S 三角形AOD -S 三角形COE -S 三角形BCF -S 三角形ABG =3×6-12×1×4-12×2×2-12×1×4-12×2×2=10.。

新人教版数学七年级下册 第七章平面直角坐标系7.2.2《用坐标表示平移》(解析版).docx

新人教版数学七年级下册 第七章平面直角坐标系7.2.2《用坐标表示平移》(解析版).docx

新人教版数学七年级下册第七章平面直角坐标系7.2.2《用坐标表示平移》(解析版)一、选择题1、如图1所示,为了得到点B需将点A向右平移( )A、3个单位长度B、4个单位长度C、5个单位长度D、6个单位长度2、如图1所示,将点A向下平移5个单位长度后,将重合于图中的( )A、点CB、点FC、点DD、点E3、如图1所示,将点A行向右平移3个单位长度,再向下平移5个单位长度,得到;将点B先向下平移5个单位长度,再向右平移3个单位长度,得到;则与相距( )A、4个单位长度B、5个单位长度C、6个单位长度D、7个单位长度4、如图1所示,点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5 个单位长度,得到G′,则G′的坐标为( )A、(6,5)B、(4,5)C、(6,3)D、(4,3)5、点P(8,3)向上平移6个单位长度,下列说法正确的是()A、点P的横坐标加6,纵坐标不变B、点P的纵坐标加6,横坐标不变C、点P的横坐标减6,纵坐标不变D、点P的纵坐标减6,横坐标不变6、把点A(0,0)先向右平移1个单位长度,再向下平移2个单位长度后,得到的点B位于()A、第一象限B、第二象限C、第三象限D、第四象限7、将点A(a ,-3)先向右平移2个单位长度,再向上平移4个单位长度得到点B(4,b),则a和b 的值分别为()A、(1,4)B、(4,1)C、(2,1)D、(1,2)8、在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位得到点Q,则点Q的坐标是()A、(-2,6)B、(-2,0)C、(1,3)D、(-5,3)9、将某图形的横坐标都减去2,纵坐标不变,则该图形()A、向右平移2个单位B、向左平移2个单位C、向上平移2个单位D、向下平移2个单位10、线段CD是由线段AB平移得到的,点A(﹣1,5)的对应点为C(4,8),则点B(﹣4,﹣2)的对应点D的坐标为()A、(﹣9,﹣5)B、(﹣9,1)C、(1,﹣5)D、(1,1)11、已知三角形ABC平移后得到三角形A1B1C1,且A(-2,3),B(-4,-1),C1(m ,n),C (m+5,n+3),则A1,B1两点的坐标为()A、(3,6),(1,2)B、(-7,0),(-9,-4)C、(1,8),(-1,4)D、(-7,-2),(0,-9)12、如图,一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动:即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A、(4,0)B、(5,0)C、(0,5)D、(5,5)13、已知点A(-4,-6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A′,则A′的坐标为()A、(0,0)B、(1,1)C、(2,2)D、(5,5)14、已知平面内两点M、N,如果它们平移的方式相同,那么平移后它们之间的相对位置是()A、不能确定B、发生变化C、不发生变化D、需分情况说明15、已知△ABC,A(-3,2),B(1,1),C(-1,-2),现将△ABC平移,使点A到点(1,-2) 的位置上,则点B,C平移后对应点的坐标分别为()A、(-3,5),(-6,3)B、(5,-3),(3,-6)C、(-6,3),(-3,5)D、(3,-6),(5,-3)二、填空题16、将点P(-3,4)向下平移3个单位,向左平移2个单位后得到点Q,则点Q的坐标为________.17、三角形ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,且使A与A′重合,则B、C两点对应点的坐标分别为________,________.18、如图,已知A(0,1),B(2,0),把线段AB平移后得到线段CD,其中C(1,a),D(b ,1)则a+b =________.19、在平面直角坐标系中,若点M(1,3)与点N(x ,3)之间的距离是5,则x的值是________.20、如图,在直角坐标系中,右边的蝴蝶是由左边的蝴蝶飞过去以后得到的,左图案中左右翅尖的坐标分别是(-4,2)、(-2,2),右图案中左翅尖的坐标是(3,4),则右图案中右翅尖的坐标是________.三、解答题21、如图,在平面网格中每个小正方形的边长为1.(1)线段CD是线段AB经过怎样的平移后得到的?(2)线段AC是线段BD经过怎样的平移后得到的?22、如图,四边形ABCD各个顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0).(1)确定这个四边形的面积,你是怎么做的?(2)如果四边形ABCD各个顶点的纵坐标保持不变,横坐标增加2,所得的新四边形的面积是多少?23、与在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:________,________,________;(2)说明由经过怎样的平移得到:________;(3)若点(,)是内部一点,则平移后内的对应点的坐标为________;(4)求的面积.答案解析部分一、选择题1、【答案】B【考点】坐标与图形变化-平移【解析】【解答】结合图形可以得知A向右平移4个单位长度可得到点B.【分析】坐标系中的点的平移规律是从观察坐标系中点的变化规律总结得到的.2、【答案】D【考点】坐标与图形变化-平移【解析】【解答】将点A向下平移5个单位长度后,将重合于图中的点E.【分析】坐标系中的点的平移规律是从观察坐标系中点的变化规律总结得到的.3、【答案】A【考点】坐标与图形变化-平移【解析】解答:根据平移的特点可以知道,点A、B经过相同的平移得到分别得到点与,所以点与间的距离与点A、B之间的距离相等,均为4个单位长度.分析:先左右平移还是先上下平移坐标系内的点不影响平移后点的位置.4、【答案】D【考点】坐标与图形变化-平移【解析】【解答】点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G′的坐标为(4,3).【分析】按要求在坐标系内平移点G,即可得知点G′的坐标.5、【答案】B【考点】坐标与图形变化-平移【解析】【解答】向上平移6个单位长度,即纵坐标加6,横坐标不变.【分析】坐标系中的点上下平移时:横坐标不变,向正方向平移几个单位长度,纵坐标就加几,向负方向平移几个单位长度,纵坐标就减几.6、【答案】D【考点】坐标与图形变化-平移【解析】【解答】由平移规律得点B为(1,-2),又横坐标为正,纵坐标为负是第四象限内的点的特征,所以选择D【分析】坐标系中的点的平移规律为:左右移横变,上下移纵变;正方向移加,负方向移减.7、【答案】C【考点】解一元一次方程,坐标与图形变化-平移【解析】【解答】由平移规律可知,由点A平移后得到的点B坐标为(a+2,1),又∵点B为(4,b),∴a+2=4,b=1,∴a=-2,b=1.【分析】根据平移规律得到点B的坐标,再与所给的点B的坐标对比得到关于a与b的一元一次方程,解该方程即可.8、【答案】C【考点】坐标与图形变化-平移【解析】【解答】将点P(-2,3)向右平移3个单位得到点Q,即点Q的横坐标加3,纵坐标不变,则点Q的坐标是(1,3),故选C.【分析】根据坐标系内点的坐标的平移规律解题.9、【答案】B【考点】坐标与图形变化-平移【解析】【解答】由平移规律可知横坐标左减右加,故选B.【分析】图形和图形上任何一点发生平移变换时,其坐标变化是一致的,所以可以应用相同的平移规律.10、【答案】D【考点】坐标与图形变化-平移【解析】【解答】由于点A(﹣1,5)的对应点为C(4,8),即点A向右平移5个单位,再向上平移3个单位得到点C,因此点B(﹣4,﹣2)向右平移5个单位,再向上平移3个单位得到点D,那么点D的坐标为(1,1).【分析】先根据点A和对应点C的坐标得到平移的规律为向右平移5个单位,再向上平移3个单位,然后根据此规律把点B进行平移,再写出平移后的对应点D的坐标.11、【答案】B【考点】坐标与图形变化-平移【解析】【解答】∵C1(m ,n),C(m+5,n+3),又∵三角形ABC平移后得到三角形A1B1C1,∴根据平移规律可知三角形ABC平移向左平移5个单位长度,再向下平移3个单位长度后得到三角形A1B1C1又∵点A为(-2,3),点B为(-4,-1),∴A1,B1两点的坐标为(-7,0),(-9,-4).【分析】平面直角坐标系中点的坐标的平移规律:横坐标左减右加,纵坐标上加下减.12、【答案】B【考点】坐标与图形变化-平移【解析】【解答】跳蚤运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依此类推,到(5,0)用35秒.故第35秒时跳蚤所在位置的坐标是(5,0).【分析】本题只能根据所给规律逐次计算,特别要注意跳蚤每秒跳动一个单位.13、【答案】A【考点】坐标与图形变化-平移【解析】【解答】将点A(-4,-6)先向右平移4个单位长度,再向上平移6个单位长度,即横坐标加4,纵坐标加6,所以A′的坐标为(0,0).【分析】本题根据平移规律:横坐标左加右减,纵坐标上加下减,来解题.14、【答案】C【考点】坐标与图形变化-平移【解析】【解答】因为平移方式相同,所以平移前后两点之间的相对位置不发生变化.【分析】平移的方式相同,两个点及两个图像的相对位置都不发生变化,但是两个点与图形的位置发生来变化.15、【答案】B【考点】坐标与图形变化-平移【解析】【解答】因为使点A到点(1,-2) ,所以△ABC是先向右平移4个单位长度,再向下平移4个单位长度,所以点B,C的横坐标分别加4,纵坐标分别减4,即点B,C平移后对应点的坐标分别为(5,-3),(3,-6).【分析】本题先根据点A的平移确定平移方式,再求出点B,C平移后对应点的坐标.二、填空题16、【答案】(-5,1)【考点】坐标与图形变化-平移【解析】【解答】将点P(-3,4)向下平移3个单位,向左平移2个单位,即点P的纵坐标减3,横坐标减2,所以得到点Q的坐标为(-5,1).【分析】本题根据平移规律:横坐标左减右加,纵坐标下减上加.17、【答案】(-3,-6);(-4,-1)【考点】坐标与图形变化-平移【解析】【解答】根据题意可知使点A到点A′ ,所以△ABC是先向左平移2个单位长度,再向下平移4个单位长度,所以点B,C的横坐标分别减2,纵坐标分别减4,即点B、C平移后对应点的坐标分别为(-3,-6),(-4,-1).【分析】本题先根据点A的平移确定平移方式,再求出点B,C平移后对应点的坐标.18、【答案】1或2【考点】坐标与图形变化-平移【解析】【解答】①当点A平移到点C时,可以判断线段AB向右平移1个单位,由点B就平移到点D可以判断线段AB向下平移1个单位,那么可知a=0,b=2,即a+b=2;②当点A平移到点D时,可以判断线段AB没有向下平移,由点B就平移到点C可以判断线段AB向右平移1个单位,那么可知a=0,b=1,即a +b=1;综上所述a+b=1或2.【分析】本题分两种情况:点A平移到点C或点D.19、【答案】-4或6【考点】坐标与图形变化-平移【解析】【解答】当点N在点M左边时,那么点M向左平移5个单位得到点N(-4,3);当点N在点M右边时,那么点M向右平移5个单位得到点N(6,3);综上所述x的值为-4或6.【分析】分点N在点M左边或右边.20、【答案】(5,4)【考点】坐标与图形变化-平移【解析】【解答】因为左图案中左翅尖的坐标是(-4,2),右图案中左翅尖的坐标是(3,4),所以蝴蝶先向右飞7个单位,再向上平移2个单位,所以右图案中右翅尖的坐标是(5,4).【分析】本题先根据左翅尖的平移确定平移方式,再求出右翅尖平移后对应点的坐标.三、解答题21、【答案】(1)将线段AB向右平移3个小格(向下平移4 个小格),再向下平移4个小格(向右平移3个小格),得线段CD.(2)将线段BD向左平移3个小格(向下平移1个小格),再向下平移1个小格(向左平移3个小格),得到线段AC.【考点】坐标与图形变化-平移【解析】【解答】(1)将线段AB向右平移3个小格(向下平移4 个小格),再向下平移4个小格(向右平移3个小格),得线段CD.(2)将线段BD向左平移3个小格(向下平移1个小格),再向下平移1个小格(向左平移3个小格),得到线段AC.【分析】先左右平移还是先上下平移不影响平移后图形与点的位置.23、【答案】(1)解:可将这个四边形切割成三个三角形和一个长方形,S=×3×6+×9×2+×2×8+9×6=9+9+8+54=80.(2)横坐标增加2,纵坐标不变,则四边形向右平移2个单位长度,形状和大小都不变,其面积仍是80.【考点】三角形的面积,平移的性质,坐标与图形变化-平移【解析】【分析】本题(2)中,实际是将图形进行了平移,根据平移的性质:平移只改变图形的位置,不改变图形的形状与大小,所以新得到的图形面积仍为80.25、【答案】(1)解:(-3,1);(-2,-2);(-1,-1)(2)先向左平移4个单位,再向下平移2个单位或先向下平移2个单位,再向左平移4个单位。

人教版七年级数学下册7.2.2用坐标表示平移(1)

人教版七年级数学下册7.2.2用坐标表示平移(1)

1.将点A(3,2)向上平移2个单位长度, 得到A’,则A’的坐标为(3_,_4__)__.
2.将点A(3,2)向下平移3个单位长度, 得到A’,则A’的坐标为(3_,_-_1_)__.
3.将点A(3,2)向左平移4个单位长度,
得到A’,则A’的坐标(为-1__,2__)__. 4.将点A(3,2)向右平移2个单位长度, 得到A’,则A’的坐标为(5_,_2__)__.
左右平移a个单位长度 左减 (x-a,y) 点(x,y)
横变纵不变
右加 (x+a,y)
上下平移b个单位长度 上加 (x,y+b)
点(x,y)
纵变横不变
下减 (x,y-b)
口诀
左右平移 上下平移
左减右加纵不变 上加下减横不变
1.在平面直角坐标系中,有一点P(-4,2),若将点P:
(1)向左平移2个单位长度,所得点的坐标为
1.将点P(0,-2)向左平移2个单位, 再向上平移4个单位得点Q(x,y),则
xy= -4
2.将点P(m,1)向右平移5个单位 长度,得到点Q(3,1),则点P
坐标为 (-2,1)
1.将点M(a,b)向左平移2个单位长度, 再向下平移3个单位长度后,其坐标变 为(1,-6),则a=( 3 ),b=( -3).
小结
(x,y+a) 上





平下


(x-a,y)
向左平移a a
点(x,y)
向右平移a
(x+a,y)
左右平平移
向 下
左减横右加纵不变





a
(x,y-a)

人教版七年级数学下册 7-2-2用坐标表示平移(同步练习)

人教版七年级数学下册 7-2-2用坐标表示平移(同步练习)

第7章平面直角坐标系7.2坐标方法的简单应用-7.2.2用坐标表示平移班级:姓名:知识点1用坐标表示点的平移1.将点A(2,1)向左平移2个单位长度得到点A',则点A'的坐标是()A.(0,1)B.(2,-1)C.(4,1)D.(2,3)2.把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到B,点B的坐标是()A.(-5,3)B.(1,3)C.(1,-3)D.(-5,-1)3.点P(2,-3)先向左平移4个单位长度,再向上平移1个单位长度,得到点P'的坐标是.4.将点A(-3,-2)先沿y轴向上平移5个单位长度,再沿x轴向左平移4个单位长度得到点A',则点A'的坐标是.5.将点A(1,-3)向右平移2个单位长度,再向下平移2个单位长度后得到点B(a,b),则ab=.6.(1)如图,将点A向右平移几个单位长度可得到点B()A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度(2)将点A向下平移5个单位长度后,将重合于图中的()A.点CB.点FC.点DD.点E(3)将点A先向右平移3个单位长度,再向下平移5个单位长度,得到A',将点B先向下平移5个单位长度,再向右平移3个单位长度,得到B',则A'与B'相距()A.4个单位长度B.5个单位长度C.6个单位长度D.7个单位长度(4)点G(-2,-2),将点G先向右平移6个单位长度,再向上平移5个单位长度,得到G',则G'的坐标为()A.(6,5)B.(4,5)C.(6,3)D.(4,3)7.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是()A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)知识点2用坐标表示图形的平移8.将一个三角形的三个顶点的坐标分别向上平移1个单位长度,再向左平移4个单位长度所得点的坐标分别是(2,1),(-1,3),(4,-5),则平移前三个顶点的坐标分别是()A.(6,0),(3,2),(8,-6)B.(-1,-5),(2,-7),(3,-1)C.(1,5),(2,-7),(-3,1)D.(-1,5),(2,-7),(-3,1)9.如图,将三角形PQR向右平移2个单位长度,再向下平移3个单位长度,则点P平移后的坐标是()A.(-2,-4)B.(-2,4)C.(2,-3)D.(-1,-3)10.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2),(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是.11.如图,三角形OAB 的顶点B 的坐标为(4,0),把三角形OAB 沿x 轴向右平移得到三角形CDE.如果CB=1,那么OE 的长为.12.如图,A,B 的坐标分别为(1,0),(0,2),若将线段AB 平移至A 1B 1,A 1,B 1的坐标分别为(2,a),(b,3),则a+b=.13.如图,梯形A'B'C'D'可以由梯形ABCD 经过怎样的平移得到?对应点的坐标有什么变化?综合点学科内综合14.如图,点A,B 的坐标分别为(1,2),(4,0),将三角形AOB 沿x 轴向右平移,得到三角形CDE,已知DB=1,则点C 的坐标为.15.如图,三角形A'B'C'是由三角形ABC 平移后得到的,已知三角形ABC 中一点P(x 0,y 0)经平移后对应点为P'(x 0+5,y 0-2).(1)已知A(-1,2),B(-4,5),C(-3,0),请写出A',B',C'的坐标;(2)试说明三角形A'B'C'是如何由三角形ABC平移得到的;(3)请直接写出三角形A'B'C'的面积为_____.拓展训练拓展点坐标中的规律探究16.如图,三角形DEF 是三角形ABC 经过某种变换后得到的图形,分别写出点A 与点D,点B 与点E,点C 与点F 的坐标,并观察它们的关系,如果三角形ABC 中任一点M 的坐标(x,y),那么它的对应点N的坐标是什么?第7章平面直角坐标系7.2坐标方法的简单应用-7.2.2用坐标表示平移答案与点拨1.A(点拨:点A'的横坐标为2-2=0,纵坐标为1,∴A'的坐标为(0,1).故选A.)2.B(点拨:∵A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到B,∴1+2=3,-2+3=1;点B的坐标是(1,3).故选B.)3.(-2,-2)(点拨:点(2,-3)向左平移4个单位长度,横坐标为:2-4=-2,向上平移1个单位长度,纵坐标为:-3+1=-2,∴点P'(-2,-2).)4.(-7,3)(点拨:点A(-3,-2)先沿y轴向上平移5个单位长度,再沿x轴向左平移4个单位长度得到点A',∴A'的坐标是(-3-4,-2+5),即(-7,3).)5.-15(点拨:将点A向右平移2个单位长度,纵坐标不变,横坐标增加2,此时点的坐标为(3,-3),再向下平移2个单位长度,横坐标不变,纵坐标减2,此时的坐标为(3,-5),即点B坐标为(3,-5),∴a=3,b=-5,∴ab=3×(-5)=-15.)6.(1)B(2)D(3)A(点拨:先分别找到A',B'的位置,再观察它们之间的距离.)(4)D7.D(点拨:逆向思考,把点(-3,2)先向右平移5个单位长度,再向下平移3个单位长度可得到A点坐标.)8.A(点拨:将平移后各点横坐标加4,纵坐标减1,可得到平移前的点的坐标分别是:(2+4,1-1),(-1+4,3-1),(4+4,-5-1),即(6,0),(3,2),(8,-6).)9.A(点拨:由图形知点P的坐标为P(-4,-1),由平移规律得平移后P点的坐标是(-4+2,-1-3)即(-2,-4).故选A.)10.(5,4)(点拨:左眼坐标由(-4,2)到(3,4)是向右平移7个单位长度,又向上平移2个单位长度,右眼由(-2,2)作同样的平移得坐标为(5,4).)11.7(点拨:因为三角形OAB的顶点B的坐标为(4,0),所以OB=4,所以OC=OB-CB=4-1=3,因此平移的距离为3.因为把三角形OAB沿x轴向右平移得到三角形CDE,所以CE=OB=4,所以OE=OC+CE=3+4=7.)12.2(点拨:∵A,B的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,A1,B1的坐标分别为(2,a),(b,3),可知线段AB向右平移了1个单位长度,向上平移了1个单位长度,则a=0+1=1,b=0+1=1,则a+b=1+1=2.)13.可由ABCD向左平移7个单位长度,向上平移7个单位长度得到.各对应点的坐标横坐标减7,纵坐标加7.14.(4,2)(点拨:O与D是一对对应点,因此平移距离为OD=OB-DB=4-1=3,因此平行规律为向右平移3个单位长度,所以A(1,2)的对应点C的坐标为(4,2).)15.(1)A'(4,0),B'(1,3),C'(2,-2)(2)三角形ABC向右平移5个单位长度,再向下平移2个单位长度(或先下平移2个单位长度,再向右平移5个单位长度)即可得到三角形A'B'C'.(3)616.A(4,3),D(-4,-3),B(3,1),E(-3,-1),C(1,2),F(-1,-2);N(-x,-y)。

人教版数学七年级下册:7.2.2 用坐标表示平移 同步练习(附答案)

人教版数学七年级下册:7.2.2 用坐标表示平移  同步练习(附答案)

7.2.2 用坐标表示平移1.在平面直角坐标系中,将点P(3,2)向下平移2个单位长度得到的点的坐标是( ) A.(3,0) B.(1,2)C.(5,2) D.(3,4)2.将点A(-2,-3)向左平移3个单位长度得到点B,则点B的坐标是( )A.(1,-3) B.(-2,0)C.(-5,-3) D.(-2,-6)3.在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是.4.平面直角坐标系中,将三角形各点的纵坐标都减去-3,横坐标保持不变,所得图形与原图形相比( )A.向上平移了3个单位长度B.向下平移了3个单位长度C.向右平移了3个单位长度D.向左平移了3个单位长度5.如图,如果将三角形ABC向右平移2格得到三角形A′B′C′,则顶点A′的位置用数对表示为( )A.(5,1)B.(1,1)C.(7,1)D.(3,3)6.如图,将“笑脸”图标向右平移4个单位长度,再向下平移2个单位长度,点P的对应点P′的坐标是( )A.(-1,6)B.(-9,6)C.(-1,2)D.(-9,2)7.线段CD是由线段AB平移得到的,点A(-2,3)的对应点为C(3,-2),则点B(-1,-2)的对应点D的坐标为( )A.(4,-7) B.(-2,-7) C.(4,-2) D.(-7,4)8.如图所示:(1)请写出在直角坐标系中的房子的A,B,C,D,E,F,G的坐标;(2)小影想把房子向下平移3个单位长度,你能帮他办到吗?请作出相应图形,并写出平移后7个对应点的坐标.9.已知坐标平面内的点A(-2,5),若将平面直角坐标系先向右平移3个单位长度,再向上平移4个单位长度,则点A在平移后的坐标系中的坐标是.10.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是( )A.(2,5) B.(-8,5)C.(-8,-1) D.(2,-1)11.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上,若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为( )A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)12.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=.13.如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.14.如图,把三角形ABC向上平移3个单位长度,再向右平移2个单位长度,得到三角形A′B′C′.(1)在图中画出三角形A′B′C′;(2)写出点A′,B′的坐标;(3)求三角形A′B′C′的面积;(4)在y轴上是否存在一点P,使得三角形BCP与三角形ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.15.如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一实数a,将得到的点先向右平移m个单位长度,再向上平移n个单位长度(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为点A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.7.2.2 用坐标表示平移1.在平面直角坐标系中,将点P(3,2)向下平移2个单位长度得到的点的坐标是(A) A.(3,0) B.(1,2)C.(5,2) D.(3,4)2.将点A(-2,-3)向左平移3个单位长度得到点B,则点B的坐标是(C)A.(1,-3) B.(-2,0)C.(-5,-3) D.(-2,-6)3.在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(1,1).4.平面直角坐标系中,将三角形各点的纵坐标都减去-3,横坐标保持不变,所得图形与原图形相比(A)A.向上平移了3个单位长度B.向下平移了3个单位长度C.向右平移了3个单位长度D.向左平移了3个单位长度5.如图,如果将三角形ABC向右平移2格得到三角形A′B′C′,则顶点A′的位置用数对表示为(A)A.(5,1) B.(1,1)C.(7,1) D.(3,3)6.如图,将“笑脸”图标向右平移4个单位长度,再向下平移2个单位长度,点P的对应点P′的坐标是(C)A.(-1,6) B.(-9,6) C.(-1,2)7.线段CD是由线段AB平移得到的,点A(-2,3)的对应点为C(3,-2),则点B(-1,-2)的对应点D的坐标为(A)A.(4,-7) B.(-2,-7) C.(4,-2) D.(-7,4)8.如图所示:(1)请写出在直角坐标系中的房子的A,B,C,D,E,F,G的坐标;(2)小影想把房子向下平移3个单位长度,你能帮他办到吗?请作出相应图形,并写出平移后7个对应点的坐标.解:(1)A(2,3),B(6,5),C(10,3),D(3,3),E(9,3),F(3,0),G(9,0).(2)图略.向下平移3个单位长度,即所有点的纵坐标减去3,所以平移后7个对应点的坐标依次为(2,0),(6,2),(10,0),(3,0),(9,0),(3,-3),(9,-3).9.已知坐标平面内的点A(-2,5),若将平面直角坐标系先向右平移3个单位长度,再向上平移4个单位长度,则点A在平移后的坐标系中的坐标是(-5,1).10.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(-3,2)重合,则点A的坐标是(D)A.(2,5) B.(-8,5)C.(-8,-1) D.(2,-1)11.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上,若线段AB上有一个点P(a,b),则点P在A′B′上的对应点P′的坐标为(D)A.(a-2,b+3) B.(a-2,b-3) C.(a+2,b+3)D .(a +2,b -3)12.点P(m +2,2m +1)向右平移1个单位长度后,正好落在y 轴上,则m =-3. 13.如图所示,三角形ABC 三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC 平移到三角形A 1B 1C 1的过程,并求出点A 1,B 1,C 1的坐标; (2)由三角形ABC 平移到三角形A 2B 2C 2又是怎样平移的?并求出点A 2,B 2,C 2的坐标. 解:(1)三角形ABC 向下平移7个单位长度得到三角形A 1B 1C 1. A 1(-3,-3),B 1(-4,-6),C 1(-1,-5).(2)三角形ABC 向右平移6个单位长度,再向下平移3个单位长度得到三角形A 2B 2C 2. A 2(3,1),B 2(2,-2),C 2(5,-1).14.如图,把三角形ABC 向上平移3个单位长度,再向右平移2个单位长度,得到三角形A ′B ′C ′.(1)在图中画出三角形A ′B ′C ′; (2)写出点A ′,B ′的坐标; (3)求三角形A ′B ′C ′的面积;(4)在y 轴上是否存在一点P ,使得三角形BCP 与三角形ABC 面积相等?若存在,请直接写出点P 的坐标;若不存在,说明理由.解:(1)如图所示.(2)A ′(0,4),B ′(-1,1). (3)S 三角形A ′B ′C ′=12×4×3=6.(4)存在.设三角形BCP 的边BC 上的高为h , ∵三角形ABC 的面积和三角形BCP 的面积相等, ∴12×4×h =6,解得h =3. ∵点P 在y 轴上,∴点P 的坐标是(0,1)或(0,-5).15.如图,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一实数a ,将得到的点先向右平移m 个单位长度,再向上平移n 个单位长度(m>0,n>0),得到正方形A ′B ′C ′D ′及其内部的点,其中点A ,B 的对应点分别为点A ′,B ′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F ′与点F 重合,求点F 的坐标.解:易知AB =6,A ′B ′=3, ∴a =12.由(-3)×12+m =-1,得m =12. 由0×12+n =2,得n =2.设F(x ,y),变换后F ′(ax +m ,ay +n). ∵F 与F ′重合, ∴ax +m =x ,ay +n =y. ∴12x +12=x ,12y +2=y. 解得x =1,y =4. ∴点F 的坐标为(1,4).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巩固训练,熟练技能
1.把点P(-1,-2)向上平移4个单位长度所得点的坐标是 .
2.将点A(4,3)向平移个单位长度后,其坐标变为(6,3).
3.将点P(m,1)向右平移5个单位长度,得到点Q(3,1),则点P坐标
为 .
4.已知点A(-4,-6),将点A先向右平移4个单位长度,再向上平移6个单位长度,得到A的坐标为。

5.把点A(2,-3)平移到点B(-4,-2),按同样的方式把点C(3,1)平移到点D,那么点D的坐标是 .
基础检测
1、如果A、B的坐标分别为A(-4,5)B(-4,2),将点A向___平移___个单位长度得到点B;将点B向___平移___个单位长度得到点A 。

2、在平面直角坐标系中,有一点P(-4,2),若将P先向右平移5个单位长度,再向上平移3个单位长度,所得坐标为_______。

3.线段CD是由线段AB平移得到的,点A(–1,4)的对应点为C(4,2),则点B(–4,–1)的对应点D的坐标为________。

提升练习
4、已知线段MN=4,MN//y轴,若点M坐标为(-1,2),那么点N坐标为_______。

5、将点P(m+1,n-2)向上平移3个单位长度,得到点Q(2,1-n),则点A(m,n)坐标为。

相关文档
最新文档