2018_2019学年高中数学第二讲参数方程一曲线的参数方程2圆的参数方程讲义(含解析)新人教A版选修4_4
人教版高中数学选修4-4:第二讲一第2课时圆的参数方程含解析

第二讲 参数方程一、曲线的参数方程第2课时 圆的参数方程A 级 基础巩固一、选择题1.已知圆P :⎩⎪⎨⎪⎧x =1+10cos θ,y =-3+10sin θ(θ为参数),则圆心P 及半径r 分别是( ) A .P(1,3),r =10B .P(1,3),r =10C .P(1,-3),r =10D .P(1,-3),r =10解析:由圆P 的参数方程可知圆心(1,-3),半径r =10.答案:C2.圆x 2+y 2+4x -6y -3=0的参数方程为( )A.⎩⎨⎧x =2+4cos θ,y =-3+4sin θ(θ为参数) B.⎩⎨⎧x =-2+4cos θ,y =3+4sin θ(θ为参数) C.⎩⎨⎧x =2-4cos θ,y =3-4sin θ(θ为参数) D.⎩⎨⎧x =-2-4cos θ,y =3-4sin θ(θ为参数) 解析:圆的方程配方为:(x +2)2+(y -3)2=16,所以圆的圆心为(-2,3),半径为4,故参数方程为B 选项.答案:B3.已知圆O 的参数方程是⎩⎨⎧x =2+4cos θ,y =-3+4sin θ(0≤θ<2π),圆上点A 的坐标是(4,-33),则参数θ=( )A.7π6B.4π3C.11π6D.5π3解析:由题意⎩⎨⎧4=2+4cos θ,-33=-3+4sin θ(0≤θ<2π), 所以⎩⎪⎨⎪⎧cos θ=12,sin θ=-32(0≤θ<2π),解得θ=5π3. 答案:D4.若P(x ,y)是圆⎩⎨⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:依题意P(2+cos α,sin α),所以(x -5)2+(y +4)2=(cos α-3)2+(sin α+4)2=26-6cos α+8sin α=26+10sin(α-φ)⎝⎛⎭⎪⎫其中cos φ=45,sin φ=35, 所以当sin(α-φ)=1,即α=2k π+π2+φ(k ∈Z)时,有最大值为36. 答案:A5.直线:3x -4y -9=0与圆:⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数)的位置关系是( ) A .相切B .相离C .直线过圆心D .相交但直线不过圆心 解析:圆心坐标为(0,0),半径为2,显然直线不过圆心,又圆心到直线距离d =95<2. 所以直线与圆相交,但不过圆心.答案:D二、填空题6.已知圆的方程为x 2+y 2=2x ,则它的一个参数方程是______.解析:将x 2+y 2=2x 化为(x -1)2+y 2=1知圆心坐标为(1,0),半径r =1,所以它的一个参数方程为⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数). 答案:⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数) 7.已知曲线方程⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数),则该曲线上的点与定点(-1,-2)的距离的最小值为________. 解析:设曲线上动点为P(x ,y),定点为A ,则|PA|=(1+cos θ+1)2+(sin θ+2)2= 9+42sin ⎝ ⎛⎭⎪⎫θ+π4, 故|PA|min =9-42=22-1.答案:22-18.曲线C :⎩⎨⎧x =cos θ,y =-1+sin θ(θ为参数)的普通方程为__________.如果曲线C 与直线x +y +a =0有公共点,那么a 的取值范围是________.解析:⎩⎨⎧x =cos θ,y =-1+sin θ(θ为参数)消参可得 x 2+(y +1)2=1,利用圆心到直线的距离d ≤r 得|-1+a|2≤1, 解得1-2≤a ≤1+ 2. 答案:x 2+(y +1)2=1 [1-2,1+2]三、解答题9.已知曲线C 的极坐标方程是ρ=2cos θ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =32t +m ,y =12t(t 为参数). (1)求曲线C 的直角坐标方程和直线l 普通方程;。
高中数学 第二讲《参数方程》全部教案 新人教A版选修4-4

曲线的参数方程教学目标:1.通过分析抛物运动中时间与运动物体位置的关系,写出抛物运动轨迹的参数方程,体会参数的意义。
2.分析圆的几何性质,选择适当的参数写出它的参数方程。
3.会进行参数方程和普通方程的互化。
教学重点:根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。
参数方程和普通方程的互化。
教学难点:根据几何性质选取恰当的参数,建立曲线的参数方程。
参数方程和普通方程的等价互化。
教学过程一.参数方程的概念1.探究:(1)平抛运动: 为参数)t gt y tx (215001002⎪⎩⎪⎨⎧-== 练习:斜抛运动:为参数)t gt t v y t v x (21sin cos 200⎪⎩⎪⎨⎧-⋅=⋅=αα2.参数方程的概念 (见教科书第22页) 说明:(1)一般来说,参数的变化X 围是有限制的。
(2)参数是联系变量x ,y 的桥梁,可以有实际意义,也可无实际意义。
例1.(教科书第22页例1)已知曲线C 的参数方程是⎩⎨⎧+==1232t y tx (t 为参数) (1)判断点M 1(0,1),M 2(5,4)与曲线C 的位置关系; (2)已知点M 3(6,a )在曲线C 上,求a 的值。
)0,1()21,21()21,31()7,2()(2cos sin 2D C B A y x ,、,、,、的坐标是表示的曲线上的一个点为参数、方程θθθ⎩⎨⎧==A 、一个定点B 、一个椭圆C 、一条抛物线D 、一条直线二.圆的参数方程)(sin cos 为参数t t r y t r x ⎩⎨⎧==ωω)(sin cos 为参数θθθ⎩⎨⎧==r y r x说明:(1)随着选取的参数不同,参数方程形式也有不同,但表示的曲线是相同的。
(2)在建立曲线的参数方程时,要注明参数及参数的取值X 围。
例2.(教科书第24页例2)思考:你能回答教科书第25页的思考吗?三.参数方程和普通方程的互化1.阅读教科书第25页,明确参数方程和普通方程的互化的方法。
曲线的参数方程

如果t 是常数,θ 是参数,那么可以利用公式
������
sin2θ+cos2θ=1 消参;如果 θ 是常数,t 是参数,那么适当变形后可以利
用
������ + 1
2
−
������
������-
1 ������
2
= 4 消参.
-13-
【做一做3-2】 已知圆的方程为x2+y2-6y=0,将它化为参数方程.
解:由x2+y2-6y=0,
得x2+(y-3)2=9.
令x=3cos θ,y-3=3sin θ,
所以圆的参数方程为
������ ������
= =
3cos������, 3 + 3sin������
(������为参数).
-9-
∗
, 并且对于������的每一个允许值, 由方程组
∗ 所确定的点������ ������, ������ 都在这条曲线上, 那么方程 ∗ 就叫做这条曲
线的参数方程, 联系变数������, ������的变数������叫做参变数, 简称参数. 相对于
参数方程而言, 直接给出点的坐标间关系的方程叫做普通方程.
(2)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意
义的变数,也可以是没有明显实际意义的变数.
-4-
一 曲线的参数方程
目标导航
Z Z D 知识梳理 HISHISHULI
重难聚焦
HONGNANJUJIAO
典例透析
IANLITOUXI
【做一做 1】
若点 P(2,4)在参数方程
2018_2019学年高中数学第二讲参数方程二圆锥曲线的参数方程1椭圆的参数方程讲义含解析新人教A版

1.椭圆的参数方程椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数),规定参数φ的取值范围是[0,2π).(2)中心在(h ,k )的椭圆普通方程为(x -h )2a 2+(y -k )2b 2=1,则其参数方程为⎩⎪⎨⎪⎧x =h +a cos φy =k +b sin φ(φ为参数).[例1] 已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.[思路点拨] (1)由椭圆的参数方程公式,求椭圆的参数方程,由换元法求直线的普通方程.(2)将椭圆上的点的坐标设成参数方程的形式,将问题转化为三角函数求最值问题. [解] (1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x+y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|.则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值, 最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.利用椭圆的参数方程,求目标函数的最大(小)值,通常是利用辅助角公式转化为三角函数求解.1.已知椭圆x 225+y 216=1,点A 的坐标为(3,0).在椭圆上找一点P ,使点P 与点A 的距离最大.解:椭圆的参数方程为⎩⎪⎨⎪⎧x =5cos θ,y =4sin θ(θ为参数).设P (5cos θ,4sin θ),则|PA |=(5cos θ-3)2+(4sin θ)2=9cos 2θ-30cos θ+25 =(3cos θ-5)2=|3cos θ-5|≤8, 当cos θ=-1时,|PA |最大.此时,sin θ=0,点P 的坐标为(-5,0).[例2] 已知A ,B 分别是椭圆36+9=1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 的重心G 的轨迹方程.[思路点拨] 由条件可知,A ,B 两点坐标已知,点C 在椭圆上,故可设出点P 坐标的椭圆参数方程形式,由三角形重心坐标公式求解.[解] 由题意知A (6,0)、B (0,3).由于动点C 在椭圆上运动,故可设动点C 的坐标为(6cos θ,3sin θ),点G 的坐标设为(x ,y ),由三角形重心的坐标公式可得⎩⎪⎨⎪⎧x =6+0+6cos θ3,y =0+3+3sin θ3,即⎩⎪⎨⎪⎧x =2+2cos θ,y =1+sin θ.消去参数θ得△ABC 的重心G 的轨迹方程为(x -2)24+(y -1)2=1.本题的解法体现了椭圆的参数方程对于解决相关问题的优越性,运用参数方程显得很简单,运算更简便.2.已知椭圆方程是x 216+y 29=1,点A (6,6),P 是椭圆上一动点,求线段PA 中点Q 的轨迹方程.解:设P (4cos θ,3sin θ),Q (x ,y ),则有 ⎩⎪⎨⎪⎧x =4cos θ+62,y =3sin θ+62,即⎩⎪⎨⎪⎧x =2cos θ+3,y =32sin θ+3(θ为参数),∴9(x -3)2+16(y -3)2=36即为所求.3.设F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右两个焦点.(1)若椭圆C 上的点A ⎝ ⎛⎭⎪⎫1,32到F 1,F 2的距离之和等于4,写出椭圆C 的方程和焦点坐标; (2)设点P 是(1)中所得椭圆上的动点,求线段F 1P 的中点的轨迹方程.解:(1)由椭圆上点A 到F 1,F 2的距离之和是4,得2a =4,即a =2.又点A ⎝ ⎛⎭⎪⎫1,32在椭圆上,因此14+⎝ ⎛⎭⎪⎫322b 2=1,得b 2=3,于是c 2=a 2-b 2=1,所以椭圆C 的方程为x 24+y 23=1,焦点坐标为F 1(-1,0),F 2(1,0).(2)设椭圆C 上的动点P 的坐标为(2cos θ,3sin θ),线段F 1P 的中点坐标为(x ,y ),则x =2cos θ-12,y =3sin θ+02,所以x +12=cos θ,2y 3=sin θ.消去θ,得⎝ ⎛⎭⎪⎫x +122+4y23=1即为线段F 1P 中点的轨迹方程.[例3] 已知椭圆4+y 2=1上任一点M (除短轴端点外)与短轴两端点B 1,B 2的连线分别交x 轴于P ,Q 两点,求证:|OP |·|OQ |为定值.[思路点拨] 利用参数方程,设出点M 的坐标,并由此得到直线MB 1,MB 2的方程,从而得到P ,Q 两点坐标,求出|OP |,|OQ |,再求|OP |·|OQ |的值.[证明] 设M (2cos φ,sin φ),φ为参数,因为B 1(0,-1),B 2(0,1),则MB 1的方程为y +1=sin φ+12cos φ·x ,令y =0,则x =2cos φsin φ+1,即|OP |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ.MB 2的方程为y -1=sin φ-12cos φx ,令y =0,则x =2cos φ1-sin φ.∴|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1-sin φ.∴|OP |·|OQ |=⎪⎪⎪⎪⎪⎪2cos φ1+sin φ·⎪⎪⎪⎪⎪⎪2cos φ1-sin φ=4.即|OP |·|OQ |=4为定值.利用参数方程证明定值(或恒成立)问题,首先是用参数把要证明的定值(或恒成立的式子)表示出来,然后利用条件消去参数,得到一个与参数无关的定值即可.4.求证:椭圆⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(a >b >0,0≤θ≤2π)上一点M 与其左焦点F 的距离的最大值为a +c (其中c 2=a 2-b 2).证明:M ,F 的坐标分别为(a cos θ,b sin θ),(-c,0). |MF |2=(a cos θ+c )2+(b sin θ)2=a 2cos 2θ+2ac cos θ+c 2+b 2-b 2cos 2θ =c 2cos 2θ+2ac cos θ+a 2=(a +c cos θ)2.∴当cos θ=1时,|MF |2最大,|MF |最大,最大值为a +c .一、选择题1.椭圆⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数),若θ∈[0,2π],则椭圆上的点(-a,0)对应的θ=( )A .πB.π2C .2πD.32π 解析:选A ∵在点(-a,0)中,x =-a ,∴-a =a cos θ,∴cos θ=-1,∴θ=π.2.参数方程⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数)和极坐标方程ρ=-6cos θ所表示的图形分别是( )A .圆和直线B .直线和直线C .椭圆和直线D .椭圆和圆解析:选D 对于参数方程⎩⎪⎨⎪⎧x =2cos θ,y =sin θ(θ为参数),利用同角三角函数关系消去θ化为普通方程为x 24+y 2=1,表示椭圆.ρ=-6cos θ两边同乘ρ, 得ρ2=-6ρcos θ, 化为普通方程为x 2+y 2=-6x , 即(x +3)2+y 2=9.表示以(-3,0)为圆心,3为半径的圆.3.椭圆⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数)的左焦点的坐标是( )A .(-7,0)B .(0,7)C .(-5,0)D .(-4,0)解析:选A 根据题意,椭圆的参数方程⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数)化成普通方程为x 216+y 29=1,其中a =4,b =3,则c =16-9=7, 所以椭圆的左焦点坐标为(-7,0).4.两条曲线的参数方程分别是⎩⎪⎨⎪⎧x =cos 2θ-1,y =1+sin 2θ(θ为参数)和⎩⎪⎨⎪⎧x =3cos t ,y =2sin t (t为参数),则其交点个数为( )A .0B .1C .0或1D .2解析:选B 由⎩⎪⎨⎪⎧x =cos 2θ-1,y =1+sin 2θ,得x +y -1=0(-1≤x ≤0, 1≤y ≤2),由⎩⎪⎨⎪⎧x =3cos t ,y =2sin t得x 29+y 24=1.如图所示,可知两曲线交点有1个.二、填空题5.椭圆⎩⎪⎨⎪⎧x =5cos θ,y =4sin θ(θ为参数)的离心率为________.解析:由椭圆方程为x 225+y 216=1,可知a =5,b =4,∴c =a 2-b 2=3,∴e =c a =35.答案:356.已知P 为曲线C :⎩⎪⎨⎪⎧x =3cos θ,y =4sin θ(θ为参数,0≤θ≤π)上一点,O 为坐标原点,若直线OP 的倾斜角为π4,则点P 的坐标为________.解析:曲线C 的普通方程为y 216+x 29=1(0≤y ≤4),易知直线OP 的斜率为1,其方程为y =x ,联立⎩⎪⎨⎪⎧y =x ,y 216+x29=1,消去y ,得x 2=16×925,故x =125⎝ ⎛⎭⎪⎫x =-125舍去,故y =125, 所以点P 的坐标为⎝ ⎛⎭⎪⎫125,125. 答案:⎝⎛⎭⎪⎫125,1257.已知椭圆的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =4sin φ(φ为参数),点M 在椭圆上,对应的参数φ=π3,点O 为原点,则直线OM 的斜率为________.解析:当φ=π3时,⎩⎪⎨⎪⎧x =2cos π3=1,y =4sin π3=23,故点M 的坐标为(1,23).所以直线OM 的斜率为2 3.答案:2 3 三、解答题8.已知两曲线的参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t∈R),求它们的交点坐标.解:将⎩⎨⎧x =5cos θy =sin θ(0≤θ<π)化为普通方程得:x 25+y 2=1(0≤y ≤1,x ≠-5),将x =54t 2,y =t 代入得,516t 4+t 2-1=0,解得t 2=45,∴t =255,x =54t 2=54×45=1,∴两曲线的交点坐标为⎝⎛⎭⎪⎫1,255.9.已知椭圆的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ(θ为参数),求椭圆上一点P 到直线⎩⎪⎨⎪⎧x =2-3t ,y =2+2t (t 为参数)的最短距离.解:设点P (3cos θ,2sin θ),直线⎩⎪⎨⎪⎧x =2-3t ,y =2+2t 可化为2x +3y -10=0,点P 到直线的距离d =|6cos θ+6sin θ-10|13=⎪⎪⎪⎪⎪⎪62sin ⎝ ⎛⎭⎪⎫θ+π4-1013.因为sin ⎝⎛⎭⎪⎫θ+π4∈[-1,1],所以d ∈⎣⎢⎡⎦⎥⎤10-6213,10+6213,所以点P 到直线的最短距离d min =10-6213. 10.椭圆x 2a 2+y 2b2=1(a >b >0)与x 轴正半轴交于点A ,若这个椭圆上总存在点P ,使OP⊥AP (O 为原点),求离心率e 的取值范围.解:设椭圆的参数方程是⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数)(a >b >0),则椭圆上的点P (a cos θ,b sin θ),A (a,0).∵OP ⊥AP ,∴b sin θa cos θ·b sin θa cos θ-a=-1,即(a 2-b 2)cos 2θ-a 2cos θ+b 2=0. 解得cos θ=b 2a 2-b 2或cos θ=1(舍去).∵a >b ,-1≤cos θ≤1,∴0<b 2a 2-b 2≤1.把b 2=a 2-c 2代入得0<a 2-c 2c2≤1.即0<1e 2-1≤1,解得22≤e <1.故椭圆的离心率e 的取值范围为⎣⎢⎡⎭⎪⎫22,1.。
第2讲1第1课时参数方程的概念及圆的参数方程课件人教新课标

解答
(2)若(x,y)是M轨迹上的点,求x+2y的取值范围. 解 x+2y=cos θ+2+2sin θ= 5sin(θ+φ)+2,tan φ=12. ∵-1≤sin(θ+φ)≤1, ∴- 5+2≤x+2y≤ 5+2. 即 x+2y 的取值范围是[- 5+2, 5+2].
弦所在直线 l 的方程为_x_-__y_-__3_=__0__.
解析 圆心O′(1,0),∴kO′P=-1,即直线l的斜率为1. ∴直线l的方程为x-y-3=0.
12345
解析 答案
规律与方法
1.参数方程 (1)参数的作用:参数是间接地建立横、纵坐标x,y之间的关系的中间变量, 起到了桥梁的作用. (2)参数方程是通过变数反应坐标变量x与y之间的间接联系. 2.求曲线参数方程的步骤 第一步,建系,设M(x,y)是轨迹上任意一点; 第二步,选参数,比如选参数t; 第三步,建立x,y与参数间的关系,即xy==fgtt,.
12345
解析 答案
4.已知xy= =tt+ 2 1, (t 为参数),若 y=1,则 x=__0_或__2___.
解析 ∵y=t2=1, ∴t=±1. ∴x=1+1=2或x=-1+1=0.
12345
解析 答案
5.若 P(2,-1)为圆 O′:xy= =15s+in5θcos θ, (0≤θ<2π)的弦的中点,则该
_-_6_y_-__3_=__0_)_.
4x
解析 将参数方程化为标准方程,得(x-3)2+(y+2)2=16,
故圆心坐标为(3,-2).
课件1:1.参数方程的概念~2.圆的参数方程

为参数)
名师点睛
1.曲线的普通方程直接地反映了一条曲线上的点的横、 纵坐标之间的联系,而参数方程是通过参数反映坐标变量x、 y间的间接联系.在具体问题中的参数可能有相应的几何意 义,也可能没有什么明显的几何意义.曲线的参数方程常常 是方程组的形式,任意给定一个参数的允许取值就可得到曲 线上的一个对应点,反过来对于曲线上任一点也必然对应着 其中的参数的相应的允许取值.
(1)求常数a; (2)求曲线C的普通方程. 【思维启迪】本题主要应根据曲线与方程之间的关系,可知 点M(5,4)在该曲线上,则点M的坐标应适合曲线C的方程,从 而可求得其中的待定系数,进而消去参数得到其普通方程.
解 (1)由题意可知有1at+2=2t4=5,故ta==21.∴a=1. (2)由已知及(1)可得,曲线 C 的方程为xy==t12+2t. 由第一个方程得 t=x-2 1代入第二个方程,得 y=x-2 12,即(x-1)2=4y 为所求.
∴x2+y2 的最大值为 11+6 2,最小值为 11-6 2.
题型三 参数方程的实际应用
例3 某飞机进行投弹演习,已知飞机离地面高度为H= 2 000 m,水平飞行速度为v1=100 m/s,如图所示.
(1)求飞机投弹t s后炸弹的水平位移和离地面的高度; (2)如果飞机追击一辆速度为v2=20 m/s同向行驶的汽车, 欲使炸弹击中汽车,飞机应在距离汽车的水平距离多远处 投弹?(g=10 m/s2)
点击1 考查圆的参数方程的应用 1.已知圆 C 的参数方程为xy==1c+ os sαin,α(α 为参数),以原点为
极点,x 轴正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 ρsin θ=1,则直线 l 与圆 C 的交点的直角坐标为________.
曲线参数方程之意义和圆的参数方程ppt

Smax 5 2 10, Smin 5 2 10
x 2 cos 1 P(x, y)是曲线 y sin (α为参数)上任意一点,则
练习
( x 5)2 ( y 4)2 的最大值为( A )
A.36 B. 6 C.26 D.25
法一:直接代入(应用 辅助角公式)
A(2,7); B(1/3, 2/3)
C(1/2, 1/2)
D(1,0)
x sin 2 3.下列在曲线 y cos sin (为参数) 3 1 1 ( , 2 ) ( , ) C (2, 3) A 2 B 4 2
上的点是 ( B ) D (1, 3)
3.已知曲线C的参数方程 且点M(5,4)在该曲线上. (1)求常数a;(2)求曲线C的普通方程. 解: (1)由题意可知:
x 1 t 2
4.已知动点M作匀速直线运动, 它在x轴和y轴方向的速 度分别为5和12 , 运动开始时位于点P(1,2), 求点M的轨 迹参数方程。
解:设动点M (x,y) 运动时间为t,依题意,得
5、由方程x y 4tx 2ty 5t 4 0( t为 参数 )所表示的一族圆的圆心 轨迹是 D
这个方程组无解,因此点M2不在曲线上
解得t=2, a=9 所以,a=9.
练习
x 1 t 2 与x轴的交点坐标是( B ) 1、曲线 y 4t 3(t为参数)
A(1,4); B (25/16, 0)
C(1, -3)
D(±25/16, 0)
x sin (为参数)所表示的曲线上一点的坐标是( ) 2、方程 D y cos
直接判断点M的轨迹是什么并不方便,
把它化为我们熟悉的普通方程,有 cosθ=x-3, sinθ=y; 于是(x-3)2+y2=1, 轨迹是什么就很清楚了
第二讲 一 第二课时圆的参数方程及参数方程与普通方程的互化

(t 为参数)π≤t<2π. ( θ 为参数)0≤θ<2π.
x=3+15cos θ, (3) y=2+15sin θ,
金品质•高追求
我们让你更放心!
返回
◆数学•选修4-4•(配人教A版)◆
x=3cos θ, 解析:(1)由 y=3sin θ
得 x2+y2=9.
π 又由 0<θ<2,得 0<x<3,0<y<3, ∴所求方程为 x2+y2=9(0<x<3 且 0<y<3). 这是一段圆弧(圆 x2+y2=9 位于第一象限的部分). x=2cos t, (2)由 (t 为参数)得 x2+y2=4. y=2sin t, 由 π≤t<2π,得-2≤x≤2,-2≤y≤0. ∴所求圆方程为 x2+y2=4(-2≤x≤2,-2≤y≤0). 这是一段半圆弧(圆 x2+y2=4 位于 y 轴下方的部分包括端点). x=3+15cos θ, (3)由参数方程 (θ 为参数)得(x-3)2+(y y=2+15sin θ, -2)2=152.由 0≤θ<2π 可知这是一个整圆弧.
金品质•高追求
我们让你更放心!
返回
◆数学•选修4-4•(配人教A版)◆
∵|AB|=10,
x=5cos θ, ∴圆的参数方程为 y=5sin θ
(θ 为参数).
∵|AC|=|BD|=4. ∴C,D 两点的坐标为 C(-1,0),D(1,0). ∵点 P 在圆上,所以可设点 P 的坐标为(5cos θ,5sin θ). ∴|PC|+|PD| = 5cos θ+12+5sin θ2+ 5cos θ-12+5sin θ2 = 26+10cos θ+ 26-10cos θ = 26+10cos θ+ 26-10cos θ2 = 52+2 262-100cos 2θ. π 当 cos θ= 时,(|PC|+|PD|)max= 52+52=2 26. 2 ∴|PC|+|PD|的最大值为 2 26. 金品质•高追求 我们让你更放心!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.圆的参数方程圆的参数方程(1)在t 时刻,圆周上某点M 转过的角度是θ,点M 的坐标是(x ,y ),那么θ=ωt (ω为角速度).设|OM |=r ,那么由三角函数定义,有cos ωt =xr ,sin ωt =y r,即圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos ωt ,y =r sin ωt(t 为参数).其中参数t 的物理意义是:质点做匀速圆周运动的时刻.(2)若取θ为参数,因为θ=ωt ,于是圆心在原点O ,半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数).其中参数θ的几何意义是:OM 0(M 0为t =0时的位置)绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.(3)若圆心在点M 0(x 0,y 0),半径为R ,则圆的参数方程为⎩⎪⎨⎪⎧x =x 0+R cos θy =y 0+R sin θ(0≤θ<2π).[例1] (1)在y 轴左侧的半圆(不包括y 轴上的点); (2)在第四象限的圆弧.[解] (1)由题意,圆心在原点,半径为r的圆的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ∈[0,2π)),在y 轴左侧半圆上点的横坐标小于零,即x =r cos θ<0,所以有π2<θ<3π2,故其参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ⎝ ⎛⎭⎪⎫θ∈⎝ ⎛⎭⎪⎫π2,3π2.(2)由题意,得⎩⎪⎨⎪⎧x =r cos θ>0,y =r sin θ<0,解得3π2<θ<2π.故在第四象限的圆弧的参数方程为⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ⎝ ⎛⎭⎪⎫θ∈⎝ ⎛⎭⎪⎫3π2,2π.(1)确定圆的参数方程,必须仔细阅读题目所给条件,否则,就会出现错误,如本题易忽视θ的范围而致误.(2)由于选取的参数不同,圆有不同的参数方程.1.已知圆的方程为x 2+y 2=2x ,写出它的参数方程. 解:x 2+y 2=2x 的标准方程为(x -1)2+y 2=1, 设x -1=cos θ,y =sin θ,则参数方程为⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(0≤θ<2π).2.已知点P (2,0),点Q 是圆⎩⎪⎨⎪⎧x =cos θ,y =sin θ上一动点,求PQ 中点的轨迹方程,并说明轨迹是什么曲线.解:设中点M (x ,y ).则⎩⎪⎨⎪⎧x =2+cos θ2,y =0+sin θ2,即⎩⎪⎨⎪⎧x =1+12cos θ,y =12sin θ,(θ为参数)这就是所求的轨迹方程.它是以(1,0)为圆心,12为半径的圆.[例2] 若x ,[思路点拨] (x -1)2+(y +2)2=4表示圆,可考虑利用圆的参数方程将求2x +y 的最值转化为求三角函数最值问题.[解] 令x -1=2cos θ,y +2=2sin θ, 则有x =2cos θ+1,y =2sin θ-2,故2x +y =4cos θ+2+2sin θ-2=4cos θ+2sin θ=25sin(θ+φ), ∴-25≤2x +y ≤25,即2x +y 的最大值为25,最小值为-2 5.圆的参数方程突出了工具性作用,应用时,把圆上的点的坐标设为参数方程形式,将问题转化为三角函数问题,利用三角函数知识解决问题.3.已知圆C ⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ与直线x +y +a =0有公共点,求实数a 的取值范围.解:将圆C 的方程代入直线方程,得 cos θ-1+sin θ+a =0,即a =1-(sin θ+cos θ)=1-2sin ⎝ ⎛⎭⎪⎫θ+π4.∵-1≤sin ⎝ ⎛⎭⎪⎫θ+π4≤1,∴1-2≤a ≤1+ 2.故实数a 的取值范围为[1-2,1+2].一、选择题1.已知圆的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),则圆的圆心坐标为( )A .(0,2)B .(0,-2)C .(-2,0)D .(2,0)解析:选D 将⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ化为(x -2)2+y 2=4,其圆心坐标为(2,0).2.已知圆的参数方程为⎩⎨⎧x =-1+2cos θ,y =2sin θ(θ为参数),则圆心到直线y =x +3的距离为( )A .1 B. 2 C .2D .2 2解析:选B 圆的参数方程⎩⎨⎧x =-1+2cos θ,y =2sin θ(θ为参数)化成普通方程为(x +1)2+y 2=2,圆心(-1,0)到直线y =x +3的距离d =|-1+3|2=2,故选B. 3.若直线y =ax +b 经过第二、三、四象限,则圆⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ为参数)的圆心在( )A .第四象限B .第三象限C .第二象限D .第一象限解析:选B 根据题意,若直线y =ax +b 经过第二、三、四象限,则有a <0,b <0.圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos θ,y =b +r sin θ(θ为参数),圆心坐标为(a ,b ),又由a <0,b <0,得该圆的圆心在第三象限,故选B.4.P (x ,y )是曲线⎩⎪⎨⎪⎧x =2+cos α,y =sin α(α为参数)上任意一点,则(x -5)2+(y +4)2的最大值为( )A .36B .6C .26D .25解析:选A 设P (2+cos α,sin α),代入得, (2+cos α-5)2+(sin α+4)2=25+sin 2α+cos 2α-6cos α+8sin α=26+10sin(α-φ)⎝ ⎛⎭⎪⎫其中tan φ=34,所以其最大值为36.二、填空题5.x =1与圆x 2+y 2=4的交点坐标是________. 解析:圆x 2+y 2=4的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数)令2cos θ=1,得cos θ=12,∴sin θ=±32.∴交点坐标为(1,3)和(1,-3). 答案:(1,3),(1,-3)6.曲线⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数)与直线x +y -1=0相交于A ,B 两点,则|AB |=________.解析:根据题意,曲线⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数)的普通方程为x 2+(y -1)2=1,表示圆心坐标为(0,1),半径r =1的圆,而直线的方程为x +y -1=0,易知圆心在直线上, 则AB 为圆的直径,故|AB |=2r =2. 答案:27.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π6=1,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数),则直线l 与圆C 相交所得的弦长为________.解析:直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π6=1, 展开可得32ρsin θ+12ρcos θ=1,化为直角坐标方程为x +3y -2=0,圆C 的参数方程⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数)化为普通方程为(x -2)2+(y +3)2=4,可得圆心坐标为(2,-3),半径r =2. 圆心C 到直线l 的距离d =|2-3-2|12+(3)2=32. ∴直线l 与圆C 相交所得弦长=2r 2-d 2=2 4-⎝ ⎛⎭⎪⎫322=7.答案:7 三、解答题8.将参数方程⎩⎪⎨⎪⎧x =1+4cos t ,y =-2+4sin t (t 为参数,0≤t ≤π)化为普通方程,并说明方程表示的曲线.解:因为0≤t ≤π,所以-3≤x ≤5,-2≤y ≤2.因为⎩⎪⎨⎪⎧x =1+4cos t ,y =-2+4sin t ,所以(x -1)2+(y +2)2=16cos 2t +16sin 2t =16,所以曲线的普通方程为(x -1)2+(y +2)2=16(-3≤x ≤5,-2≤y ≤2).它表示的曲线是以点(1,-2)为圆心,4为半径的上半圆.9.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t (t 为参数,0≤t ≤π).(2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32.10.在极坐标系中,已知三点O (0,0),A ⎝ ⎛⎭⎪⎫2,π2,B ⎝ ⎛⎭⎪⎫22,π4.(1)求经过点O ,A ,B 的圆C 1的极坐标方程;(2)以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,圆C 2的参数方程为⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数),若圆C 1与圆C 2外切,求实数a 的值.解:(1)O (0,0),A ⎝ ⎛⎭⎪⎫2,π2,B ⎝ ⎛⎭⎪⎫22,π4对应的直角坐标分别为O (0,0),A (0,2),B (2,2),则过点O ,A ,B 的圆的普通方程为x 2+y 2-2x -2y =0,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入可求得经过点O ,A ,B 的圆C 1的极坐标方程为ρ=22cos ⎝⎛⎭⎪⎫θ-π4.(2)圆C 2:⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ是参数)对应的普通方程为(x +1)2+(y +1)2=a 2,圆心为(-1,-1),半径为|a |,由(1)知圆C 1的圆心为(1,1),半径为2,所以当圆C 1与圆C 2外切时,有2+|a |=(-1-1)2+(-1-1)2,解得a =± 2.。