异面直线垂直的判定

合集下载

高中 直线、平面垂直的判定与性质 知识点+例题+练习

高中 直线、平面垂直的判定与性质 知识点+例题+练习

教学过程在四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,P A=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.规律方法证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面).解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.【训练1】(2013·江西卷改编)教学效果分析教学过程如图,直四棱柱ABCD-A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=2,AA1=3,E为CD上一点,DE=1,EC=3.证明:BE⊥平面BB1C1C.考点二平面与平面垂直的判定与性质【例2】(2014·深圳一模)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,且AC=2BC,点D是AB的中点.证明:平面ABC1⊥平面B1CD.规律方法证明两个平面垂直,首先要考虑直线与平面的垂直,也教学效果分析教学过程可简单地记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明非常类似,这种转化方法是本讲内容的显著特征,掌握化归与转化思想方法是解决这类问题的关键.【训练2】如图,在长方体ABCDA1B1C1D1中,AB=AD=1,AA1=2,M是棱CC1的中点.证明:平面ABM⊥平面A1B1M.考点三平行、垂直关系的综合问题教学效果分析教学过程【例3】(2013·山东卷)如图,在四棱锥P-ABCD中,AB⊥AC,AB⊥P A,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.(1)求证:CE∥平面P AD;(2)求证:平面EFG⊥平面EMN.规律方法线面关系与面面关系的证明离不开判定定理和性质定理,而形成结论的“证据链”依然是通过挖掘题目已知条件来实现的,如图形固有的位置关系、中点形成的三角形的中位线等,都为论证提供了丰富的素材.【训练3】(2013·辽宁卷)如图,AB是圆O的直径,P A垂直圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面P AC;(2)设Q为P A的中点,G为△AOC的重心,求证:QG∥平面PBC.教学效果分析1.转化思想:垂直关系的转化2.在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.如有平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直.故熟练掌握“线线垂直”、“面面垂直”间的转化条件是解决这类问题的关键.创新突破6——求解立体几何中的探索性问题【典例】(2012·北京卷)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2.(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[反思感悟] (1)解决探索性问题一般先假设其存在,把这个假设作已知条件,和题目的其他已知条件一起进行推理论证和计算,在推理论证和计算无误的前提下,如果得到了一个合理的结论,则说明存在,如果得到了一个不合理的结论,则说明不存在.(2)在处理空间折叠问题中,要注意平面图形与空间图形在折叠前后的相互位置关系与长度关系等,关键是点、线、面位置关系的转化与平面几何知识的应用,注意平面几何与立体几何中相关知识点的异同,盲目套用容易导致错误.【自主体验】(2014·韶关模拟)如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AD=CD=12AB=2,点E为AC中点,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2.(1)求证:DA⊥BC;(2)在CD上找一点F,使AD∥平面EFB.基础巩固题组(建议用时:40分钟)一、填空题1.设平面α与平面β相交于直线m,直线a在平面α内,直线b 在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的________条件.2.(2014·绍兴调研)设α,β为不重合的平面,m,n为不重合的直线,则下列正确命题的序号是________.①若α⊥β,α∩β=n,m⊥n,则m⊥α;②若m⊂α,n⊂β,m⊥n,则n⊥α;③若n⊥α,n⊥β,m⊥β,则m⊥α;④若m∥α,n∥β,m⊥n,则α⊥β.3.如图,AB是圆O的直径,P A垂直于圆O所在的平面,C是圆周上不同于A,B的任一点,则图形中有________对线面垂直.4.若M是线段AB的中点,A,B到平面α的距离分别是4 cm,6 cm,则M到平面α的距离为________.5.(2014·郑州模拟)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是________.6.如图,在四棱锥P ABCD中,P A⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足________时,平面MBD⊥平面PCD.(只要填写一个你认为正确的条件即可)7.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).8.如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.二、解答题9.(2013·北京卷)如图,在四棱锥P ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD.E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.10.(2013·泉州模拟)如图所示,在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥平面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.能力提升题组(建议用时:25分钟)一、填空题1.如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在直线______上.2.如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为________.①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.3.(2013·南通二模)如图,已知六棱锥P ABCDEF的底面是正六边形,P A⊥平面ABC,P A=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面P AE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).二、解答题4.(2014·北京西城一模)。

最新高中几何知识点总结

最新高中几何知识点总结

高中几何知识点总结一、空间几何体(一)棱柱、棱锥、棱台1、棱柱:一般地,由一个沿某一方向形成的空间几何体叫做棱柱。

(1)棱柱的底面、侧面、侧棱、表示方法、分类以及侧棱的性质(2)直棱柱、正棱柱、平行六面体的概念2、棱锥:叫做棱锥。

(1)棱锥的底面、侧面、侧棱、表示方法、分类以及侧棱的性质(2)正三棱锥与正四面体的概念3、棱台:叫做棱台。

(1)棱台的上下底面、侧面、侧棱、表示方法、分类以及侧棱的性质(2)正棱台的概念(3)棱台的检验方法(侧棱延长交于一点,上下底面相似且平行)(二)圆柱、圆锥、圆台、球1、旋转面:一般地,一条绕旋转所形成的2、旋转体:叫做旋转体。

3、圆柱、圆锥、圆台:将、、分别绕它的、、、所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台。

(1)圆柱、圆锥、圆台的轴、底面、侧面、母线(2)利用“平移”、“缩”、“截”的方法定义棱柱、棱锥、棱台4、球面:叫做球面。

球体:叫做球体,简称球。

5、圆柱、圆锥、圆台、球的轴截面与旋转面的关系(三)直观图画法1、消点:2、直观图画法步骤:二、点、线、面之间的位置关系1、平面基本性质公理1 如果一条直线上的公理2 如果两个平面有一个公共点,那么他们还有其它公共点,这些公共点的集合是经过这个公共点的一条直线。

公理3 经过的三点,有且只有一个平面。

(2) 线面垂直:如果一条直线与一个平面内的任意一条直线都垂直,称为线面垂直,记作,垂线、垂面、垂足。

(3) 面面平行:如果两个平面没有公共点,那么就说这两个平面平行。

面面垂直:一般地,如果两个平面所成的二面角是直二面角,3、线线关系位置关系相交直线平行直线异面直线共面关系公共点个数4、线面关系位置关系公共点符号表示图形表示直线在平面内直线与平面相交直线与平面平行5、面面关系图形表示6、各类“平行”之间的转化条件线线平行结论如果∥b,b∥c,那么∥c如果∥b,,b,那么∥如果,b,面面平行∩b=P,cβ,如果,如果∥β,如果⊥ ,⊥β,如果∥ ,β,β∩=b,那么∥b 线面平行面面平行如果∥β,垂直关系线线平行∩γ=,β∩γ=b,那么∥b 如果∥β,,那么∥β 如果⊥ ,b⊥ ,那么∥b 线面平行———— b ,∩b=P,∥β,b∥β,那么∥β β∥γ,那么∥γ 那么∥βd β,c∩d=Q,∥c,b∥d,那么∥β7、各类“垂直”之间的转化条件线线垂直结论如果⊥ ,b,那么⊥b 如果三个平面两两垂直,那么它们交线两两垂直如果⊥β——那么⊥β如果⊥ ,β,那么β⊥ ——,如果∥b,⊥c,那么b⊥c 线面垂直面面垂直平行关系线线垂直——线面垂直如果⊥b,⊥c,b,c,b∩c=P,那么⊥ 定义(二面角等于90) 0α∩β=b,,⊥b,如果⊥ ,b∥ ,那么b⊥ 面面垂直——8、立体几何中的“角”(1) 异面直线所成的角:将两异面直线平移得到两相交直线,这两条香蕉直线所成的锐角或直角就是这两条异面直线所成的角。

立体几何线面与面面垂直的证明

立体几何线面与面面垂直的证明

那么另一条也垂直于这个平 a 的无数条直线”是“ I 丄a B.必要不充分条件线面垂直与面面垂直专题复习【知识点】一.线面垂直(1) 直线与平面垂直的定义:如果直线l 和平面a 的 __________________ 一条直线都垂直,我们就说直线 I 与平面a 垂直,记作 _____________ .重要性质: ____________________________________________________________________________(2) 直线与平面垂直的判定方法:①判定定理:一条直线与一个平面的两条 ___________________ 都垂直,那么这条直线就垂直于这 个平面.用符号表示为:②常用结论:如果两条平行直线中的一条垂直于一个平面, 面.用符号可表示为:(3)直线与平面垂直的性质:① 由直线和平面垂直的定义知:直线与平面垂直,则直线垂直于平面的 ________ 直线.② 性质定理:垂直于同一平面的两条直线平行.用符号可表示为: 二、面面垂直(1) 平面与平面垂直的定义:两平面相交,如果它们所成的二面角是 _____________________ ,就说这两个平面互相垂直.(2) 平面与平面垂直的判定定理:如果一个平面经过另一个平面的一条 _____________________ ,那么这两个平面互相垂直.简述为 "线面垂直,则面面垂直”,用符号可表示为:(3)平面与平面垂直的性质:如果两个平面互相垂直,那么在一个平面垂直于它们交线的直线垂直于另一个平面. 用符号可表示为:【题型总结】 题型一小题:判断正误1. “直线I 垂直于平面 A.充分不必要条件C.充要条件D.既不充分又不必要条件2. 已知如图,六棱锥 P — ABCDE 的底面是正六边形, 下列结论不正确的是( ).A.CD// 平面 PAFB. DF 丄平面 PAFC. CF//平面 PAB 2.设m n, I 是三条不同的直线,,,是三个不同的平面,判断命题正误:理科数学复习专题立体几何①m,m ,则//⑥m n, m// ,则n②m,// ,则m⑦m n,n 1,则m//l③m,m//n,则n⑧, ,则〃④m,n ,则m//n⑨m n,n//I,则m 1⑤m,m n,则n//⑩,//,则题型「二证明线面垂直P归纳:①证明异面直线垂直的常用方法:_________________________________________②找垂线(线线垂直)的方法一:______________________________________________ 2.四棱锥P ABCD中,底面ABCD的边长PD PB 4, BAD 600, E 为PA 中点•1如图,四棱锥P-ABCD中,底面ABCD为平行四边形,/ DAB = 60° AB= 2AD, PD 丄底面ABCD .(1)证明:BD丄面PAD (2)证明:PA丄BD;求证:BD 平面PAC ;4的菱形,归纳:找垂线(线线垂直)的方法找垂线(线线垂直)的方法三:3、如图,AB是圆0的直径,C是圆0上不同于A, B的一点,PA 平面ABC , E是PC 的中点,AB 3 , PA AC 1.求证:AE PB•Z归纳:找垂线(线线垂直)的方法四:____________________________________4.如图,在三棱锥P ABC中,PA 底面ABC, BCA 900,AP=AC,点D , E分别为棱PB、PC的中点,且BC〃平面ADE求证:DE丄平面PAC ;归纳:_____________________________________________________________________________________ 题型三面面垂直的证明(关键:找线面垂直)1、如图所示,四边形ABCD是菱形,O是AC与BD 的交点,SA 平面ABCD.求证:平面SAC 平面SBD ;2. (2016理数)如图,在以A,B,C,D,E,F为顶点的五面体中面ABEF 为正方形,AF=2FD, AFD 90:,证明:平面ABEF 平面EFDC ;题型四面面垂直的性质(注意:交线)1、如图所示,平面EAD 平面ABCD , ADE是等边三角形,ABCD是矩形,F是AB的中点,G是AD的中点, 求证:EG 平面ABCD ;2、如图,平行四边形ABCD中,CD 1, BCD 600, BD CD,正方形ADEF,且面ADEF 面ABCD •求证:BD 平面ECD ;综合运用如图所示,PA丄矩形ABCD所在平面,M、N分别是AB、PC的中点.(1) 求证:MN //平面PAD.(2) 求证:MN丄CD.⑶若/ PDA = 45 °求证:面BMN丄平面PCD.【练习】1.设M表示平面,a、b表示直线,给出下列四个命题:金a〃b a M a M a//M① b M ②a//b ③b/ M ④b± Ma Mb M a b a b其中正确的命题是( )A.①②B.①②③C.②③④D.①②④2.给出以下四个命题:CD如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

线线垂直、线面垂直、面面垂直的判定和性质

线线垂直、线面垂直、面面垂直的判定和性质

空间中的垂直关系1.线面垂直直线与平面垂直的判定定理:如果 ,那么这条直线垂直于这个平面。

推理模式:直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线 。

2.面面垂直两个平面垂直的定义:相交成 的两个平面叫做互相垂直的平面。

两平面垂直的判定定理:(线面垂直⇒面面垂直)如果 ,那么这两个平面互相垂直。

推理模式:两平面垂直的性质定理:(面面垂直⇒线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的 的直线垂直于另一个平面。

一般来说,线线垂直或面面垂直都可转化为线面垂直来分析解决,其关系为:线线垂直−−−→←−−−判定性质线面垂直−−−→←−−−判定性质面面垂直.这三者之间的关系非常密切,可以互相转化,从前面推出后面就是判定定理,而从后面推出前面就是性质定理.同学们应当学会灵活应用这些定理证明问题.在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,下面举例说明.例题:1.如图,AB 就是圆O 的直径,C 就是圆周上一点,PA ⊥平面ABC.(1)求证:平面PAC ⊥平面PBC;(2)若D 也就是圆周上一点,且与C 分居直径AB 的两侧,试写出图中所有互相垂直的各对平面.2、如图,棱柱111ABC A B C -的侧面11BCC B 就是菱形,11B C A B ⊥证明:平面1AB C ⊥平面11A BC3、如图所示,在长方体1111ABCD A B C D -中,AB=AD=1,AA 1=2,M 就是棱CC 1的中点 (Ⅰ)求异面直线A 1M 与C 1D 1所成的角的正切值;(Ⅱ)证明:平面ABM ⊥平面A 1B 1M 14、如图,AB 就是圆O的直径,C就是圆周上一点,PA ⊥平面ABC .若AE ⊥PC ,E为垂足,F就是PB 上任意一点,求证:平面AEF ⊥平面PBC .5、如图,直三棱柱ABC —A 1B 1C 1 中,AC =BC =1,∠ACB =90°,AA 1 =2,D 就是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明您的结论6、S 就是△ABC 所在平面外一点,SA ⊥平面ABC,平面SAB⊥平面SBC,求证AB ⊥BC 、7、在四棱锥中,底面ABCD 就是正方形,侧面VAD 就是正三角形,平面VAD ⊥底面ABCD证明:AB ⊥平面VAD8、如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==,将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD 、求证:AB DE ⊥VDC B A SAB9、如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD,AB=AD,∠BAD=60°,E 、F 分别就是AP 、AD 的中点求证:(1)直线EF ‖平面PCD;(2)平面BEF ⊥平面PAD10、如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,AB AS BC AB =⊥,、过A 作SB AF ⊥,垂足为F ,点G E ,分别就是棱SC SA ,的中点。

高中数学必修二4.线面垂直的性质及判定

高中数学必修二4.线面垂直的性质及判定

αO A B CαOAB授课内容 线面垂直的判定及性质教学内容知识梳理1 、线面垂直定义:如果一条直线和一个平面相交,并且和这个平面内的任意一条直线都垂直,我们就说这条直线和这个平面互相垂直其中直线叫做平面的垂线,平面叫做直线的垂面交点叫做垂足直线与平面垂直简称线面垂直,记作:a ⊥α2、直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面3 直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那麽这两条直线平行4、斜线,垂线,射影⑴垂线 自一点向平面引垂线,垂足叫这点在这个平面上的射影. 这个点和垂足间的线段叫做这点到这个平面的垂线段.⑵斜线 一条直线和一个平面相交,但不和这个平面垂直,这条直线叫做这个平面的斜线斜线和平面的交点叫斜足;斜线上一点与斜足间的线段叫这点到这个平面的斜线段⑶射影 过斜线上斜足外的一点向平面引垂线,过垂足和斜足的直线叫做斜线在这个平面内的射影垂足和斜足间线段叫这点到这个平面的斜线段在这个平面内的射影直线与平面平行,直线在平面由射影是一条直线直线与平面垂直射影是点斜线任一点在平面内的射影一定在斜线的射影上5.直线和平面所成角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角一直线垂直于平面,所成的角是直角一直线平行于平面或在平面内,所成角为0︒角。

直线和平面所成角范围: [0,2π](2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角【同步练习】1、下列命题中正确的个数是( )①如果直线l 与平面α内的无数条直线垂直,则α⊥l ; ②如果直线l 与平面α内的一条直线垂直,则α⊥l ;③如果直线l 不垂直于α,则α内也没有与l 垂直的直线; ④如果直线l 不垂直于α,则α内也有无数条直线与l 垂直。

A 、0 B 、1 C 、2 D 、32、若直线l ⊥平面α,直线α⊂m ,则( )A 、m l ⊥B 、l 可能和m 平行C 、l 和m 相交D 、l 和m 不相交3、直线a ⊥直线b ,b ⊥平面β,则a 与β的关系是( ) A 、β⊥a B 、a ∥β C 、β⊂a D 、β⊂a 或a ∥β4、给出下列四个命题:①若直线垂直于平面内的两条直线,则这条直线垂直于这个平面;②若直线与平面内的任意一条直线都垂直,则这条直线垂直于这个平面;③互相平行的两条直线,在同一个平面内的射影必然是互相平行的两条直线; ④过点P 有且仅有一条直线与异面直线l ,m 都垂直。

立体几何异面直线垂直概念-概述说明以及解释

立体几何异面直线垂直概念-概述说明以及解释

立体几何异面直线垂直概念-概述说明以及解释1.引言1.1 概述概述立体几何是几何学的一个重要分支,研究的对象是三维空间中的图形和物体。

立体几何的基本概念和定理在数学和工程学科中都有着广泛的应用。

异面直线是立体几何中的一个重要概念,它指的是不在同一个平面上的两条直线。

本文将专注于异面直线的垂直概念。

本文将以引言、正文和结论三个部分来介绍立体几何中异面直线垂直的概念。

在引言部分,我们将对本文的结构和目的进行简要介绍。

接下来的正文部分将详细介绍立体几何的基本概念和异面直线的定义性质。

最后,在结论部分,我们将进一步讨论异面直线的垂直概念,并探讨其在实际应用中的意义和重要性。

通过阅读本文,读者将能够深入了解立体几何中的异面直线垂直概念,并理解其在实际问题中的应用。

对于对这一领域感兴趣的读者来说,本文将为他们提供一个全面而详尽的介绍。

同时,本文所介绍的内容也将为相关学科的研究者和从业人员提供有益的参考。

立体几何异面直线垂直概念的研究对于推动科学技术的发展具有重要的意义。

在建筑、工程、设计等领域中,对于异面直线垂直的理解和应用能够帮助我们更好地进行空间规划和设计。

同时,对立体几何的研究也为我们揭示了世界的另一种面貌,能够提高我们的空间思维能力和解决实际问题的能力。

在接下来的文章内容中,我们将深入探讨立体几何中异面直线垂直的概念,希望读者能够通过阅读本文,加深对立体几何的理解,并能够在实际问题中灵活运用。

1.2文章结构1.2 文章结构本文将按照以下结构来进行讨论立体几何中的异面直线垂直概念:1.2.1 章节一: 立体几何的基本概念在这一章节中,我们将介绍立体几何的基本概念,包括点、线、面等基本元素的定义和性质。

通过理解这些基础概念,为后续讨论异面直线的垂直概念打下基础。

1.2.2 章节二: 异面直线的定义和性质这一章节将深入探讨异面直线的定义以及相关性质。

我们将介绍异面直线的几何特征和判定方法,如何确定两条直线是否在三维空间中异面,并介绍一些典型的异面直线的性质和定理。

异面直线判定

异面直线判定

异面直线巧辨别——异面直线的三种判别方法在学习立体几何的时候,大家经常会遇到证明两直线异面的题目.这一类的题目大家看上去会觉得很简单,因为直观看上去两条直线很明显不在一个平面内,但是要证明起来却又会觉得不知从何处下手.这次的专题就要介绍给大家证明异面直线的三种最基本的思路:定义法、反证法和定理法.定义法一一排除我们知道,异面直线的定义就是不共在任何平面内的两条直线.因为空间内的两条直线只有四种位置关系:重合、平行、相交和异面.所以,根据定义,我们只需要排除两条直线重合、平行和相交的可能,就可以证明两直线异面了.这种思路非常的简单,但是要分别证明不重合、不平行、不相交也是很烦琐的工作,所以,一般情况下,我们不常使用这种思路.(除非,你真的想不到其它的证明方法)反证法找出矛盾反证法是我们在数学证明时常用的一种思路,也就是先假定命题的结论不成立,然后进行推理,如果出现与已知条件矛盾或者与公理、定理矛盾的情况,就可以说明我们的假定不成立,也就说明了原命题是正确的.在异面直线判定中利用反证法,也就是先假设两条直线共面.有的题目很简单,根据两直线共面可以推导出直线上所有的点均在同一平面,就可以推导出与已知条件矛盾;还有一类题目就需要我们分情况来讨论,假定两直线共面,分为两种情况,平行和相交,要分别针对这两种情况进行推导,找到矛盾.定理法 简明直观所谓定理法,就是应用异面直线的判定定理,平面的一条交线与平面内不过交点的直线为异面直线.也就是说,如果一条直线m 与一个平面α相交于一点P ,那么α上任意一条不经过点P 的直线n 都与m 互为异面直线.(这种思路是很直观的,应用这种思路时,我们只需要找到一个平面,使一条直线n 在平面上,另一条直线m 与该平面相交于P 点,然后就只需证明P 不在直线n 上就可以了.实践一下上面我们介绍了三种异面直线的判定方法,下面我们就一起来实践几道题目,看一下每道题目应该用哪种思路,并且也检验一下,刚刚我们介绍的三种不同的思路,你是不是已经真正掌握了.实践1:四面体ABCD 中,,AC BC AD BD =≠,DM AB ⊥于M ,CN AB ⊥于N ,求证DM 与CN 是异面直线.指点迷津:这里要我们证明DM 和CN 为异面直线,很显然,DM 是在平面ABD 上的,而CN 与平面ABD 交于点N ,所以,根据判定定理,我们只需要证明N 不在DM 上就可以了.这里AC BC =,CN AB ⊥,所以N 为AB 的中点,而AD BD ≠,DM AB ⊥,所以M 不是AB 的中点,也就是说,DM 不会过点N ,所以,DM 和CN 为异面直线.实践2:已知直线a上有两点A、B,直线b上有一点C,若AC、BC都与直线b垂直,A、B、C不共线,求证直线a与b为异面直线.指点迷津:这道题我们可以用两种思路来证明.(一)定理法.用定理法的关键是找到一个平面,而这里,如图所示,直线a是在A、B、C所确定的平面上的,而直线b与平面ABC相交于一点C,现在只需要证明,直线a不过点C就可以了.而A、B、C不共线,所以,C不在直线a上,即a与b为异面直线.(二)>(三)反证法.假设a、b不是异面直线,则a、b共面,即A、B、C也都在这个平面内,根据已知条件,⊥⊥,那么这个平面内,过直AC b BC b线b上一点C就有两条直线与其垂直,这与在同一平面内过直线上一点有且仅有一条直线与其垂直相矛盾.所以原假设错误,a、b为异面直线.。

空间的平行直线与异面直线讲解

空间的平行直线与异面直线讲解

课题:9. 2空间的平行直线与异面直线(一)教学目的:1. 会判断两条直线的位置关系.2. 理解公理四,并能运用公理四证明线线平行•3. 掌握等角定理,并能运用它解决有关问题•4. 了解平移的概念,初步了解平几中成立的结论哪些在立几中成立+5. 掌握空间两直线的位置关系,掌握异面直线的概念,会用反证法和异面直线的判定定理证明两直线异面;6. 掌握异面直线所成角的概念及异面直线垂直的概念,能求出一些较特殊的异面直线所成的角.教学重点:公理4及等角定理的运用.异面直线所成的角. 教学难点:公理4及等角定理的运用.异面直线所成的角. 授课类型:新授课.课时安排:1课时■ 教具:多媒体、实物投影仪 .内容分析:本节共有两个知识点,平行直线、异面直线■以平行公理和平面基本性质为基础进一步学习平行直线的性质,把平行公理和平行线的传递性推广到空间并引出平移概念,了解了平移的初步性质.在这一节还由直线平行的性质学习异面直线及其夹角的概念•要求学生正确掌握空间平行直线性质和异面直线及其夹角的概念,这样就为学生学习向量和空间图形的性质打下了基础+ 教学过程:一、复习引入:把一张纸对折几次,为什么它们的折痕平行?(答:把一张长方形的纸对折两次,打开后得4个全等的矩形,每个矩形的竖边是互相平行的,再应用平行公理,可得知它们的折痕是互相平行的J你还能举出生活中的相关应用的例子吗?二、讲解新课:1 +空间两直线的位置关系(1)相交一一有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何一个平面内,没有公共点;2 -平行直线(1)公理4 :平行于同一条直线的两条直线互相平行 +推理模式:a//b,b//c= a//c .说明:(1)公理4表述的性质叫做空间平行线的传递性;(2 )几何学中,通常用互相平行的直线表示空间里一个确定的方向;(3)如果空间图形F的所有点都沿同一个方向移动相同的距离到 F •的位置, 则就说图形F作了一次平移.(2)空间四边形:顺次连结不共面的四点A,B,C,D所组成的四边形叫空间四边形,相对顶点的连线AC,BD叫空间四边形的对角线.(3)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等”分析:在平面内,这个结论我们已经证明成立了•在空间中,这个结论是否成立,还需通过证明•要证明两个角相等,常用的方法有:证明两个三角形全等或相似,则对应角相等;证明两直线平行,则同位角、内错角相等;证明平行四边形,则它的对角相等,等等•根据题意,我们只能证明两个三角形全等或相似,为此需要构造两个三角形,这也是本题证明的关键所在.已知:.BAC和.BAC ■的边AB//AB , AC//AC,并且方向相同,求证:.BAC 二/B AC •证明:在.BAC和.BAC •的两边分别截取AD =:AD;AE ,•/ AD〃A D;AD =AD ,••• AD DA是平行四边形,••• AA 7/DD ,AA =DD,同理AA 7/EE , AA 二EE ,••• EE // DD ; EE ■二DD •,即D E ED 是平行四边形,• ED = ED ,•:ADE 三A D E:所以,.BAC =/BAC •(4)等角定理的推论:如果两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等•指出:等角定理及其推论,说明了空间角通过任意平行移动具有保值性,因而成为异面直线所成角的基础•3. 空间两条异面直线的画法4.异面直线定理: 连结平面内一点与平面外一点的直线,和这个平面内不经过此 点的直线是异面直线.推理模式:A .-一〉,B •,丨二:z , B ■■ AB 与丨是异面直线. 证明:(反证法)假设 直线AB 与丨共面,B 三:£,丨二,B ,丨,二点B 和丨确定的平面为:-,•••直线AB 与丨共面于〉,••• A"二,与A 「矛盾, 所以,AB 与丨是异面直线.5 •异面直线所成的角:已知两条异面直线 a,b ,经过空间任 点O 作直线a //a,b //b , a,b •所成的角的大小与点 O 的选择 无关,把a ;b ■所成的锐角(或直角)叫异面直线 a,b 所成的角 (或夹角)•为了简便,点 O 通常取在异面直线的一条上. 异面直线所成的角的范围:(0, — h26 .异面直线垂直: 如果两条异面直线所成的角是直角,则叫两条异面直线垂 直.两条异面直线 a,b 垂直,记作a_b •7 •求异面直线所成的角的方法:(1 )通过平移,在一条直线上找一点,过该点做另一直线的平行线;(2 )找出与一条直线平行且与另一条相交的直线,那么这两条相交直线所成 的角即为所求- 三、讲解范例:例1已知四边形 ABCD 是空间四边形,E 、H 分别是AB AD 的中点,F 、G 分别是边CBCD 上的点,且CF ==-,CB CD 3求证:四边形EFGH 是梯形+分析:梯形就是一组对边平行且不相等的四边形 •考虑哪组 对边会平行呢?为什么? (平行公理)•证明对边不相等可 以利用平行线分线段成比例 ” 证明:如图,连接 BD1•/ EH >△ ABD 的中位线,• EH//BD,EH=—BD.2CF CG 2 c2二—,• •• FG//BD,FG= —CBCD33又在△ BCD 中,'J根据公理4, EH//FG又FG> EH, A 四边形EFGH 的一组对边平行但不相等.例2如图,A 是平面BCD 外的一点G, H 分别是:ABC^ ACD 的重心,求GH // BD .证明:连结 AG, AH 分别交BC,CD 于M , N ,连结MN ,• GH // MN ,由公理 4 知 GH // BD .例3 *如图,已知不共面的直线a, b,c 相交于O 点,M ,P 是直线a 上的两点,N,Q 分别是b,c 上的一点•求证:MN 和PQ 是异面直线一证(法一):假设MN 和PQ 不是异面直线, 则MN 与PQ 在同一平面内,设为:,••• M ,P a, M , P 三:乂,• a 二:乂,又 o a , • o :-,•/ N ",0 b, N b , • b :——,同理c 二用,• a, b, c 共面于:•,与已知a,b,c 不共面相矛盾, 所以,MN 和PQ 是异面直线一(法二):••• aRc = O ,•直线a,c 确定一平面设为 •/ P a,Q c ,• P -Q ,• PQ [且 M 匸卩,M '' PQ ,••• G, H 分别是 ABC^ ACD 的重心, ••• M ,N 分别是BC,CD 的中点, ••• MN //BD ,又•••AG AH 2AM 一 AN " 3又a,b,c 不共面,N • b ,••• N 弗!■:;,所以,MN 与PQ 为异面直线.例4正方体ABCD _ A B C D •中.那些棱所在的直线与直线 BA 是异面直线?求 BA •与CC •夹角的度数•那些棱所在的直线与直线 AA 垂直? 解:(1)由异面直线的判定方法可知,与直线BA 成异面直线的有直线 B C : AD,CC,DD ,DC,DC ,(2)由BB7/CC •,可知.BBA •等于异面直线 BA 与CC •的夹角,所以异面 直线BA ■与 CC ■的夹角为45 •(3)直线 AB, BC,CD, DA, A B ,B C ,C D , D A 与直线 AA 都垂直 +例5两条异面直线的公垂线指的是( )(A) 和两条异面直线都垂直的直线 ■ (B) 和两条异面直线都垂直相交的直线 ■(C) 和两条异面直线都垂直相交且夹在两交点之间的线段 +(D) 和两条异面直线都垂直的所有直线 ■答案:B 例6在棱长为a 的正方体中,与 AD 成异面直线且距离等于 a 的棱共有() (A) 2 条(B)3 条 (C)4 条 (D)5 条 答案:BB j , CC 1, A 1B 1, C 1D 1共四条*故选C. 例7若a 、b 是两条异面直线,则下列命题中,正确的是(A) 与a 、b 都垂直的直线只有一条• (B) a 与b 的公垂线只有一条+ (C) a 与b 的公垂线有无数条■(D) a 与b 的公垂线的长就是 a 、b 两异面直线的距离” 答案:B例8已知正方体ABCD — A 1B 1C 1D 1的棱长为a,则棱A 1B 1所在直线与 面对角线BC 1所在直线间的距离是 ()答案:A.四、课堂练习:〖课堂小练习〗 1判断下列命题的真假,真的打(1) 平行于同一直线的两条直线平行 (2) 垂直于同一直线的两条直线平行 (3)过直线外一点,有且只有一条直线与已知直线平行 () (4)与已知直线平行且距离等于定长的直线只有两条()(A) -a(B) a,假的打“X(5)若一个角的两边分别与另一个角的两边平行,那么这两个角相等( )(6 )若两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等•() (7)向量AB与AB j,AC与A1C1是两组方向相同的共线向量,那么答案:(1)V( 2 )X( 3 )V( 4 )X( 5 )X( 6 )V( 7)V2 •选择题(1)"a, b是异面直线”是指①a n b=①且a不平行于b;②a二平面:■, b二平面F:且a n b=Q③a -平面:■, b -平面〉④不存在平面「,能使a -很且b -很成立上述结论中,正确的是()(A)①②(B)①③(0①④(D)③④(2)长方体的一条对角线与长方体的棱所组成的异面直线有()(A) 2 对(B 3 对(0 6 对(D 12 对(3)两条直线a, b分别和异面直线c, d都相交,则直线a, b的位置关系是()(A) —定是异面直线(B) —定是相交直线(C)可能是平行直线(D)可能是异面直线,也可能是相交直线(4)一条直线和两条异面直线中的一条平行,则它和另一条的位置关系是()(A)平行(B)相交(0异面(D)相交或异面答案:(1) C (2) C( 3) A ( 4) D3. 两条直线互相垂直,它们一定相交吗?答:不一定,还可能异面.4. 垂直于同一直线的两条直线,有几种位置关系?答:三种:相交,平行,异面.5. 画两个相交平面,在这两个平面内各画一条直线使它们成为( 1)平行直线;(2)相交直线;(3)异面直线.6. 选择题(1)分别在两个平面内的两条直线间的位置关系是()(A)异面(B)平行(C)相交(D)以上都有可能(2)异面直线a, b满足a二二,b二.,:-=1,则丨与a, b的位置关系一定是()(A)1至多与a,b中的一条相交(B) 1至少与a,b中的一条相交(C)1与a,b都相交(D 1至少与a,b中的一条平行(3 )两异面直线所成的角的范围是()(A)(0°,90 °)(B) [0 °,90 °)( O(0 °,90 °](D)[0 °,90 °]答案(1)D(2)B(3):C7•判断下列命题的真假,真的打“V”,假的打“X”(1 )两条直线和第三条直线成等角,则这两条直线平行()(2 )和两条异面直线都垂直的直线是这两条异面直线的公垂线()(3)平行移动两条异面直线中的任一条,它们所成的角不变()(4 )四边相等且四个角也相等的四边形是正方形()答案:X,X,",X .五、小结:这节课我们学习了两条直线的位置关系(平行、相交、异面),平行公理和等角定理及其推论.异面直线的概念、判断及异面直线夹角的概念;证明两直线异面的一般方法是“反证法”或“判定定理”;求异面直线的夹角的一般步骤是:“作一证一算一答”+六、课后作业:1. 如图,有哪些直线和直线D1C是异面直线,它们所成的角分别是什么?并求出这些角的大小 .2. 如图正方体ABCD - AB1C1D1中,E、F分别为DC1和BC1的中点,P、Q分别为AQ与EF、AC与BD的交点,(1)求证:D B、F、E四点共面;(2 )若AC与面DBFE交于点R,求证:P、Q R三点共线* 提示:(1)证明四点共面,也就是证明什么?有什么公理或定理可用?(2)证明三点共线的方法是什么?想一想前面我们证明过没有?关键是引导学生自己动手,逐步建立学生的空间立体感”3. 如图,空间四边形ABCC中, E、F分别为BC CD的中点,G H分别为AB AD上的点,且AG GB^ AH HD证明:GH与EF为异面直线.提示:什么叫异面直线?其相对的线线位置关系是什么?考虑:(1)如果直接证明,就必须证明GH和EF不在同一平面内,有这样的定理或公理吗?(2 )从(1)知,正面证明是不可取,那么我们可以考虑从反而来考虑——平行或相交•七、板书设计(略)• 八、课后记: C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

异面直线垂直的判定
异面直线垂直的判定
在三维空间中,两条直线可以相交、平行或异面。

当两条直线相交时,我们可以通过它们的夹角来描述它们的相对位置。

如果两条直线的夹
角为90度,那么它们就是垂直的。

本文将介绍如何判断两条异面直线是否垂直。

异面直线的定义
异面直线是指在三维空间中不在同一个平面上的两条直线。

它们既不
相交也不平行,而是呈现出一种斜交的状态。

由于它们不在同一个平
面上,因此它们的交点不在任何一个平面上。

垂直的定义
两条直线的夹角是指它们的方向向量之间的夹角。

如果两条直线的夹
角为90度,那么它们就是垂直的。

在三维空间中,两条直线垂直的条件是它们的方向向量的点积为0。

判断两条异面直线是否垂直的方法
方法一:求出两条直线的方向向量,然后计算它们的点积。

如果点积
为0,则两条直线垂直。

方法二:求出两条直线的法向量,然后计算它们的点积。

如果点积为0,则两条直线垂直。

这种方法适用于已知直线所在平面的情况。

方法三:求出两条直线的公垂线,然后判断公垂线是否在两条直线所
在平面内。

如果公垂线在两条直线所在平面内,则两条直线垂直。


种方法适用于已知两条直线所在平面的情况。

总结
判断两条异面直线是否垂直的方法有多种,其中最常用的是求出两条
直线的方向向量,然后计算它们的点积。

如果点积为0,则两条直线垂直。

在实际应用中,我们可以根据具体情况选择不同的方法来判断两
条异面直线是否垂直。

相关文档
最新文档