参数方程--讲义

合集下载

极坐标与参数方程讲义

极坐标与参数方程讲义

极坐标与参数方程一、极坐标知识点1.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点0,叫做极点,自极点0引一条射线Ox,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可•但极坐标系和平面直角坐标系都是平面坐标系•(2)极坐标设M是平面内一点,极点0与点M的距离|0M|叫做点M的极径,记为;以极轴0X为始边,射线0M为终边的角XOM叫做点M的极角,记为•有序数对(,)叫做点M的极坐标,记作M (,).一般地,不作特殊说明时,我们认为0,可取任意实数•特别地,当点M在极点时,它的极坐标为(0,)(€ R).和直角坐标不同,平面内一个点的极坐标有无数种表示•如果规定0,0 2 ,那么除极点外,平面内的点可用唯一的极坐标(,)表示;同时,极坐标(,)表示的点也是唯一确定的•2.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:⑵互化公式:设M是坐标平面内任意一点,它的直角坐标是(x,y),极坐标是(,)(0),于是极坐标与直角坐标的互化公式如表:在一般情况下,由tan确定角时,可根据点M所在的象限最小正角注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2 ),(, ),(, ),都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,点M(,)可以表示为4 45(, 2 )或(, 2 )或(-, 等多种形式,其中,只有(,)的极坐标满足方4 4 4 4 4 4 4 4程、考点阐述考点1、极坐标与直角坐标互化例题1、在极坐标中,求两点 P(2,Q ), Q(2,-)之间的距离以及过它们的直线的极坐标方 程。

参数方程讲义

参数方程讲义

再相互转化。
直角坐标方程
极坐标方程
参数方程
x2 a2
y2 b2
1
带入法
x cos y sin
( cos )2 ( sin )2
a2
b2
1
两边同乘 sin y
cos x
x a cos y b sin
化为普通
两边平方 ,两式子相加
( x )2 cos2 a ( y )2 sin 2 b
2
2
x
过 点(, )与 极 轴 平 (a, )
2
2
行的直线
O
sin (0 )
x
(四)参数方程
1 参数方程的定义:
在取定的坐标系中,如果曲线上任意一点的坐标 x、y 都是某
个变数 t 的函数,即
x f (t) y f (t)
并且对于 t 每一个允许值,由方程组所确定的点 M(x,y)都
系. (1)求 C1 , C2 的极坐标方程;(2)若曲线 c3 的极坐标方程
sin( ) 2 4
2 ,求曲线 c3 的直角坐标方程
【答案】(Ⅰ) cos 2 , 2 2 cos 4 sin 4 0(II)x y 4 0
【解析】 用直角坐标与极坐标互化公式即可;用和差公式张开化
,则点 M
对应的参数值 tM
t1
t2 2
二、考点突破
题型一:参数方程化普通方程、极坐标方程化普通方程
对直线、曲线方程进行消参,通过定义及公式进行化简
经典例题分析:例 1. 在直角坐标系 xy 中,直线 l 的参数方程为
x
3
1 2
t

t
为参数).以原点为极点,
x
轴正半轴为极轴建立极坐标

极坐标与参数方程数学讲义

极坐标与参数方程数学讲义

极坐标与参数方程一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程. 二、知识结构1.参数方程的概念在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的函数⎩⎨⎧==),(),(t g y t f x 并且对于t 的每一个允许值,由这个方程所确定的点),(y x M 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。

相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。

常见的曲线的参数方程2.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数,其几何意义是.....PM ..的数量...) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bt y y at x x 00(t 为参数,1tan t α=) ② 3.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) (3)抛物线 抛物线px y 22=的参数方程为()为参数t pt y pt x ⎩⎨⎧==2224.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.注意:①点),(θρP 与点),(1θρ-P 关于极点中心对称;②点),(θρP 与点),(2πθρ+-P 是同一个点;③如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示(即一一对应的关系);同时,极坐标),(θρ表示的点也是唯一确定的。

(整理)高三数学—参数方程讲义

(整理)高三数学—参数方程讲义

高三数学—参数方程讲义.txt大悲无泪,大悟无言,大笑无声。

我们手里的金钱是保持自由的一种工具。

女人在约会前,一定先去美容院;男人约会前,一定先去银行。

本文由lhh20011981贡献doc文档可能在WAP端浏览体验不佳。

建议您优先选择TXT,或下载源文件到本机查看。

高三数学—参数方程讲义数学参数方程讲义一知识结构二教学重点与难点重点: 1.根据问题的条件引进适当的参数,写出参数方程,体会参数的意义。

2.分析直线,圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程。

难点:根据几何性质选取恰当的参数,建立曲线的参数方程。

三.本讲内容提要 1.参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标变数的函数都是某个并且对于的每一个允许值,由这个方程所确定的点线上,那么这个方程就叫做这条曲线的参数方程,联系变数的变数都在这条曲叫做参变数,简称参数。

相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。

2.圆的参数方程可表示为.参数的几何意义是圆上一点和圆心的连线与 X 轴正半轴的夹角。

3.椭圆参数方程(为参数)4.双曲线参数方程(为参数),5.抛物线的参数方程可表示为. t 为以抛物线上一点(X,Y)与其顶点连线斜率的倒数。

6.经过点,倾斜角为的直线 l 的参数方程可表示为(t为参数)。

设 M(x,y)为直线上的任意一点,参数 t 的几何意义是指从点 P 到点 M 的位移,可以用有向线段数量来表示。

参数 t 带符号. 四典型例题 1.直线的参数方程及其应用⑴求直线上点的坐标 1.一个小虫从出发,已知它在 x 轴方向的分速度是-3,在 y 轴方向的分速度是4,问小虫 3s 后的位置 Q。

分析:考虑 t 的实际意义,可用直线的参数方程(t 是参数)。

解:由题意知则直线 PQ 的方程是。

关于直线 l:,其中时间 t 是参数,将代入得2.求点的对称点的坐标。

解:由条件,设直线的参数方程为(t 是参数),∵A 到直线 l 的距离,∴代入直线的参数方程得。

人教版高三复习参数方程讲义

人教版高三复习参数方程讲义

【新知识梳理与重难点点睛】1.参数方程的概念一般地,在平面直角坐标系中,如果曲线C 上任意一点P 的坐标x ,y 是某个变数t 的函数:⎩⎪⎨⎪⎧x =f t ,y =g t ,并且对于t 的每一个允许值,由函数式⎩⎪⎨⎪⎧ x =f t ,y =g t 所确定的点P (x ,y )都在曲线C 上,那么方程⎩⎪⎨⎪⎧x =f t ,y =g t叫做这条曲线的参数方程,变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数).考点一 参数方程和普通方程的互化1.将下列参数方程化为普通方程.(1)⎩⎨⎧x =3k 1+k 2,y =6k21+k 2;(2)⎩⎪⎨⎪⎧x =1-sin 2θ,y =sin θ+cos θ.解:(1)两式相除,得k =y2x ,将其代入x =3k1+k 2得x =3·y 2x 1+⎝⎛⎭⎫y 2x 2,化简得所求的普通方程是4x 2+y 2-6y =0(y ≠6). (2)由(sin θ+cos θ)2=1+sin 2θ=2-(1-sin 2θ) 得y 2=2-x .又x =1-sin 2θ∈[0,2], 得所求的普通方程为y 2=2-x ,x ∈[0,2].(2)把⎩⎨⎧x =12+32t ,y =1+12t (t 为参数)代入(x -1)2+(y -1)2=2得t 2-32t -74=0, 设点A ,B 对应的参数分别为t 1,t 2, 则t 1+t 2=32,t 1t 2=-74, ∴|P A |+|PB |=|t 1-t 2| =t 1+t 22-4t 1t 2=312. 3. 已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数). (Ⅰ) 写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o 30的直线,交l 于点A ,求||PA 的最大值与最小值. 解:(Ⅰ) C: 2cos 3sin x y θθ=⎧⎨=⎩l :260x y +-=(Ⅱ)P 到直线l 的距离为 5|4cos 3sin 6|5d θθ=+-, ||PA 25|4cos 3sin 6|sin 305d θθ==+-o,从而,||PA 的最大值为2255,最小值为2554.【新方法、新技巧练习与巩固】1.(2016·吉林实验中学)已知椭圆C :x 24+y 23=1,直线l :⎩⎨⎧x =-3+3t ,y =23+t(t 为参数).(1)写出椭圆C 的参数方程及直线l 的普通方程;(2)设A (1,0),若椭圆C 上的点P 满足到点A 的距离与其直线l 的距离相等,求点P 的坐标.解:(1)椭圆C 的参数方程为:⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为x -3y +9=0. (2)设P (2cos θ,3sin θ), 则|AP |=2cos θ-12+3sin θ2=2-cos θ,P 到直线l 的距离d =|2cos θ-3sin θ+9|2=2cos θ-3sin θ+92.由|AP |=d ,得3sin θ-4cos θ=5,又sin 2θ+cos 2θ=1, 得sin θ=35,cos θ=-45.故P ⎝⎛⎭⎫-85,335.6.(2016·沈阳模拟)已知曲线C 1的极坐标方程为ρ2cos 2θ=8,曲线C 2的极坐标方程为θ=π6,曲线C 1,C 2相交于A ,B 两点.(1)求A ,B 两点的极坐标;(2)曲线C 1与直线⎩⎨⎧x =1+32t ,y =12t(t 为参数)分别相交于M ,N 两点,求线段MN 的长度.解:(1)由⎩⎪⎨⎪⎧ρ2cos 2θ=8,θ=π6得ρ2cos π3=8,所以ρ2=16,即ρ=±4.所以A ,B 两点的极坐标为:A ⎝⎛⎭⎫4,π6 ,B ⎝⎛⎭⎫-4,π6 或B ⎝⎛⎭⎫4,7π6 . (2)由曲线C 1的极坐标方程得其直角坐标方程为 x 2-y 2=8,将直线⎩⎨⎧x =1+32t ,y =12t代入x 2-y 2=8,整理得t 2+23t -14=0, 即t 1+t 2=-23,t 1·t 2=-14, 所以|MN |=-232-4×-14=217.7.已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|. 则|P A |=d sin 30°=255|5sin(θ+α)-6|(其中α为锐角,且tan α=43), 当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255.- 11 -当sin(θ+α)=1时,|P A |取得最小值,最小值为255. 8.(2016·洛阳模拟)极坐标系与直角坐标系xOy 取相同的长度单位,以原点O 为极点,以x 轴正半轴为极轴.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =t sin α(t 为参数).曲线C 的极坐标方程为ρsin 2θ=8cos θ. (1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,与x 轴的交点为F ,求1|AF |+1|BF |的值. 解:(1)由ρsin 2θ=8cos θ得,ρ2sin 2θ=8ρcos θ,∴曲线C 的直角坐标方程为y 2=8x .(2)易得直线l 与x 轴的交点为F (2,0),将直线l 的方程代入y 2=8x ,得(t sin α)2=8(2+t cos α),整理得sin 2α·t 2-8cos α·t -16=0.由已知sin α≠0,Δ=(-8cos α)2-4×(-16)sin 2α=64>0,∴t 1+t 2=8cos αsin 2α,t 1t 2=-16sin 2α<0, 故1|AF |+1|BF |=⎪⎪⎪⎪1t 1-1t 2 =⎪⎪⎪⎪t 1-t 2t 1t 2 =t 1+t 22-4t 1t 2|t 1t 2|= ⎝⎛⎭⎫8cosαsin 2α2+64sin 2α16sin 2α=12.。

高中数学《参数方程》第一课时 课件

高中数学《参数方程》第一课时 课件

2
2
所以,点M的轨迹的参数方程是
x
y
cos s in
3(为参数)
5、若已知直线的参数方程为xy
1 1
t (t为参数) t
求它与曲线xy
2 c os 2 sin
(为参数)的交点。
解:参数方程xy
1 1
t (t为参数)的普通方程为 t
x y20
曲线xy
2 cos 2 s in
(为参数)的普通方程为x2
x 2 pt2
y
2 pt
圆锥曲线的参数方程
从三角换元看参数方程
换元依据: cos2 sin2 1

心在
原点,
半径
为r的
圆的
参数
方 程 xy
r r
cos sin
(为参
数)
中心在
原点
的椭圆
的 参数 方 程 xy
a cos b sin
(为
参数)
换元依据: sec2 tan2 1
32
22
y
M(x,y)
r
o
M0 x
x y
x0 y0
r r
cos s in
(为参数)
对应的普通方程为(x x0 )2 ( y y0 )2 r 2
2、指出参数方程xy
2cos 5 3 2sin
(为参数)所
表示圆的圆心坐标、半径,并化为普通方程。
(x 5)2 ( y 3)2 4
2
)
以a,b(a>b>0)为半径作两个圆,点B是大圆半 径OA与小圆的交点,过点A作AN⊥Ox,垂 足为N,过点B作BM⊥AN,垂足为M,求当半 径OA绕点O旋转时点M的轨迹的参数方程.

参数方程讲义

参数方程讲义

参数方程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)一般地,在取定的坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 取的每一个允许值,由方程组所确定的点P (x ,y )都在这条曲线上,那么方程组就叫作这条曲线的参数方程,联系x ,y 之间关系的变数t 叫作参变数,简称参数.相对于参数方程,我们把直接用坐标(x ,y )表示的曲线方程f (x ,y )=0叫作曲线的普通方程. 2.常见曲线的参数方程和普通方程1.直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =2-3t (t 为参数),求直线l 的斜率.2.已知直线l 1:⎩⎪⎨⎪⎧ x =1-2t ,y =2+kt (t 为参数)与直线l 2:⎩⎪⎨⎪⎧x =s ,y =1-2s (s 为参数)垂直,求k 的值.3.已知点P (3,m )在以点F 为焦点的抛物线⎩⎪⎨⎪⎧x =4t 2,y =4t (t 为参数)上,求PF 的值.4.已知曲线C 的极坐标方程是ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是⎩⎪⎨⎪⎧x =-1+4t ,y =3t (t 为参数),求直线l 与曲线C 相交所截的弦长.题型一 参数方程与普通方程的互化例1 (1)如图,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.(2)在平面直角坐标系中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+s ,y =1-s (s 为参数),曲线C 的参数方程为⎩⎪⎨⎪⎧x =t +2,y =t 2(t 为参数),若l 与C 相交于A ,B 两点,求AB 的长.思维升华 消去参数的方法一般有三种:(1)利用解方程的技巧求出参数的表示式,然后代入消去参数; (2)利用三角恒等式消去参数;(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.(1)求直线⎩⎪⎨⎪⎧ x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数.(2)在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧ x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值.题型二 参数方程的应用例2 已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.思维升华 已知圆、圆锥曲线的参数方程解决有关问题时,一般是把参数方程化为普通方程,通过互化解决与圆、圆锥曲线上动点有关的问题,如最值、范围等.题型三 极坐标方程和参数方程的综合应用例3 (2015·课标全国Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,曲线C 3:ρ=23cos θ.(1)求C 2与C 3交点的直角坐标;(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求AB 的最大值.思维升华 在对坐标系与参数方程的考查中,最能体现坐标法的解题优势,灵活地利用坐标法可以使问题得到简捷的解答.例如,将题设条件中涉及的极坐标方程和参数方程等价转化为直角坐标方程,然后在直角坐标系下对问题进行求解就是一种常见的解题方法,对应数学问题求解的“化生为熟”原则,充分体现了转化与化归的数学思想.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=22cos(θ+π4),直线l 的参数方程为⎩⎨⎧x =t ,y =-1+22t (t 为参数),直线l 和圆C 交于A ,B 两点,P 是圆C 上不同于A ,B 的任意一点. (1)求圆心的极坐标; (2)求△P AB 面积的最大值.1.将参数方程化为普通方程是解决问题的一般思路,体现了化归思想.2.将参数方程化为普通方程时,要注意两种方程的等价性,不要增解;确定曲线的参数方程时,一定要根据实际问题的要求确定参数的取值范围,必要时通过限制参数的范围去掉多余的解.A 组 专项能力提升(时间:50分钟)1.求直线⎩⎨⎧x =1-12t ,y =32t(t 为参数)被曲线⎩⎨⎧x =cos θ,y =3sin θ(θ为参数)所截得的弦长.2.直线⎩⎪⎨⎪⎧x =4+at ,y =bt (t 为参数)与圆⎩⎨⎧x =2+3cos θ,y =3sin θ(θ为参数)相切,求切线的倾斜角.3.已知直角坐标系xOy 中,直线l 的参数方程:⎩⎨⎧x =22t -2,y =22t(t 为参数),以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,求以极点为圆心且与直线l 相切的圆的极坐标方程.4.(2015·湖北)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρ(sin θ-3cos θ)=0,曲线C 的参数方程为⎩⎨⎧x =t -1t,y =t +1t(t 为参数),l 与C 相交于A ,B 两点,求AB 的长.5.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t2(t 为参数),在以O 为极点,以x 轴正半轴为极轴的极坐标系中,曲线C 2的方程为ρsin(θ+π4)=22,求曲线C 1与曲线C 2的交点个数.6.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1-22t ,y =2+22t (t 为参数),直线l与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.B 组 专项能力提升 (时间:30分钟)7.(2015·陕西)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.8.已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos αy =t sin α(t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =cos θy =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.。

高考数学(理)总复习讲义: 参数方程

高考数学(理)总复习讲义: 参数方程

第二节参数方程1.曲线的参数方程在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程F (x ,y )=0叫做普通方程. 2.参数方程和普通方程的互化(1)参数方程化普通方程:利用两个方程相加、减、乘、除或者代入法消去参数. (2)普通方程化参数方程:如果x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),则得曲线的参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t ).参数方程与普通方程互化的注意点(1)在参数方程与普通方程的互化中,一定要注意变量的范围以及转化的等价性. (2)普通方程化为参数方程,参数方程的形式不唯一,即如果选用的参数不同,那么所求得的曲线的参数方程的形式也不同.3.直线、圆与椭圆的普通方程和参数方程轨迹 普通方程 参数方程直线y -y 0=tan α(x -x 0)⎝⎛⎭⎫α≠π2,点斜式⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 圆(x -a )2+(y -b )2=r 2 ⎩⎪⎨⎪⎧ x =a +r cos θ,y =b +r sin θ(θ为参数) 椭圆 x 2a 2+y 2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =a cos φ,y =b sin φ(φ为参数) [熟记常用结论]经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B 为直线l 上的两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=t 1+t 22; (2)|PM |=|t 0|=⎪⎪⎪⎪t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M 的数量.( )(3)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O为原点,则直线OM 的斜率为 3.( )答案:(1)√ (2)√ (3)√ (4)× 二、选填题1.曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A.在直线y =2x 上B.在直线y =-2x 上C.在直线y =x -1上D.在直线y =x +1上解析:选B 由⎩⎪⎨⎪⎧ x =-1+cos θ,y =2+sin θ,得⎩⎪⎨⎪⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.2.若直线l :⎩⎪⎨⎪⎧x =2t ,y =1-4t (t 为参数)与曲线C :⎩⎨⎧x =5cos θ,y =m +5sin θ(θ为参数)相切,则实数m 的值为( )A.-4或6B.-6或4C.-1或9D.-9或1解析:选A 由⎩⎪⎨⎪⎧x =2t ,y =1-4t (t 为参数),得直线l :2x +y -1=0,由⎩⎨⎧x =5cos θ,y =m +5sin θ(θ为参数),得曲线C :x 2+(y -m )2=5,因为直线l 与曲线C 相切,所以圆心到直线的距离等于半径,即|m -1|22+12=5,解得m =-4或m =6.故选A.3.在平面直角坐标系中,若曲线C 的参数方程为⎩⎨⎧x =2+22t ,y =1+22t (t 为参数),则其普通方程为____________.解析:依题意,消去参数可得x -2=y -1,即x -y -1=0. 答案:x -y -1=04.已知两曲线的参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),则它们的交点坐标为________.解析:消去参数θ得普通方程为x 25+y 2=1(0≤y ≤1),表示椭圆的一部分.消去参数t 得普通方程为y 2=45x ,表示抛物线,联立两方程,可知两曲线有一个交点,解得交点坐标为⎝⎛⎭⎫1,255.答案:⎝⎛⎭⎫1,255 5.曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数),则曲线C 的普通方程为____________.解析:由⎩⎪⎨⎪⎧x =sin θ,y =cos 2θ+1(θ为参数)消去参数θ,得y =2-2x 2(-1≤x ≤1).答案:y =2-2x 2(-1≤x ≤1)考点一 参数方程与普通方程的互化 [基础自学过关][题组练透]1.已知直线l 的参数方程为⎩⎪⎨⎪⎧ x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. 解:(1)直线l 的普通方程为2x -y -2a =0, 圆C 的普通方程为x 2+y 2=16. (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,解得-25≤a ≤2 5.即实数a 的取值范围为[-25,2 5 ].2.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数),设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.解:直线l 的普通方程为x -2y +8=0. 因为点P 在曲线C 上,设P (2s 2,22s ), 从而点P 到直线l 的距离d =|2s 2-42s +8|12+(-2)2=2(s -2)2+45,当s =2时,d min =455. 因此当点P 的坐标为(4,4)时,曲线C 上的点P 到直线l 的距离取到最小值455.[名师微点]将参数方程化为普通方程消参的3种方法(1)利用解方程的技巧求出参数的表达式,然后代入消去参数. (2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.[提醒] 将参数方程化为普通方程时,要注意防止变量x 和y 取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.考点二 参数方程的应用 [师生共研过关][典例精析](2018·全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程. [解] (1)⊙O 的直角坐标方程为x 2+y 2=1. 当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点需满足21+k 2<1, 解得k <-1或k >1, 即α∈⎝⎛⎭⎫π2,3π4或α∈⎝⎛⎭⎫π4,π2. 综上,α的取值范围是⎝⎛⎭⎫π4,3π4.(2)l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin α⎝⎛⎭⎫t 为参数,π4<α<3π4.设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-22t sin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足⎩⎨⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是⎩⎨⎧x =22sin 2α,y =-22-22cos 2α⎝⎛⎭⎫α为参数,π4<α<3π4.[解题技法]一般地,如果题目中涉及圆、椭圆上的动点或求最值范围问题时可考虑用参数方程,设曲线上点的坐标,将问题转化为三角恒等变换问题解决,使解题过程简单明了.[过关训练]已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为 d =55|4cos θ+3sin θ-6|. 则|PA |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值,最大值为2255.当sin(θ+α)=1时,|PA |取得最小值,最小值为255.考点三 参数方程与极坐标方程的综合应用 [师生共研过关][典例精析](2019·柳州模拟)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =2sin α(α为参数),以原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6. (1)求曲线C 的极坐标方程以及曲线D 的直角坐标方程;(2)若过点A ⎝⎛⎭⎫22,π4(极坐标)且倾斜角为π3的直线l 与曲线C 交于M ,N 两点,弦MN 的中点为P ,求|AP ||AM |·|AN |的值.[解] (1)由题意可得曲线C 的普通方程为x 29+y 24=1,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入曲线C 的普通方程可得,曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2 θ4=1,即ρ2=364+5sin 2θ.因为曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6, 所以ρ2=4ρsin ⎝⎛⎭⎫θ-π6=4ρ⎝⎛⎭⎫32sin θ-12cos θ, 又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以x 2+y 2=23y -2x ,所以曲线C 的极坐标方程为ρ2=364+5sin 2θ,曲线D 的直角坐标方程为x 2+y 2+2x -23y =0.(2)由点A ⎝⎛⎭⎫22,π4,得⎩⎨⎧x =22cos π4=2,y =22sin π4=2,所以A (2,2).因为直线l 过点A (2,2)且倾斜角为π3,所以直线l 的参数方程为⎩⎨⎧x =2+t cos π3,y =2+t sin π3(t 为参数),代入x 29+y 24=1可得,314t 2+(8+183)t +16=0, 设M ,N 对应的参数分别为t 1,t 2, 则t 1+t 2=-32+72331,t 1t 2=6431,所以|AP ||AM |·|AN |=⎪⎪⎪⎪t 1+t 22|t 1t 2|=4+9316.[解题技法]参数方程与极坐标方程综合问题的解题策略(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.[过关训练](2018·合肥质检)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρ=22cos ⎝⎛⎭⎫π4-θ. (1)求曲线C 的直角坐标方程;(2)已知直线l 过点 P (1,0)且与曲线C 交于A ,B 两点,若|PA |+|PB |=5,求直线l 的倾斜角α.解:(1)由ρ=22cos ⎝⎛⎭⎫π4-θ=2(cos θ+sin θ)⇒ρ2=2(ρcos θ+ρsin θ)⇒x 2+y 2=2x +2y ⇒(x -1)2+(y -1)2=2,故曲线C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)由条件可设直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),代入圆的方程,有t 2-2t sin α-1=0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=2sin α, t 1t 2=-1,|PA |+|PB |=|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4sin 2α+4=5,解得sin α=12或sin α=-12(舍去),故α=π6或5π6.[课时跟踪检测]1.设直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),圆C 的参数方程为⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数). (1)若直线l 经过圆C 的圆心,求直线l 的斜率;(2)若直线l 与圆C 交于两个不同的点,求直线l 的斜率的取值范围. 解:(1)由已知得直线l 经过的定点是P (3,4),而圆C 的圆心是C (1,-1), 所以,当直线l 经过圆C 的圆心时,直线l 的斜率k =52.(2)由圆C 的参数方程⎩⎪⎨⎪⎧x =1+2cos θ,y =-1+2sin θ(θ为参数),得圆C 的圆心是C (1,-1),半径为2.由直线l 的参数方程⎩⎪⎨⎪⎧x =3+t cos α,y =4+t sin α(t 为参数,α为倾斜角),得直线l 的普通方程为y -4=k (x -3)(斜率存在), 即kx -y +4-3k =0.当直线l 与圆C 交于两个不同的点时,圆心到直线的距离小于圆的半径, 即|5-2k |k 2+1<2,解得k >2120.即直线l 的斜率的取值范围为⎝⎛⎭⎫2120,+∞. 2.(2018·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.解:(1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tanα·x +2-tan α;当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.3.(2019·沈阳模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =22t(t为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ=2a cos θ(a >0).(1)求曲线C 的直角坐标方程,直线l 的普通方程;(2)设直线l 与曲线C 交于M ,N 两点,点P (-2,0),若|PM |,|MN |,|PN |成等比数列,求实数a 的值.解:(1)由ρsin 2θ=2a cos θ(a >0)两边同乘以ρ得, 曲线C 的直角坐标方程为y 2=2ax (a >0).由直线l 的参数方程为⎩⎨⎧x =-2+22t ,y =22t(t 为参数),消去t ,得直线l 的普通方程为x -y +2=0.(2)将⎩⎨⎧x =-2+22t ,y =22t代入y 2=2ax ,得t 2-22at +8a =0,由Δ>0得a >4,设M ,N 对应的参数分别为t 1,t 2,则t 1+t 2=22a ,t 1t 2=8a , ∵|PM |,|MN |,|PN |成等比数列,∴|t 1-t 2|2=|t 1t 2|,∴(22a )2-4×8a =8a ,∴a =5.4.(2019·青岛调研)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2. (1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|P Q |的最小值及此时P 的直角坐标. 解:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|P Q |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2. 当且仅当α=2k π+π6(k ∈Z)时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝⎛⎭⎫32,12. 5.(2018·辽宁五校联合体模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数).在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρcos 2θ=sin θ.(1)求C 1的普通方程和C 2的直角坐标方程;(2)若射线l :y =kx (x ≥0)分别交C 1,C 2于A ,B 两点(A ,B 异于原点),当k ∈(1,3]时,求|OA |·|OB |的取值范围.解:(1)由⎩⎪⎨⎪⎧x =1+cos α,y =sin α,可得(x -1)2+y 2=cos 2α+sin 2α=1,即C 1的普通方程为(x -1)2+y 2=1.方程ρcos 2θ=sin θ可化为ρ2cos 2θ=ρsin θ (*),将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入(*)式,可得x 2=y , 所以C 2的直角坐标方程为x 2=y . (2)因为A ,B 异于原点,所以联立⎩⎪⎨⎪⎧(x -1)2+y 2=1,y =kx ,可得A ⎝⎛⎭⎫2k 2+1,2k k 2+1;联立⎩⎪⎨⎪⎧y =kx ,y =x 2,可得B (k ,k 2). 故|OA |·|OB |=1+k 2·2k 2+1·1+k 2·|k |=2|k |.又k ∈(1,3],所以|OA |·|OB |∈(2,23].6.(2019·惠州调研)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2-35t ,y =-2+45t (t 为参数).以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos θ=tan θ.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若C 1与C 2交于A ,B 两点,点P 的极坐标为⎝⎛⎭⎫22,-π4,求1|PA |+1|PB |的值. 解:(1)由曲线C 1的参数方程消去参数t 可得,曲线C 1的普通方程为4x +3y -2=0. 由x =ρcos θ,y =ρsin θ可得,曲线C 2的直角坐标方程为y =x 2.(2)由点P 的极坐标为⎝⎛⎭⎫22,-π4,可得点P 的直角坐标为(2,-2),∴点P 在曲线C 1上.将曲线C 1的参数方程⎩⎨⎧x =2-35t ,y =-2+45t (t 为参数)代入y =x 2,得9t 2-80t +150=0,设t 1,t 2是点A ,B 对应的参数, 则t 1+t 2=809,t 1t 2=503>0.∴1|PA |+1|PB |=|PA |+|PB ||PA |·|PB |=|t 1+t 2||t 1t 2|=815. 7.在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且l 过点A ,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 1上的点到直线l 的距离的最大值;(2)过点B (-1,1)且与直线l 平行的直线l 1与曲线C 1交于M ,N 两点,求|BM |·|BN |的值. 解:(1)由直线l 过点A ,得2cos ⎝⎛⎭⎫π4-π4=a ,故a =2,则易得直线l 的直角坐标方程为x +y -2=0.由点到直线的距离公式,得曲线C 1上的点到直线l 的距离d =|2cos α+3sin α-2|2=|7sin (α+φ)-2|2,⎝⎛⎭⎫其中tan φ=233,∴d max =7+22=14+222.即曲线C 1上的点到直线l 的距离的最大值为14+222. (2)由(1)知直线l 的倾斜角为3π4, 则直线l 1的参数方程为⎩⎨⎧x =-1+t cos 3π4,y =1+t sin 3π4(t 为参数).易知曲线C 1的普通方程为x 24+y 23=1.把直线l 1的参数方程代入曲线C 1的普通方程, 得72t 2+72t -5=0, 设M ,N 对应的参数分别为t 1,t 2,则t 1t 2=-107, 根据参数t 的几何意义可知|BM |·|BN |=|t 1t 2|=107. 8.(2019·郑州模拟)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3-32t ,y =m +12t (t为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=8cos ⎝⎛⎭⎫θ-π6,直线l 与圆C 交于A ,B 两点. (1)若OA ⊥OB ,求直线l 的普通方程;(2)设P (3,1)是直线l 上的点,若|AB |=λ|PC |,求λ的值.解:(1)消去参数t ,得直线l 的普通方程为x +3y =3+3m ,将圆C 的极坐标方程ρ=8cos ⎝⎛⎭⎫θ-π6的两边同时乘ρ, 得ρ2=43ρcos θ+4ρsin θ,则圆C 的直角坐标方程为(x -23)2+(y -2)2=16,所以圆C 的圆心C (23,2),半径为4,且经过原点O ,数形结合得,若OA ⊥OB ,则直线l 经过圆心C ,即23+3×2=3+3m ,解得m =3, 即直线l 的普通方程为x +3y -43=0. (2)由P (3,1)是直线l 上的点,得m =1,此时直线l 的参数方程为⎩⎨⎧x =3-32t ,y =1+12t (t 为参数),代入到圆C 的方程(x -23)2+(y -2)2=16中,得t 2+2t -12=0,设A ,B 两点对应的参数分别为t 1,t 2, 则t 1+t 2=-2,t 1t 2=-12,所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=4+48=213, 又|PC |=2,|AB |=λ|PC |,所以λ=13.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 参数方程———————————————————————————————— [考纲传真] 1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆曲线的参数方程.1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎨⎧x =f (t ),y =g (t )并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数. 2.参数方程与普通方程的互化通过消去参数从参数方程得到普通方程,如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧x =f (t ),y =g (t )就是曲线的参数方程.在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.3.常见曲线的参数方程和普通方程 点的轨迹 普通方程 参数方程直线y -y 0=tan α(x -x 0)⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数) 圆 x 2+y 2=r 2⎩⎨⎧ x =r cos θ,y =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0)⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数) 温馨提示:在直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)参数方程⎩⎨⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M →的数量.( )(3)方程⎩⎨⎧x =2cos θ,y =1+2sin θ表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎨⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为 3.( )[答案] (1)√ (2)√ (3)√ (4)×2.(教材改编)曲线⎩⎨⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上B [由⎩⎪⎨⎪⎧ x =-1+cos θ,y =2+sin θ,得⎩⎪⎨⎪⎧cos θ=x +1,sin θ=y -2,所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆, 所以对称中心为(-1,2),在直线y =-2x 上.]3.(教材改编)在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t(t 为参数)的普通方程为________.x -y -1=0 [由x =2+22t ,且y =1+22t , 消去t ,得x -y =1,即x -y -1=0.]4.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t 2,y =22t(t 为参数),则C 1与C 2交点的直角坐标为________. (2,-4) [由ρ(cos θ+sin θ)=-2,得x +y =-2.① 由⎩⎨⎧x =t 2,y =22t ,消去t 得y 2=8x .② 联立①②得⎩⎪⎨⎪⎧x =2,y =-4,即交点坐标为(2,-4).]5.(2016·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),椭圆C 的参数方程为⎩⎨⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.[解] 椭圆C 的普通方程为x 2+y24=1.2分将直线l 的参数方程⎩⎪⎨⎪⎧x =1+12t ,y =32t 代入x 2+y 24=1,得⎝ ⎛⎭⎪⎫1+12t 2+⎝ ⎛⎭⎪⎫32t 24=1,即7t 2+16t =0,8分解得t 1=0,t 2=-167,所以AB =|t 1-t 2|=167.10分参数方程与普通方程的互化已知直线l 的参数方程为⎩⎨⎧x =a -2t ,y =-4t(t 为参数),圆C 的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数). (1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. [解] (1)直线l 的普通方程为2x -y -2a =0,2分 圆C 的普通方程为x 2+y 2=16.4分 (2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =|-2a |5≤4,8分解得-25≤a ≤2 5.10分[规律方法] 1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换消去参数.2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响,要保持同解变形.[变式训练1] 在平面直角坐标系xOy 中,若直线l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值. 【导学号:31222440】 [解] 直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为x 29+y 24=1,4分所以椭圆C 的右顶点坐标为(3,0), 若直线l 过椭圆的右顶点(3,0), 则3-0-a =0,所以a =3.10分参数方程的应用已知曲线C :x 24+y 29=1,直线l :⎩⎨⎧x =2+t ,y =2-2t(t 为参数).【导学号:31222441】(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.[解] (1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0.4分(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|,则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43.8分 当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255. 当sin(θ+α)=1时,|P A |取得最小值,最小值为255.10分[规律方法] 1.解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决问题.2.对于形如⎩⎨⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.[变式训练2] (2017·石家庄质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数),直线l 经过点P (1,2),倾斜角α=π6.(1)写出圆C 的普通方程和直线l 的参数方程;(2)设直线l 与圆C 相交于A ,B 两点,求|P A |·|PB |的值.[解] (1)由⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ,消去θ,得圆C 的普通方程为x 2+y 2=16.2分 又直线l 过点P (1,2)且倾斜角α=π6, 所以l 的参数方程为⎩⎪⎨⎪⎧ x =1+t cos π6,y =2+t sin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =2+12t(t 为参数).4分(2)把直线l 的参数方程⎩⎪⎨⎪⎧x =1+32t ,y =2+12t代入x 2+y 2=16,得⎝ ⎛⎭⎪⎫1+32t 2+⎝ ⎛⎭⎪⎫2+12t 2=16,t 2+(3+2)t -11=0, 所以t 1t 2=-11,8分由参数方程的几何意义,|P A |·|PB |=|t 1t 2|=11.10分参数方程与极坐标方程的综合应用(2016·全国卷Ⅲ)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=2 2.(1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. [解] (1)C 1的普通方程为x 23+y 2=1,2分 由于曲线C 2的方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=22,所以ρsin θ+ρcos θ=4,因此曲线C 2的直角坐标方程为x +y -4=0.4分 (2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值,8分 又d (α)=|3cos α+sin α-4|2=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α+π3-2,当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时P 的直角坐标为⎝ ⎛⎭⎪⎫32,12.10分[规律方法] 1.参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.2.数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,可化繁为简.[变式训练3] (2017·石家庄市质检)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =22t ,y =3+22t(t 为参数),在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ=4sin θ-2cos θ.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)若直线l 与y 轴的交点为P ,直线l 与曲线C 的交点为A ,B ,求|P A ||PB |的值.[解] (1)直线l 的普通方程为x -y +3=0, ∵ρ2=4ρsin θ-2ρcos θ,∴曲线C 的直角坐标方程为(x +1)2+(y -2)2=5.4分(2)将直线l 的参数方程⎩⎪⎨⎪⎧x =22t ,y =3+22t (t 为参数)代入曲线C :(x +1)2+(y -2)2=5,得到t 2+22t -3=0,8分∴t 1t 2=-3,∴|P A ||PB |=|t 1t 2|=3.10分[思想与方法]1.参数方程化普通方程常用的消参技巧:代入消元、加减消元、平方后加减消元等,经常用到公式:cos 2θ+sin 2θ=1,1+tan 2θ=1cos 2θ.2.利用曲线的参数方程求解两曲线间的最值问题是行之有效的好方法. 3.将参数方程化为普通方程,将极坐标方程化为直角坐标方程,然后在直角坐标系下对问题求解,化生为熟,充分体现了转化与化归思想的应用.[易错与防范]1.将参数方程化为普通方程时,要注意两种方程的等价性.在消去参数的过程中,要注意x ,y 的取值范围.2.确定曲线的参数方程时,一定要根据实际问题的要求确定参数的取值范围,必要时通过限制参数的范围去掉多余的解.3.设过点M (x 0,y 0)的直线l 交曲线C 于A ,B 两点,若直线的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)注意以下两个结论的应用: (1)|AB |=|t 1-t 2|; (2)|MA |·|MB |=|t 1·t 2|.课时分层训练(六十八) 参数方程1.在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =1+3cos t ,y =-2+3sin t (t 为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m (m ∈R ).【导学号:31222442】(1)求圆C 的普通方程及直线l 的直角坐标方程; (2)设圆心C 到直线l 的距离等于2,求m 的值.[解] (1)消去参数t ,得到圆C 的普通方程为(x -1)2+(y +2)2=9.2分 由2ρsin ⎝ ⎛⎭⎪⎫θ-π4=m ,得ρsin θ-ρcos θ-m =0,所以直线l 的直角坐标方程为x -y +m =0.4分 (2)依题意,圆心C 到直线l 的距离等于2,8分 即|1-(-2)+m |2=2,解得m =-3±2 2.10分2.极坐标系与直角坐标系xOy 有相同的长度单位,以原点O 为极点,以x轴正半轴为极轴.已知直线l 的参数方程为⎩⎨⎧x =2+t ,y =3t (t 为参数),曲线C 的极坐标方程为ρsin 2θ=8cos θ. 【导学号:31222443】(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,求弦长|AB |. [解] (1)由ρsin 2θ=8cos θ,得ρ2sin 2θ=8ρcos θ, 故曲线C 的直角坐标方程为y 2=8x .4分 (2)将直线l 的方程化为标准形式⎩⎪⎨⎪⎧x =2+12t ,y =32t .6分代入y 2=8x ,并整理得3t 2-16t -64=0,t 1+t 2=163,t 1t 2=-643.8分 所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=323.10分3.(2016·全国卷Ⅱ)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25. (1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (2)直线l 的参数方程是⎩⎨⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.[解] (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.4分(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ). 设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11.8分 |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153.10分4.(2014·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.[解] (1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为⎩⎪⎨⎪⎧ x =1+cos t ,y =sin t(t 为参数,0≤t ≤π).4分 (2)设D (1+cos t ,sin t ),由(1)知C 是以C (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线CD 与l 的斜率相同,tan t =3,t =π3.8分故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3, 即⎝ ⎛⎭⎪⎫32,32.10分 5.(2017·湖北七市三联)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =sin α+cos α,y =1+sin 2α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ+π4=2,曲线C 2的极坐标方程为ρ=22a cos ⎝ ⎛⎭⎪⎫θ-3π4(a >0). (1)求直线l 与曲线C 1的交点的极坐标(ρ,θ)(ρ≥0,0≤θ<2π);(2)若直线l 与C 2相切,求a 的值.[解] (1)曲线C 1的普通方程为y =x 2,x ∈[-2,2],直线l 的直角坐标方程为x +y =2,联立⎩⎪⎨⎪⎧ y =x 2,x +y =2,解得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-2,y =4(舍去). 故直线l 与曲线C 1的交点的直角坐标为(1,1),其极坐标为⎝ ⎛⎭⎪⎫2,π4.4分 (2)曲线C 2的直角坐标方程为x 2+y 2+2ax -2ay =0,即(x +a )2+(y -a )2=2a 2(a >0).8分由直线l 与C 2相切,得|-a +a -2|2=2a ,故a =1.10分 6.(2017·福州质检)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧ x =3cos α,y =sin α(α为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫θ-π4= 2. (1)求C 的普通方程和l 的倾斜角;(2)设点P (0,2),l 和C 交于A ,B 两点,求|P A |+|PB |.[解] (1)由⎩⎪⎨⎪⎧ x =3cos α,y =sin α消去参数α,得x 29+y 2=1, 即C 的普通方程为x 29+y 2=1.2分由ρsin ⎝ ⎛⎭⎪⎫θ-π4=2,得ρsin θ-ρcos θ=2,(*) 将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入(*),化简得y =x +2, 所以直线l 的倾斜角为π4.4分(2)由(1)知,点P (0,2)在直线l 上,可设直线l 的参数方程为⎩⎪⎨⎪⎧ x =t cos π4,y =2+t sin π4(t 为参数),即⎩⎪⎨⎪⎧ x =22t ,y =2+22t (t 为参数),代入x 29+y 2=1并化简,得5t 2+182t +27=0,Δ=(182)2-4×5×27=108>0,8分设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=-1825<0,t 1t 2=275>0,所以t 1<0,t 2<0,所以|P A |+|PB |=|t 1|+|t 2|=-(t 1+t 2)=1825.10分。

相关文档
最新文档