高一数学必修2异面直线

合集下载

高中数学必修2知识点总结归纳整理

高中数学必修2知识点总结归纳整理

高中数学必修二·空间几何体1.1空间几何体的构造 棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边 形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、 五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE - 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形, 由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、 五棱锥等表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间 的局部分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、 五棱台等表示:用各顶点字母,如四棱台ABCD —A'B'C'D'几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的 曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面 圆的半径垂直;④侧面展开图是一个矩形。

圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的 曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面 展开图是一个扇形。

圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之 间的局部几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点; ③侧面展开图是一个弓形。

人教A版高中数学必修2:异面直线所成的角

人教A版高中数学必修2:异面直线所成的角

b
b′
α
a
O a′
(1)两异面直线所成的角 θ 的范围是多少? (0°, 90°]
(2)在定义中,空间一点 O 是任意取的. (3)在操作中,点 O 常取在两异面直线的一条上.
例题选讲
【例 1】在正方体 ABCD-A1B1C1D1 中,E、F 分别为 BB1、CC1 的中点,
D A
C1 B1
C B
小结:
1、求异面直线所成角的一般步骤: 一作二证三求角 2、作异面直线所成角常用方法: (1)平移法 (2)补形法
3、初步体验把空间问题转化为平面问题 的思想方法

E
D
F

G
C
例题选讲
【例4】已知正三棱柱ABC-A1B1C1,侧面均是正方形,各 棱长为a,求AC1与A1B所成的角的余弦。
C2

A2
B2


C1
A1
B1
C
A
B
练习3:
如图.长方体ABCD-A1B1C1D1中,AA1=c, AB=a, AD=b, 且a>b.求AC1与BD所成角的余弦值。
D1 A1
第一步作图:确定平移点,做出平行线,构建三角形; 第二步证明:证明作出的角即为异面直线所成角或其补角; 第三步计算:计算作出角的大小(求余弦),并判断角的大小.
作图
证明
计算
结论
例题选讲
【例 3】、如图所示,在空间四边形 ABCD 中,点 E、F 分别 是 BC、AD 上的中点,AB=4,CD=10,EF=6。求异面直 线 AB、CD 所成的角。
(1) 求直线 A1C 与直线 BD 所成的角;
(2) 求直线 A1E 与直线 BF 所成角的余弦值.

教案高一数学人教版必修二2.一百.1异面直线有关概念及原理

教案高一数学人教版必修二2.一百.1异面直线有关概念及原理

双峰一中高一数学必修二教课设计科目:数学课题教课目标§ 2.1.2.1 异面直线的有关看法和原理课型新课( 1)认识空间中两条直线的地点关系;(2)理解异面直线的看法、画法,培养学生的空间想象能力;(3)理解并掌握公义4;( 4)理解并掌握等角公义;( 5)异面直线所成角的定义、范围及应用。

教课过程教课内容备注1.同一平面内的两条直线有哪几种地点关系?一、自主2.空间中的两条不一样直线除了平行和订交这两种地点关系外,还有什么学习地点关系呢 ?教室内的日光灯管所在的直线与黑板的左右双侧所在的直线,既不相二、交,也不平行;天安门广场上,旗杆所在的直线与长安街所在的直线,它们怀疑既不订交,也不平行.你还可以举出这样的例子吗?发问思虑 1: 如图,长方体ABCD-A′ B′ C′D′中,线段A′ B 所在直线分别与线段 CD′所在直线,线段BC所在直线,线段CD所在直线的地点关系如何?三、问题研究思虑 2: 我们把上图中直线 A′ B 与直线 CD叫做异面直线,一般地,从字面上如何理解异面直线?关于异面直线的定义,你以为以下哪个说法最适合?A.空间中既不平行又不订交的两条直线;B.平面内的一条直线和这平面外的一条直线;C.分别在不一样平面内的两条直线;D.不在同一个平面内的两条直线;E.不一样在任何一个平面内的两条直线.思虑 4: 空间中的直线与直线之间有几种地点关系?它们各有什么特色?思虑 1: 设直线仍保持平行吗a//b?,将直线 a 在空间中作平行挪动,在平移过程中 a 与b思虑 2: 如图,在长方体 ABCD— A′ B′ C′ D′中, BB′∥ AA′,DD′∥AA′,那么 BB′与 DD′平行吗 ?思虑 3:取一块长方形纸板 ABCD,E,F 分别为 AB,CD的中点,将纸板沿 EF 折起,在空间中直线 AD与 BC的地点关系如何 ?思虑 4: 经过上述实验可以获得什么结论?公义 4平行于同向来线的两条直线相互平行.思虑 5: 公义 4 叫做三线平行公义,它说明空间平行直线拥有传达性,在逻辑推理中公义 4 有何理论作用?思虑 1: 在平面上,假如一个角的两边与另一个角的两边分别平行,那么这两个角的大小有什么关系?思虑2:如图,四棱柱ABCD--A′ B′ C′ D′的底面是平行四边形,∠ADC 与∠ A′D′ C′,∠ADC与∠ B′ A′D′的两边分别对应平行,这两组角的大小关系如何?思虑 3: 如图,在空间中AB// A′ B′,AC// A′ C′,你能证明∠ BAC与∠ B′A′ C′相等吗?思虑定理4: 综上解析我们可以获得什么定理?空间中假如两个角的两边分别对应平行,那么这两个角相等或互补.思虑 5: 上边的定理称为等角定理,在等角定理中,你能进一步指出两个角相等的条件吗?角的方向同样或相反例 1:如图是一个正方体的表面睁开图,假如将它还原为正方体,那么AB,CD, EF, GH这四条线段所在直线是异面直线的有多少对?例2:如图,空间四边形 ABCD中, E,F, G, H分别是 AB, BC,CD,DA的中点 .(1)求证:四边形 EFGH是平行四边形 .(2)若 AC=BD,那么四边形 EFGH是什么图形 ?四、课堂检测五、 1.空间直线的地点关系;小结 2.异面直线的看法 (既不平行也不订交的两条直线 );议论 3.异面直线画法及判断;。

高一数学(人教版)必修二学案:2.1.2求异面直线所成角 .doc

高一数学(人教版)必修二学案:2.1.2求异面直线所成角 .doc

直线a 、b 是异面直线,经过空间任意一点 O ,分别引直线a ′∥a , b ′∥ b 。

我们把直线a ′和b ′所成的锐角(或直角)叫做异面直线a 和b 所成的角.注意:异面直线所成角的范围是0°<a ≤90° 求异面直线所成角的步骤有哪些? ★求角的步骤:一“作”二“证”三“算”例1 如图,已知正方体ABCD —A′B′C′D′.①哪些棱所在直线与直线BA′是异面直线? ②直线BA′和CC′的夹角是多少? ③哪些棱所在的直线与直线AA′垂直?变1 [2012·郑州一模] 如图7-41-6所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是 ( )A .45°B .60°C .90°D .120°例2 如图7-41-7,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别为A 1B 1,BB 1,CC 1的中点.求异面直线D 1P 与AM ,CN 与AM 所成的角的余弦值为________.第二章 第一节 求异面直线所成角(第2课时,共 2 课时)变2已知A是△BCD平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角..例3已知三棱锥A-BCD中,AB=CD,且直线AB与CD成60°角,点M,N分别是BC,AD的中点,求直线AB和MN所成的角的大小.变3 在正四面体S-ABC中,SA⊥BC, E, F分别为SC、AB 的中点,那么异面直线EF 与SA 所成的角等于()(A)300(B)450(C)600(D)900变4 如图,空间四边形SABC中,各边及对角线长都相等,若E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于( )A.90°B.60°C.45°D.30°例4 (1)[2012·四川卷] 如图7-41-4所示,在正方体ABCD-A1B1C1D1中,M,N分别是棱CD,CC1的中点,则异面直线A1M与DN所成的角的大小是________.7-41-7-41-5(2)[2012·武汉一模] 如图7-41-5,矩形ABCD中,AB=2,BC=4,将△ABD沿对角线BD 折起到△A′BD的位置,使点A′在平面BCD内的射影点O恰好落在BC边上,则异面直线A′B与CD所成角的大小为________.例1 解析:①由异面直线的定义可知,棱AD ,DC ,CC′,DD′,D′C′,B′D′所在直线分别与直线BA′是异面直线.②由BB′∥CC′可知,∠B′BA′为异面直线BA′与CC′的夹角,∠B′BA′=45°,所以BA′与CC′的夹角为45°.③直线AB ,BC ,CD ,DA ,A′B′,B′C′,C′D′,D′A′分别与直线AA′垂直.变1 [解析] 连接AB 1,易知AB 1∥EF ,连接B 1C ,B 1C 与BC 1交于点G ,取AC 的中点H ,连接GH ,则GH ∥AB 1∥EF .设AB =BC =AA 1=a ,连接HB ,在三角形GHB 中,易知GH =HB =GB =22a ,故所求的两直线所成的角的大小为60°. 例2 连接A 1N ,由N ,P 为BB 1,CC 1中点,则PN ∥A 1D 1,PN =A 1D 1,从而A 1N ∥D 1P , 故AM 和D 1P 所成的角为AM 和A 1N 所成的角. 易证Rt △AA 1M ≌Rt △A 1B 1N ,所以A 1N ⊥AM ,故D 1P 与AM 所成的角为π2,其余弦值为0.又设AB 的中点为Q ,连接B 1Q ,B 1P , 则B 1Q ∥AM ,B 1Q =AM . 又∵CN ∥B 1P ,CN =B 1P ,从而CN 与AM 所成的角就是∠PB 1Q (或其补角).易求得B 1Q =B 1P =52,PQ =62.在△PB 1Q 中,由余弦定理得cos ∠PB 1Q =25,故CN 与AM 所成的角的余弦值为25.变2 解:(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是平面BCD 外的一点相矛盾,故直线EF 与BD 是异面直线.(2)如图所示,取CD 的中点G ,连接EG ,FG ,则EG ∥BD ,所以相交直线EF 与EG 所成的角即为异面直线EF 与BD 所成的角.由AC ⊥BD ,AC =BD 及E ,F ,G 分别为各边中点得∠EGF =90°,EG =FG ,故得∠FEG =45°,即异面直线EF 与BD 所成的角为45°第二章 第一节 求异面直线所成角答案 (第2课时,共 2 课时)取AC 的中点P .连接PM ,PN , 则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为AB 与CD 所成的角(或所成角的补角), 则∠MPN =60°或∠MPN =120°.若∠MPN =60°,因为PM ∥AB ,所以∠PMN 是AB 与MN 所成的角(或所成角的补角). 又因为AB =CD ,所以PM =PN ,则△PMN 是等边三角形,所以∠PMN =60°, 即AB 与MN 所成的角为60°.若∠MPN =120°,则易知△PMN 是等腰三角形. 所以∠PMN =30°.即AB 与MN 所成的角为30°.故直线AB 和MN 所成的角为60°或30°. 变3 A 变4 C例4 [解析] (1)因为ABCD -A 1B 1C 1D 1为正方体,故A 1在平面CDD 1C 1上的射影为D 1, 即A 1M 在平面CDD 1C 1上的射影为D 1M ,而在正方形CDD 1C 1中,由tan ∠DD 1M =tan ∠CDN =12,可知D 1M ⊥DN ,由三垂线定理可知,A 1M ⊥DN .(2)如题图所示,由A ′O ⊥平面ABCD ,可得平面A ′BC ⊥平面ABCD . 又由DC ⊥BC 可得DC ⊥平面A ′BC ,DC ⊥A ′B ,即得异面直线A ′B 与CD 所成角的大小为90°.归纳总结 求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.。

人教A版高中数学必修二异面直线的有关概念和原理课件

人教A版高中数学必修二异面直线的有关概念和原理课件

理论迁移
例1 如图是一个正方体的表面展开图,
如果将它还原为正方体,那么AB,CD,
EF,GH这四条线段所在直A 线是异面直线
的有多少对?
A
D
CA
G
H
DB
G
B F
HE F
C E
知识探究: 思考1: :两条异面直线之间有一个相对 倾斜度,可以通过什么几何量来反映的?
思考2:设想用一个角反映异面直线的相 对倾斜度,但不能直接度量,你有什么 办法解决这个矛盾?
在长方体ABCD-A′B′C′D′中,有没有两条棱所 在的直线是互相垂直的异面直线?
C'
B' C
D' A'
D
B
A
理论迁移
例1 如图,在正方体ABCD-A′B′C′D′中. (1)直线A′B和CC′的夹角是多少? (2)哪些棱所在的直线与直线AA′垂直? 哪些棱所在的直线与直线A′B垂直?
D′ A′
思考3:两条异面直线之间有一个相对倾 斜度,若将两异面直线分别平行移动, 它们的相对倾斜度是否发生变化?
b a α
b'
a' o
对于两条异面直线a,b,经过空间 任一点O作直线a′∥a, b′∥b,则 a′与b′所成的锐角(或直角)叫做异 面直线a与b所成的角(或夹角)
思考4:若点O的位置不同,则直线a′与
思考:如图,在空间中AB// A′B′,
AC// A′C′,你能证明∠BAC与
∠B′A′C′ 相等吗?



B´ D´
C E
A
D
B
思考:综上分析我们可以得到什么定理?
定理 空间中如果两个角的两边分别 对应平行,那么这两个角相等或互补.

人教课标版高中数学必修二《空间中直线与直线之间的位置关系(第1课时)》教案(1)-新版

人教课标版高中数学必修二《空间中直线与直线之间的位置关系(第1课时)》教案(1)-新版

2.1.2 空间直线与直线之间的位置关系(一)一、教学目标(一)核心素养增强动态意识,培养观察、对比、分析的思维,通过平移转化渗透数学中的化归及辩证唯物主义思想.(二)学习目标1.正确理解异面直线的定义;2.会判断空间两条直线的位置关系;3.掌握平行公理及空间等角定理的内容和应用;4.会求异面直线所成角的大小.(三)学习重点1.异面直线的判定.2.求异面直线所成角的大小.(四)学习难点1.异面直线的判定.2.求异面直线所成角的大小.二、教学设计(一)课前设计1.预习任务(预习教材第44至47页,找出疑惑之处)2.预习自测问题1:下列说法正确的个数是()(1)某平面内的一条直线和与这个平面平行的直线是异面直线.(2)空间中没有公共点的两条直线是异面直线.(3)若两条直线和第三条直线所成的角相等则这两条直线必平行.(4)若一条直线垂直于两条平行直线中的一条,则它一定与另一条直线垂直.A.1个B.2个C.3个D.4个解析:(1)中两直线可能平行,也可能异面,故(1)不正确;(2)中两直线可能平行,故(2)不正确;(3)中两直线可能相交,也可能异面,故(3)不正确;由异面直线所成角定义知(4)正确.【答案】A问题2:如图所示,已知正方体1111D C B A ABCD 中,F E ,分别是1,AA AD 的中点.(1)直线1AB 和1CC 所成的角为 ;(2)直线1AB 和EF 所成的角为 .解析:(1)因为BB 1∥CC 1,所以∠AB 1B 即为异面直线AB 1与CC 1所成的角, ∠AB 1B=45°.(2)连接B 1C,易得EF ∥B 1C,所以∠AB 1C 即为直线AB 1和EF 所成的角. 连接AC,则△AB 1C 为正三角形,所以∠AB 1C=60°.【答案】(1) 45(2)60(二)课堂设计1.知识回顾复习1:平面的特点是______、_______、_______.【答案】平的;平面是可以无限延展的;平面没有厚薄之分.复习2:平面性质(三公理)公理1___________________________________;公理2___________________________________;公理3___________________________________.【答案】公理 1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2 过不在一条直线上的三点,有且只有一个平面.公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.问题探究探究1:异面直线及直线间的位置关系问题:平面内两条直线要么平行要么相交(重合不考虑),空间两条直线呢?观察:如图在长方体中,直线A B'与CC'的位置关系如何?结论:直线A B'与CC'既不相交,也不平行.新知1:像直线A B'与CC'这样不同在任何一个平面内的两条直线叫做异面直线(skew lines).试试:请在上图的长方体中,再找出3对异面直线.问题:作图时,怎样才能表示两条直线是异面的?新知2:异面直线的画法有如下几种(,a b异面):试试:请你归纳出空间直线的位置关系.探究2:平行公理及空间等角定理问题:平面内若两条直线都和第三条直线平行,则这两条直线互相平行,空间是否有类似规律?观察:如图2-1,在长方体中,直线C D''∥A B'',AB∥A B'',那么直线AB与C D''平行吗?图2-1新知3:公理4 (平行公理)平行于同一条直线的两条直线互相平行.问题:平面上,如果一个角的两边与另一个角的两边分别平行,则这两个角相等或者互补,空间是否有类似结论?观察:在图2-1中,ADC ∠与A D C '''∠,ADC ∠与A B C '''∠的两边分别对应平行,这两组角的大小关系如何?新知4:定理 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 探究3:异面直线所成的角已知异面直线b a ,,经过空间中任一点O 作直线a ' ∥a ,b ' ∥b ,把a ' 与b ' 所成的锐角(或直角)叫异面直线a 与b 所成的角(夹角). 范围:]2,0(πθ∈.思考:两条异面直线所成角的大小是否随空间任意点O 位置的不同而改变? 点O 可任选,一般取特殊位置,如线段的中点或端点.●活动② 互动交流,初步实践若c b a 、、是空间3条直线,a ∥b ,a 与c 相交,则b 与c 的位置关系是( )A .异面B .相交C .平行D .异面或相交【知识点】直线的位置关系.【数学思想】数形结合与分类讨论的思想.【解题过程】若b 与c 平行,因为a ∥b ,所以a 与c 平行与已知条件矛盾,容易画出异面或相交的情形.【思路点拨】通过直观的模型解决问题.【答案】D●活动③ 巩固基础,检查反馈【设计意图】巩固检查对异面直线的理解与认识.例1 如下图所示正方体1111D C B A ABCD -中,N M ,分别是1111,C B B A 的中点.问:(1)AM 和CN 是否是异面直线?说明理由.(2)B D 1和1CC 是否是异面直线?说明理由.【知识点】异面直线的判定.【数学思想】数形结合的思想.【解题过程】(1)不是异面直线.理由:N M 、 分别是1111C B B A 、的中点. ∴11C A MN ∥又∵11ACC A 为平行四边形.∴AC ∥11C A ,得到MN ∥AC ,∴AM 和CN 不是异面直线.(2)是异面直线.证明如下:假设B D 1和1CC 在同一个平面1DCC 内,则1DCC B ∈,1DCC C ∈D CC BC 1⊂∴,D D CC B 11∈∴,这与1111D C B A ABCD -是正方体相矛盾. ∴假设不成立,故B D 1和1CC 是异面直线.【思路点拨】利用定义与反证法.【答案】已证.同类训练 如图是一个正方体的展开图,如果将它还原为正方体,那么GH EF CD AB ,,,这四条线段所在的直线是异面直线的有 对.【知识点】异面直线的判定.【数学思想】数形结合的思想.【解题过程】如图:AB 与CD ,AB 与GH ,EF 与GH【思路点拨】平面与空间的相互转化.【答案】3对●活动④ 强化提升,灵活应用例 2 如图,在三棱锥BCD A -中,G F E 、、分别是AD BC AB 、、的中点, 120=∠GEF ,则BD 和AC 所成角的度数为 .【知识点】异面直线成的角.【数学思想】数形结合的思想.【解题过程】依题意知,EG ∥BD,EF ∥AC,所以∠GEF 所成的角或其补角即为异面直线AC 与BD 所成的角,又∠GEF=120°,所以异面直线BD 与AC 所成的角为60°.【思路点拨】通过平行线找到成的角.【答案】 60小结:求异面直线所成的角一般要有四个步骤:(1)作图:作出所求的角及题中涉及的有关图形等;(2)证明:证明所给图形是符合题设要求的;(3)计算:一般是利用解三角形计算得出结果.(4)结论.简记为“作(或找)——证——算——答”.同类训练 在正方体1111ABCD A B C D 中,H G F E ,,,分别为1111,,,C B BB AB AA 的中点,则异面直线EF 与GH 所成的角等于________.【知识点】异面直线成的角.【数学思想】数形结合的思想.【解题过程】连接1A B 、1BC 、11A C ,由于EF ∥A 1B ,GH ∥BC 1,所以A 1B 与BC 1所成的角即为EF 与GH 所成的角,由于△A 1BC 1为正三角形,所以A 1B 与BC 1所成的角为 60,即异面直线EF 与GH 所成的角为 60.【思路点拨】通过平行线找到成的角.【答案】 60例3.空间四边形ABCD 中,H G F E 、、、分别是DA CD BC AB 、、、的中点, 求证:四边形EFGH 是平行四边形.【知识点】平行公理的应用.【数学思想】数形结合的思想.【解题过程】连接BD ,因为EH 是三角形ABD 的中位线,所以EH ∥BD ,且BD EH 21=;同理FG ∥BD ,且BD FG 21=;所以EH ∥FG ,且EH FG =,所以四边形EFGH 为平行四边形.【思路点拨】通过平行公理产生边与边的关系.【答案】已证.探究:如果再加上条件BD AC =,那么四边形EFGH 是什么图形?(菱形) 拓展:若BD AC ⊥,则四边形EFGH 又是什么图形?(矩形)3.课堂总结知识梳理(1)异面直线的定义、夹角的定义及求法.(2)空间直线的位置关系.(3)平行公理及空间等角定理.重难点归纳(1)空间直线的位置关系判定.(2)平行公理及空间等角定理.(3)求异面直线所成角的大小.(三)课后作业基础型 自主突破1.下列四个命题中错误的是( )A .若直线a 、b 互相平行,则直线a 、b 可以确定一个平面B .若四点不共面,则这四点中任意三点都不共线C .若两条直线没有公共点,则这两条直线是异面直线D .两条异面直线不可能垂直于同一个平面【知识点】平行、共线、异面直线等相关命题判断.【数学思想】分类讨论的思想.【解题过程】若两条直线没有公共点,则这两条直线是异面直线或是平行直线.显然答案C 中的命题错误.故选C .【思路点拨】根据直线的基本位置关系进行判断.【答案】C2.在正方体1111D C B A ABCD -中,B A 1与C B 1所在直线所成角的大小是( )A .30︒B .45︒C .60︒D .90︒【知识点】异面直线所成的角.【数学思想】数形结合的思想.【解题过程】连接1D C ,则11A B D C ,连接11B D ,易证11B CD ∠就是B A 1与C B 1所在直线所成角,由于11B CD 是等边三角形,因此1160B CD ∠=︒,故选C.【思路点拨】根据异面直线所成的角定义找到这个平面角.【答案】C3. c b a ,,是空间中的三条直线,下面给出四个命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a与b相交,b与c相交,则a与c相交;③若a⊂平面α,b⊂平面β,则a、b一定是异面直线;④若a、b与c成等角,则a∥b.上述命题中正确的命题是(只填序号).【知识点】点线面的位置关系.【数学思想】数形结合的思想.【解题过程】①中,由公理4知,正确;②中,a与c可相交、可平行、可异面,错误;③中,a、b可能平行、相交、异面,故错;④中,a、b可能平行、相交、异面,故错. 【思路点拨】找模型,数形结合.【答案】①4.如图是正方体的平面展开图,在这个正方体中,①BM与ED平行;②CN与BE是异面直线;60角;③CN与BM成④DM与BN是异面直线.以上四个命题中,正确命题的序号是()A.①②③B.②④C.③④D.②③④【知识点】异面直线的判定与所成的角.【数学思想】数形结合的思想.【解题过程】由题意画出正方体的图形如图:显然①②不正确;③CN与BM成60°角,即∠ANC=60°,正确;④正确,故选C.【思路点拨】平面图形还原为空间图形.【答案】C5.如图,已知正方体D C B A ABCD ''''-.(1)哪些棱所在直线与直线A B '是异面直线?(2)直线A B '和C C '的夹角是多少?(3)哪些棱所在直线与直线A A '垂直?【知识点】异面直线的基本知识.【数学思想】数形结合的思想.【解题过程】(1)由异面直线的定义可知,棱AD 、DC 、CC'、DD'、D'C 、'B'C'所在直线分别与BA'是异面直线.(2)由BB'∥CC'可知,∠B'BA'是异面直线BA'和CC'的夹角,∠B'BA'=45°,所以直线BA'和CC'的夹角为45°.(3)直线A D D C C B B A DA CD BC AB ''''''''、、、、、、、分别与直线AA'垂直.【思路点拨】根据异面直线所成的基本知识与方法.【答案】(1)C B C D D D C C DC AD ''''''、、、、、;(2)45;(3)A D D C C B B A DA CD BC AB ''''''''、、、、、、、. 能力型 师生共研6.已知三棱锥BCD A -中,CD AB =,且直线AB 与CD 成60角,点N M ,分别是AD BC ,的中点,求直线AB 和MN 所成的角.【知识点】异面直线所成的角.【数学思想】数形结合的思想.【解题过程】如图,取AC 的中点P ,连接PM ,PN ,因为点M ,N 分别是BC ,AD 的中点,所以PM ∥AB ,且PM =12AB ;PN ∥CD ,且PN =12CD ,所以∠MPN (或其补角)为AB 与CD 所成的角.所以∠PMN (或其补角)为AB 与MN 所成的角.因为直线AB 与CD 成60°角,所以∠MPN =60°或∠MPN =120°.又因为AB =CD ,所以PM =PN.①若∠MPN =60°,则△PMN 是等边三角形,所以∠PMN =60°,即AB 与MN 所成的角为60°.②若∠MPN =120°,则易知△PMN 是等腰三角形.所以∠PMN =30°,即AB 与MN 所成的角为30°.综上可知:AB 与MN 所成角为60°或30°.【思路点拨】根据异面直线所成的角定义找到这个平面角.【答案】 60或30.探究型 多维突破7.如下图所示,点S R Q P 、、、分别在正方体的4条棱上,且是所在棱的中点,则直线PQ 与RS 是异面直线的一个图是________.【知识点】平行、共线、异面直线等相关命题判断.【数学思想】分类讨论与数形结合的思想.【解题过程】显然①②平行,④相交,③异面.【思路点拨】根据直线的基本位置关系进行判断.【答案】③自助餐1.如下图所示是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为( )A.相交B.平行C.异面而且垂直D.异面但不垂直【知识点】直线的位置关系.【数学思想】数形结合的思想.【解题过程】平面图形还原为空间图形,容易观察得出选D.【思路点拨】平面图形还原为空间图形.【答案】D2.下列命题:①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条直线分别平行,那么这两组直线所成的锐角(或直角)相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④如果两条直线同时平行于第三条直线,那么这两条直线互相平行.其中正确的结论有( )A.1个B.2个C.3个D.4个【知识点】等角定理,公理4的理解与应用.【数学思想】数形结合的思想.【解题过程】由等角定理知道①错误,②③正确;由公理4知道④正确,选C. 【思路点拨】找点线面的关系.【答案】C3.已知正方体1111D C B A ABCD -中,E 为11D C 的中点,则异面直线AE 与11B A 所成的角的余弦值为________.【知识点】异面直线成的角.【数学思想】数形结合的思想.【解题过程】显然1AED ∠为异面直线AE 与11B A 所成的角(或补角),容易求得余弦值为31. 【思路点拨】先找,后证,最后算. 【答案】31 4.在正方体1111D C B A ABCD -中,F E ,分别是11,BC AB 的中点,则以下结论:①EF 与1CC 垂直;②EF 与BD 垂直;③EF 与11C A 异面;④EF 与1AD 异面,其中不成立的序号是________.【知识点】直线的位置关系.【数学思想】数形结合的思想.【解题过程】连结A 1B ,在△A 1BC 1中,EF ∥A 1C 1,所以①,②,④正确,③错.【思路点拨】找点线面的关系.【答案】③5.在三棱锥A BCD -中,2==BC AD ,F E 、分别是CD AB 、的中点,2=EF ,则异面直线AD 与BC 所成的角为________.【知识点】异面直线所成角.【数学思想】数形结合的思想.【解题过程】取AC 中点P ,连接PF PE 、.则ABC ∆中,PE ∥BC 且121==BC PE ,ACD ∆中,PF ∥AD 且121==AD PF ,所以EPF ∠为所求.EPF ∆中,2,1===EF PF PE ,所以︒=∠90EPF .【思路点拨】先找,后证,最后算.【答案】︒906.正方体1111D C B A ABCD -中.(1)求AC 与D A 1所成角的大小;(2)若F E 、分别为AD AB 、的中点,求11C A 与EF 所成角的大小.【知识点】异面直线所成角.【数学思想】数形结合的思想.【解题过程】(1)如图所示,连接B 1C ,由ABCD -A 1B 1C 1D 1是正方体,易知A 1D ∥B 1C ,从而B 1C 与AC 所成的角就是AC 与A 1D 所成的角. ∵AB 1=AC =B 1C ,∴∠B 1CA =60°.即A 1D 与AC 所成的角为60°.(2)如图所示,连接AC 、BD ,在正方体1111D C B A ABCD -中,AC ⊥BD ,AC ∥A 1C 1,∵E 、F 分别为AB 、AD 的中点,∴EF ∥BD ,∴EF ⊥AC . ∴EF ⊥A 1C 1. 即A 1C 1与EF 所成的角为90°.【思路点拨】先找,后证,最后算.【答案】(1)︒60;(2) 907.长方体1111D C B A ABCD -中,21==AB AA ,1=AD ,求异面直线11C A 与1BD 所成角的余弦值.【知识点】异面直线所成的角.【数学思想】数形结合的思想.【解题过程】设11C A 与11D B 交于O ,取1BB 中点E ,连接OE , 因为OE //B D 1,所以OE C 1∠或其补角就是异面直线11C A 与1BD 所成的角或其补角.在OE C 1∆中,11112OC A C ==,11322OE BD ===,1C E ===,所以2221111cos 2OC OE C E C OE OC OE +-∠===⋅,所以异面直线11C A 与1BD 所成的角的余弦值为55.【思路点拨】根据异面直线所成的角定义找到这个平面角. 【答案】55。

人教A版高中数学必修二课件异面直线

人教A版高中数学必修二课件异面直线
答:错。
b
a
判断题2
分别在两个平面内的两条直线一定异面。 答:不一定:它们可能异面,可能相交,也可能平行。
b a
M
ab
a
b





a与b是异面直线
a与b是相交直线
a与b是平行直线
注2
在不同平面内的两条直线不一定异面。
BACK
NEXT
例2
1)“a,b是异面直线”是指 ① a∩b=Φ且a不平行于b;② a平面,b 平面 且a∩b=Φ ③ a平面,b平面
注1
定义中是指“任何”一个平面,是指找不到一个平面, 使这两条直线在这个平面上,这样的两条直线才是异面直线。
例子:如图,在长方体中,
H
判断AB与HG是不是异面直线? E
G F
AB与HG不是异面直线。
D
C
A
B
BACK
NEXT
空间两条直线的位置关系
共面直线
相交 有且只有一个公共点 平行 没有公共点
异面直线 不同在任一平面,无公共点
若两条直线没有公共点,则这两条直线异面或平行
怎么画异面直线呢?
D' A'
o
有一个背景作为衬托 --直观,空间立体
感更强!
D A
C' B'
C B
异面直线的作图方法1
如何证明直线AB,a是异面直线?
A线的作图方法 2

a

b
4.例题
例1.判断题1
1.平面内的一条直线和平面外的一条 直线是异面直线。
④ 不存在平面,能使a且b成立 上述结论中,正确的是 ( )(A)①②(B)
①③ (C)①④ (DC)③④

必修2课件:异面直线所成的角

必修2课件:异面直线所成的角
BACK NEXT
O
H E D A B F
G
C
(3)解决问题 解决问题
平移转化成相交直线所成的角,即化空间图形问题为平面图形问题 思想方法 : 平移转化成相交直线所成的角 即化空间图形问题为平面图形问题 异面直线所成角的定义: 如图,已知两条异面直线 经过空间任一点O作 异面直线所成角的定义 如图 已知两条异面直线 a , b , 经过空间任一点 作 所成的锐角(或直角 直线 a′∥a , b ′∥b 则把 a ′与 b ′所成的锐角 或直角 叫做异面直线所成的角 ∥ ∥ 与 所成的锐角 或直角)叫做异面直线所成的角 (或夹角 或夹角). 或夹角 异面直线所成的角的范围( 0 , 90 ]
b
b′
a″ a
∠2
α
a′
O
∠1
BACK
NEXT
在求作异面直线所成的角时,O点 在求作异面直线所成的角时 点 常选在其中的一条直线上 (如线段的端点,线段的中点等) 如线段的端点 线段的中点等 如线段的端点 线段的中点
例2
如图,正方体 为侧面ADHE的中心,求 的中心, 如图,正方体ABCD-EFGH中,O为侧面 中 为侧面 的中心 (1)BE与CG所成的角? 与 所成的角? 所成的角 (2)FO与BD所成的角? 与 所成的角 所成的角?
这个角的大小与O点的位置有关吗 点位置不同时, 思考 : 这个角的大小与 点的位置有关吗 ? 即O点位置不同时 这一角的大小 点位置不同时 是否改变? 是否改变
解答: 解答: 如图
答: 这个角的大小与O点的位置无关. 点的位置无关 这个角的大小与 点的位置无关
相交所成的角为∠ 设a ′与 b ′相交所成的角为∠1, a ″与 b 所成的角为∠2 , 与 相交所成的角为 与 所成的角为∠ 公理4), ∵ a′∥a , a″ ∥a∴ a′∥ a″ (公理 ∥ ∴ ∥ 公理 同理 b′∥b″, ∴ ∠1 = ∠2 (等角定理 等角定理) ∥ 等角定理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修2异面直线
异面直线是指两条直线在空间中既不相交又不平行的情况。

在高中数学必修2中,学生将学习如何判断两条直线是否异面以及如何求解异面直线的性质。

首先,我们可以通过两条直线的方向向量来判断它们是否平行。

如果两条直线的方向向量不平行,则它们一定不平行。

然而,两条直线的方向向量平行并不意味着它们一定平行,因为两条直线可以在空间中任意平移。

为了判断两条直线是否相交,我们可以使用方程组的方法。

假设已知两条直线的参数方程分别为:
直线1:x = x1 + a1t, y = y1 + b1t, z = z1 + c1t
直线2:x = x2 + a2t, y = y2 + b2t, z = z2 + c2t
其中(x1, y1, z1)和(x2, y2, z2)分别是直线1和直线2上的一点,而(a1, b1, c1)和(a2, b2, c2)则是直线1和直线2的方向向量。

我们可以通过解方程组来判断两条直线是否相交。

如果方程组有解,则两条直线相交;如果方程组无解,则两条直线不相交。

如果两条直线相交,则我们可以进一步求解它们的交点。

将直线1和
直线2的参数方程对应的x、y、z分量相等,可以得到一个关于t的方程组。

通过解这个方程组,我们可以求得两条直线的交点坐标。

在求解异面直线的性质时,我们通常会考虑两条直线的夹角。

两条异面直线的夹角是指它们的方向向量之间的夹角。

可以使用向量的内积公式来计算夹角,即cosθ = (a1a2 + b1b2 + c1c2) /
(|a1b1c1||a2b2c2|),其中θ表示夹角。

另外,异面直线还有一个重要的性质是它们的距离。

两条异面直线的距离是指两条直线上任意一点的距离的最小值。

要计算两条异面直线的距离,我们可以选择其中一条直线上的一点,然后计算该点到另一条直线的距离。

综上所述,高一数学必修2中的异面直线是一个重要的概念。

通过学习如何判断两条直线是否异面以及如何求解异面直线的性质,学生将能够更好地理解空间中的直线和它们之间的关系,为后续学习提供基础。

相关文档
最新文档