排列组合与二项式定理(高考试题)
易错点15 计数原理、排列组合、二项式定理-备战高考数学考试易错题(新高考专用)(解析版)

专题15 计数原理与排列组合、二项式定理易错分析【正解】一、混淆二项式系数与项的系数致错1.523x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( ) A .10B .20C .90D .80【错解】A ,由题可得()5210315533rrrr r r r T C x C x x --+⎛⎫== ⋅⋅⎪⎝⎭⋅⋅ 令103r 4-=,则r 2=, 所以523x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为2510C =,故选A.【错因】错把二项式系数当成项的系数。
【正解】C ,由题可得()5210315533rrrr r r r T C xC x x --+⎛⎫== ⋅⋅⎪⎝⎭⋅⋅ 令103r 4-=,则r 2=,所以22553390r r C C ⋅⋅==,故选C.2、()11a b -的展开式中,系数最大的项是第 项 【错解】6或7,()11a b -的展开式中共12项,第6项的系数为511C,第7项的系数为611C ,又511C =611C ,所以数最大的项是第6或7项.【错因】错把二项式系数当成项的系数。
【正解】()11a b -的展开式中共12项,第6项的系数为511C -,第7项的系数为611C ,所以数最大的项是第7项.二、忽略二项展开式的通项是第r+1项不是第r 项致错3、二项式62x x ⎛⎫- ⎪⎝⎭的展开式的第二项是( ) A .260xB .260x -C .412xD .412x -【错解】展开式的通项为()662C rrrx x -⎛⎫- ⎪⎝⎭,令2r =,可得展开式的第二项为22462C x x ⎛⎫- ⎪⎝⎭=260x .故选A.【错因】误认为第二项是2r =而错误【正解】展开式的通项为()6162Crrr r T x x -+⎛⎫=- ⎪⎝⎭,令1r =,可得展开式的第二项为11562C x x ⎛⎫- ⎪⎝⎭=412x -.故选D.三、混淆均匀分组与部分均匀分组致错 4、某校高二年级共有六个班,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为()A .2264A CB .22642A CC .2264A AD .262A【错解】选A ,先将4名学生均分成两组方法数为24C ,再分配给6个年级中的2个分配方法数为26A ,根据分步计数原理合要求的安排方法数为2246C A .【错因】该题为均匀分组,忽略除以22A 而错误.【正解】先将4名学生均分成两组方法数为2422C A ,再分配给6个年级中的2个分配方法数为26A ,根据分步计数原理合要求的安排方法数为224622C A A .故选B .5.某小区共有3个核酸检测点同时进行检测,有6名志愿者被分配到这3个检测点参加服务,6人中有4名“熟手”和2名“生手”,1名“生手”至少需要1名“熟手”进行检测工作的传授,每个检测点至少需要1名“熟手”,且2名“生手”不能分配到同一个检测点,则不同的分配方案种数是( )A .72B .108C .216D .432【错解】A ,根据题意,可先把4名“熟手”分为人数为2,1,1的三组,再分配到3个检测点,共有2113421333C C C A A ⋅种分法,然后把2名“生手”分配到3个检测点中的2个,有23A 种分法,所以共有211324213333C C C A A 72A ⋅⋅=种不同的分配方案.【错因】该题为部分均匀分组,应除以22A ,而不是33A .【正解】C ,根据题意,可先把4名“熟手”分为人数为2,1,1的三组,再分配到3个检测点,共有2113421322C C C A A ⋅种分法,然后把2名“生手”分配到3个检测点中的2个,有23A 种分法,所以共有211324213322C C C A A 216A ⋅⋅=种不同的分配方案.四、计数时混淆有序与定序6、某学校举行校庆文艺晚会,已知节目单中共有七个节目,为了活跃现场气氛,主办方特地邀请了三位老校友演唱经典歌曲,并要将这三个不同节目添入节目单,且不改变原来的节目顺序,则不同的安排方式有________种. 【错解】1010A ,原先有七个节目,添加三个节目后,节目单中共有十个节目,则不同的排列方法有1010A 种.【错因】忽略了不改变原来的节目顺序这一条件,即原来的七个节目是定序的。
【山东省】2017年高考数学(理科)-排列组合、二项式定理-专题练习-答案

排列组合、二项式定理解析1.[从E到G需要分两步完成:先从E到F,再从F到G。
从F到G的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F到G的最短路径共有3条。
如图,从E到F的最短路径有两类:先从E到A,再从A到F,或先从E到B,再从B到F。
因为从A到F或从B到F都与从F到G的路径形状相同,所以从A到F,从B到F最短路径的条数都是3,所以从E到F的最短路径有3+3=6(条)。
所以小明到老年公寓的最短路径条数为6×3=18.]2.D[第一步,先排个位,有C13种选择;第二步,排前4位,有A44种选择。
由分步乘法计数原理,知有C13·A44=72(个)。
]3.C[由题意知:当m=4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a1=0,a8=1.不考虑限制条件“对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数”,则中间6个数的情况共有C36=20(种),其中存在k≤2m,a1,a2,…,a k中0的个数少于1的个数的情况有:①若a2=a3=1,则有C14=4(种);②若a2=1,a3=0,则a4=1,a5=1,只有1种;③若a2=0,则a3=a4=a5=1,只有1种。
综上,不同的“规范01数列”共有20-6=14(种)。
故共有14个。
故选C.]4.A[分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C12=2(种)选派方法;第二步,选派两名学生到甲地,另外两名到乙地,共有C24=6(种)选派方法。
由分步乘法计数原理得,不同的选派方案共有2×6=12(种)。
]5.B[分两类,不选三班的同学,利用间接法,没有条件得选择3人,再排除3个同学来自同一班,有C312-3C34=208种;选三班的一位同学,剩下的两位同学从剩下的12人中任选2人,有C14·C212=264种。
根据分类计数原理,得208+264=472,故选B.]6.A[从重量分别为1,2,3,4,…,10克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为8克的方法是选一个,8克,一种方法,选两个,1+7,2+6,3+5,共3种方法,选三个,1+2+5,只有一种方法,13·!m!m!=7·+!+!m!=6.]D·。
排列组合+二项式定理(含答案)

高二数学:排列组合二项式定理一、选择题(本大题共16小题,共80.0分)1.如图,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案( )A. 180种B. 240种C. 360种D. 420种【答案】D【解析】解:若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,则2、4两个花池栽同一种颜色的花;或者3、5两个花池栽同一种颜色的花,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,故最多有A55+2A54+A53=420种栽种方案,故选D.若5个花池栽了5种颜色的花卉,方法有A55种,若5个花池栽了4种颜色的花卉,方法有2A54种,若5个花池栽了3种颜色的花卉,方法有A53种,相加即得所求.本题主要考查排列、组合以及简单计数原理的应用,体现了分类讨论的数学思想,属于中档题.2.甲、乙、丙等6人排成一排,且甲、乙均在丙的同侧,则不同的排法共有( )种(用数字作答).A. 720B. 480C. 144D. 360【答案】B【解析】解:甲、乙、丙等六位同学进行全排可得A66=720种,∵甲乙丙的顺序为甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,∴甲、乙均在丙的同侧,有4种,∴甲、乙均在丙的同侧占总数的46=23∴不同的排法种数共有23×720=480种.故选:B.甲、乙、丙等六位同学进行全排,再利用甲、乙均在丙的同侧占总数的46=23,即可得出结论.本题考查排列、组合及简单计数问题,考查学生的计算能力,比较基础.3.从1,3,5中选2个不同数字,从2,4,6,8中选3个不同数字排成一个五位数,则这些五位数中偶数的个数为( )A. 5040B. 1440C. 864D. 720【答案】C【解析】解;先任选一个偶数排在末尾,共有4种选法,其它2个奇数的选法共有3种,剩余2个偶数的选法共有3种,这4个数全排列,共有4×3×2×1=24种方法,共有则这些五位数中偶数的个数为4×3×3×24= 864,故选:C.先按要求排末尾,再排其它,根据分步计数原理可得.本题考查加法原理和乘法原理综合运用,考查学生分析解决问题的能力,属于中档题.4.从5名学生中选出4名分别参加数学,物理,化学,生物四科竞赛,其中甲不能参加生物竞赛,则不同的参赛方案种数为( )A. 48B. 72C. 90D. 96【答案】D【解析】解:根据题意,从5名学生中选出4名分别参加竞赛,分2种情况讨论:①、选出的4人没有甲,即选出其他4人即可,有A44=24种情况,②、选出的4人有甲,由于甲不能参加生物竞赛,则甲有3种选法,在剩余4人中任选3人,参加剩下的三科竞赛,有A43=24种选法,则此时共有3×24=72种选法,则有24+72=96种不同的参赛方案;故选:D.根据题意,分2种情况讨论选出参加竞赛的4人,①、选出的4人没有甲,②、选出的4人有甲,分别求出每一种情况下分选法数目,由分类计数原理计算可得答案.本题考查排列、组合的实际应用,注意优先考虑特殊元素.5.小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为( )A. 60B. 72C. 84D. 96【答案】C【解析】解:根据题意,分3种情况讨论:①、若小明的父母的只有1人与小明相邻且父母不相邻时,先在其父母中选一人与小明相邻,有C21=2种情况,将小明与选出的家长看成一个整体,考虑其顺序有A22=2种情况,当父母不相邻时,需要将爷爷奶奶进行全排列,将整体与另一个家长安排在空位中,有A22×A32=12种安排方法,此时有2×2×12=48种不同坐法;②、若小明的父母的只有1人与小明相邻且父母相邻时,将父母及小明看成一个整体,小明在一端,有2种情况,考虑父母之间的顺序,有2种情况,则这个整体内部有2×2=4种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时有2×2×6=24种不同坐法;③、小明的父母都与小明相邻,即小明在中间,父母在两边,将3人看成一个整体,考虑父母的顺序,有A22=2种情况,将这个整体与爷爷奶奶进行全排列,有A33=6种情况,此时,共有2×6=12种不同坐法;则一共有48+24+12=84种不同坐法;故选:C.根据题意,分3种情况讨论:①、小明的父母的只有1人与小明相邻且父母不相邻,②、小明的父母的只有1人与小明相邻且父母相邻,③、小明的父母都与小明相邻,分别求出每一种情况下的排法数目,由分类计数原理计算可得答案.本题考查排列、组合的应用,关键是根据题意,进行不重不漏的分类讨论.6.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有( )A. 24种B. 60种C. 90种D. 120种【答案】B【解析】解:根据题意,使用倍分法,五人并排站成一排,有A55种情况,而其中B站在A的左边与B站在A的右边是等可能的,则其情况数目是相等的,×A55=60,则B站在A的右边的情况数目为12故选B.根据题意,首先计算五人并排站成一排的情况数目,进而分析可得,B 站在A 的左边与B 站在A 的右边是等可能的,使用倍分法,计算可得答案.本题考查排列、组合的应用,注意使用倍分法时,注意必须保证其各种情况是等可能的.7. C 74+C 75+C 86等于( ) A. C 95B. C 96C. C 87D. C 97【答案】B【解析】解:根据组合数公式C n+1m =C n m−1+C n m得,C 74+C 75+C 86=(C 74+C 75)+C 86 =C 85+C 86 =C 96. 故选:B .利用组合数公式C n+1m =C n m−1+C n m,进行化简即可.本题考查了组合数公式C n+1m =C n m−1+C n m的逆用问题,是基础题目.8. 9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的抽取方法是( )A. C 42⋅C 52B. C 42+C 43+C 44C. C 42+C 52D. C 42⋅C 52+C 43⋅C 51+C 44⋅C 50【答案】D【解析】解:一共有4件一等品,至少两件一等品分为2件,3件,4件,第一类,一等品2件,从4件任取2件,再从3件二等品或2件三等品共5件产品中任取2件,有C 42⋅C 52, 第二类,一等品3件,从4件任取3,再从3件二等品或2件三等品共5件产品中任取1,有C 43⋅C 51,第二类,一等品4件,从4件中全取,有C 44⋅C 50, 根据分类计数原理得,至少有两件一等品的抽取方法是C 42⋅C 52+C 43⋅C 51+C 44⋅C 50. 故选:D .利用分类计数原理,一共有4件一等品,至少两件一等品分为2件,3件,4件,然后再按其它要求抽取. 本题主要考查了分类计数原理,如何分类是关键,属于基础题.9. 4名同学争夺三项冠军,冠军获得者的可能种数是( )A. 43B. A 43C. C 43D. 4 【答案】A【解析】解:每一项冠军的情况都有4种,故四名学生争夺三项冠军,获得冠军的可能的种数是43, 故选:A .每个冠军的情况都有4种,共计3个冠军,故分3步完成,根据分步计数原理,运算求得结果. 本题主要考查分步计数原理的应用,属于基础题.10. 某班班会准备从含甲、乙的7人中选取4人发言,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有( ) A. 720种 B. 520种 C. 600种 D. 360种 【答案】C【解析】解:分两类:第一类,甲、乙两人只有一人参加,则不同的发言顺序有C 21C 53A 44种;第二类:甲、乙同时参加,则不同的发言顺序有C 22C 52A 22A 32种.共有:C 21C 53A 44+C 22C 52A 22A 32=600(种). 故选:C .分两类:第一类,甲、乙两人只有一人参加,第二类:甲、乙同时参加,利用加法原理即可得出结论. 本题考查排列、组合的实际应用,正确分类是关键.11. 现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有 ( ) A. 144种 B. 72种 C. 64种 D. 84种 【答案】D【解析】解:由题意知本题是一个分步计数问题, 需要先给最上面金着色,有4种结果, 再给榜着色,有3种结果,给题着色,与榜同色,给名着色,有3种结果;与榜不同色,有2种结果,给名着色,有2种结果 根据分步计数原理知共有4×3×(3+2×2)=84种结果, 故选D .需要先给最上面金着色,有4种结果,再给榜着色,有3种结果,给题着色,与榜同色,给名着色,有3种结果;与榜不同色,有2种结果,给名着色,有2种结果,根据分步计数原理得到结果.本题考查计数原理的应用,解题的关键是理解“公共边的两块区域不能使用同一种颜色,”根据情况对C 处涂色进行分类,这是正确计数,不重不漏的保证.12. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A. 192种B. 216种C. 240种D. 288种 【答案】B【解析】解:最左端排甲,共有A 55=120种,最左端只排乙,最右端不能排甲,有C 41A 44=96种, 根据加法原理可得,共有120+96=216种. 故选:B .分类讨论,最左端排甲;最左端只排乙,最右端不能排甲,根据加法原理可得结论. 本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.13. 有黑、白、红三种颜色的小球各5个,都分别标有数字1,2,3,4,5,现取出5个,要求这5个球数字不相同但三种颜色齐备,则不同的取法种数有( ) A. 120种 B. 150种 C. 240种 D. 260种 【答案】B【解析】解:根据题意,取出的5个球有三种颜色且数字不同, 分2步进行分析:①,先把取出的5个球分成3组,可以是3,1,1,也可以是1,2,2; 若分成3,1,1的三组,有C 53C 21C 11A 22=10种分组方法; 若分成1,2,2的三组,有C 51C 42C 22A 22=15种分组方法;则共有10+15=25种分组方法,②,让三组选择三种不同颜色,共有A 33=6种不同方法 则共有25×6=150种不同的取法; 故选:B .因为要求取出的5个球分别标有数字1,2,3,4,5且三种颜色齐备,所以肯定是数字1,2,3,4,5各取一个,分2步分析:先把5个球分成三组,再每组选择一种颜色,由分步计数原理计算可得答案. 本题考查分步计数原理的应用,注意题目中“5个球数字不相同但三种颜色齐备”的要求.14. 从4双不同鞋中任取4只,结果都不成双的取法有____种.( )A. 24B. 16C. 44D. 384 【答案】B【解析】解:取出的四只鞋不成双,可分四步完成,依次从四双鞋子中取一只,取四次,故总的取法有2×2×2×2=16种, 故选B .取出的四只鞋不成双,可分四步完成,依次从四双鞋子中取一只,取四次,利用乘法原理可得结论.本题考查排列、组合及简单计数问题,考查乘法原理的运用,比较基础.15.某公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有( )种.A. 510B. 105C. 50D. A105【答案】A【解析】解:根据题意,公共汽车沿途5个车站,则每个乘客有5种下车的方式,则10位乘客共有510种下车的可能方式;故选:A.根据题意,分析可得每个乘客有5种下车的方式,由分步计数原理计算可得答案.本题考查排列、组合的实际应用,16.从0,1,2,3,4中选取三个不同的数字组成一个三位数,其中奇数有( )A. 18个B. 27个C. 36个D. 60个【答案】A【解析】解:先从1,3中选一个为个位数字,再剩下的3个(不包含0)取1个为百位,再从剩下3个(包含0)取一个为十位,故有2×3×3=18个,故答案为:18.先从1,3中选一个为个位数字,再剩下的3个(不包含0)取1个为百位,再从剩下3个(包含0)取一个为十位,根据分步计数原理可得.本题考查了分步计数原理,关键是分步,属于基础题.二、填空题(本大题共9小题,共45.0分)17.(1+2x)5的展开式中含x2项的系数是______ .(用数字作答)【答案】40【解析】解:由二项式定理的通项公式T r+1=C n r a n−r b r可设含x2项的项是T r+1=C5r15−r(2x)r=2r C5r x r,可知r=2,所以系数为22C52=40所以答案应填40本题是求系数问题,故可以利用通项公式T r+1=C n r a n−r b r来解决,在通项中令x的指数幂为2可求出含x2是第几项,由此算出系数为40本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.18.(x−1x )(2x+1x)5的展开式中,常数项为______.【答案】−40【解析】解:(x−1x )(2x+1x)5展开式中常数项是(2x+1x )5展开式中的1x项与x的乘积,加上含x项与−1x的乘积;由(2x+1x)5展开式的通项公式为T r+1=C5r⋅(2x)5−r⋅(1x)r=25−r⋅C5r⋅x5−2r,令5−2r=−1,解得r=3,∴T4=22⋅C53⋅1x =40x;令5−2r=1,解得r=2,∴T3=23⋅C52⋅x=80x;所求展开式的常数项为40 x ⋅x+80x⋅(−1x)=40−80=−40.故答案为:−40.根据(x−1x )(2x+1x)5展开式中常数项是(2x+1x)5展开式中的1x项与x的乘积,加上x项与−1x的乘积;利用(2x+1x)5展开式的通项公式求出对应的项即可.本题考查了二项式定理的应用问题,是基础题.19.小明、小刚、小红等5个人排成一排照相合影,若小明与小刚相邻,且小明与小红不相邻,则不同的排法有______ 种.【答案】36【解析】解:根据题意,分2种情况讨论:①、小刚与小红不相邻,将除小明、小刚、小红之外的2人全排列,有A22种安排方法,排好后有3个空位,将小明与小刚看成一个整体,考虑其顺序,有A22种情况,在3个空位中,任选2个,安排这个整体与小红,有A32种安排方法,有A22×A32×A22=24种安排方法;②、小刚与小红相邻,则三人中小刚在中间,小明、小红在两边,有A22种安排方法,将三人看成一个整体,将整个整体与其余2人进行全排列,有A33种安排方法,此时有A33×A22=12种排法,则共有24+12=36种安排方法;故答案为:36.根据题意,分2种情况讨论:①、小刚与小红不相邻,②、小刚与小红相邻,由排列、组合公式分别求出每一种情况的排法数目,由分类加法原理计算可得答案.本题考查排列、组合的运用,注意特殊元素优先考虑,不同的问题利用不同的方法解决如相邻问题用捆绑,不相邻问题用插空等方法.20.(1−3x)7的展开式中x2的系数为______ .【答案】7【解析】解:由于(1−3x)7的展开式的通项公式为T r+1=C7r⋅(−1)r⋅x r3,令r3=2,求得r=6,可得展开式中x2的系数为C76=7,故答案为:7.在二项展开式的通项公式中,令x的幂指数等于2,求出r的值,即可求得展开式中x2的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,属于基础题21.已知C203x=C20x+4,则x=______ .【答案】2或4【解析】解:∵C203x=C20x+4,则3x=x+4,或3x+x+4=20,解得x=2或4.故答案为:2或4.由C203x=C20x+4,可得3x=x+4,或3x+x+4=20,解出即可得出.本题考查了组合数的计算公式、方程的解法,考查了推理能力与计算能力,属于基础题.22.从4台甲型和5台乙型电视机中任意取出三台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有______ 种.【答案】70【解析】解:甲型电视机2台和乙型电视机1台,取法有C42C51=30种;甲型电视机1台和乙型电视机2台,取法有C41C52=40种;共有30+40=70种.故答案为:70任意取出三台,其中至少要有甲型和乙型电视机各1台,有两种方法,一是甲型电视机2台和乙型电视机1台;二是甲型电视机1台和乙型电视机2台,分别求出取电视机的方法,即可求出所有的方法数.本题考查组合及组合数公式,考查分类讨论思想,是基础题.23.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上的数之积的数学期望是______ .【答案】49【解析】解:一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,向上的数之积可能为ξ=0,1,2,4,P(ξ=0)=C31C31+C31C31+C31C31C61C61=34,P(ξ=1)=C21C21C61C61=19,P(ξ=2)=C21C11+C11C21C61C61=19,P(ξ=4)=C11C11C61C61=136,∴Eξ=19+29+436=49.故答案为:49.一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个骰子掷两次得到结果有三种情况,使得它们两两相乘,得到变量可能的取值,结合事件做出概率和期望.数字问题是概率中经常出现的题目,一般可以列举出要求的事件,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的可以借助于排列数和组合数来表示.24.把5本不同的书全部分给4个学生,每个学生至少一本,不同的分发种数为______.(用数字作答)【答案】240【解析】解:由题意知先把5本书中的两本捆起来看做一个元素共有C52,这一个元素和其他的三个元素在四个位置全排列共有A44,∴分法种数为C52⋅A44=240.故答案为:240.由题意知先把5本书中的两本捆起来看做一个元素,这一个元素和其他的三个元素在四个位置全排列,根据分步计数原理两个过程的结果数相乘得到结果.排列组合问题在几何中的应用,在计算时要求做到,兼顾所有的条件,先排约束条件多的元素,做的不重不漏,注意实际问题本身的限制条件.25.从4名男同学和6名女同学中选取3人参加某社团活动,选出的3人中男女同学都有的不同选法种数是______(用数字作答)【答案】96【解析】解:根据题意,在4名男同学和6名女同学共10名学生中任取3人,有C103=120种,其中只有男生的选法有C43=4种,只有女生的选法有C63=20种则选出的3人中男女同学都有的不同选法有120−4−20=96种;故答案为:96.根据题意,用间接法分析:首先计算在10名学生中任取3人的选法数目,再分析其中只有男生和只有女生的选法数目,分析即可得答案.本题考查排列、组合的应用,注意利用间接法分析,可以避免分类讨论.三、解答题(本大题共5小题,共60.0分)26.已知(2x√x)n展开式前两项的二项式系数的和为10.(1)求n的值.(2)求出这个展开式中的常数项.【答案】解:(1)∵(2x√x)n展开式前两项的二项式系数的和为10∴C n0+C n1=10,解得n=9;(2)∵(2x√x )n展开式的通项T r+1=C n r(2x)n−r(√x)r=2n−r C n r x n−3r2----8分∴令n−3r2=0且n=9得r=6,∴(2x+√x)n展开式中的常数项为第7项,即T7=29−6⋅C96=672.【解析】(1)根据二项式展开式得到前两项的系数,根据系数和解的n的值,(2)利用展开式的通项,求常数项,只要使x的次数为0即可.本题主要考查了二项式定理,利用好通项,属于基础题.27.已知n为正整数,在二项式(12+2x)n的展开式中,若前三项的二项式系数的和等于79.(1)求n的值;(2)判断展开式中第几项的系数最大?【答案】解:(1)根据题意,C n0+C n1+C n2=79,即1+n+n(n−1)2=79,整理得n2+n−156=0,解得n=12或n=−13(不合题意,舍去)所以n=12;…(5分)(2)设二项式(12+2x)12=(12)12⋅(1+4x)12的展开式中第k+1项的系数最大,则有{C12k⋅4k≥C12k−1⋅4k−1 C12k⋅4k≥C12k+1⋅4k+1,解得9.4≤k≤10.4,所以k=10,所以展开式中第11项的系数最大.…(10分)【解析】(1)根据题意列出方程C n0+C n1+C n2=79,解方程即可;(2)设该二项式的展开式中第k+1项的系数最大,由此列出不等式组,解不等式组即可求出k的值.本题考查了二项式定理的应用问题,也考查了转化思想与不等式组的解法问题,是综合性题目.28.已知二项式(1+√2x)n=a0+a1x+a2x2+⋯+a n x n(x∈R,n∈N)(1)若展开式中第五项的二项式系数是第三项系数的3倍,求n的值;(2)若n为正偶数时,求证:a0+a2+a4+a6+⋯+a n为奇数.(3)证明:C n1+2C n2⋅2+3C n3⋅22+⋯+nC n n⋅2n−1=n⋅3n−1(n∈N+)【答案】解:(1)由题意可得C n 4=3⋅C n 2(√2)2,∴n =11.(2)证明:当n 为正偶数时,则a 0+a 2+a 4+a 6+⋯+a n =1+2C n 2+22⋅C n 4+⋯+2n2⋅C n n , 除第一项为奇数外,其余的各项都是偶数,故1+2C n 2+22⋅C n 4+⋯+2n2⋅C nn 为奇数, 即a 0+a 2+a 4+a 6+⋯+a n 为奇数.(3)∵kC n k =n ⋅C n−1k−1, ∴C n 1+2C n 2⋅2+3C n 3⋅22+⋯+nC n n ⋅2n−1=n(C n−10+C n−11×2+C n−12×22+⋯+C n−1n−1×2n−1) =n ⋅(1+2)n−1=n ⋅3n−1.【解析】(1)直接利用条件可得C n 4=3⋅C n 2(√2)2,由此求得n 的值.(2)当n 为正偶数时,则a 0+a 2+a 4+a 6+⋯+a n =1+2C n 2+22⋅C n 4+⋯+2n2⋅C nn ,除第一项为奇数外,其余的各项都是偶数,从而证得结论.(3)由kC n k =n ⋅C n−1k−1,可得C n 1+2C n 2⋅2+3C n 3⋅22+⋯+nC n n ⋅2n−1=n(C n−10+C n−11×2+C n−12×22+⋯+C n−1n−1×2n−1),再利用二项式定理证得所给的等式成立.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.29. 从5名男生和4名女生中选出4人去参加座谈会,问:(Ⅰ)如果4人中男生和女生各选2人,有多少种选法?(Ⅱ)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法? (Ⅲ)如果4人中必须既有男生又有女生,有多少种选法?【答案】解:(Ⅰ)根据题意,从5名男生中选出2人,有C 52=10种选法,从4名女生中选出2人,有C 42=6种选法,则4人中男生和女生各选2人的选法有10×6=60种;(Ⅱ)先在9人中任选4人,有C 94=126种选法,其中甲乙都没有入选,即从其他7人中任选4人的选法有C 74=35种, 则甲与女生中的乙至少要有1人在内的选法有126−35=91种;(Ⅲ)先在9人中任选4人,有C 94=126种选法,其中只有男生的选法有C 51=5种,只有女生的选法有C 41=1种, 则4人中必须既有男生又有女生的选法有126−5−1=120种.【解析】(Ⅰ)根据题意,分别计算“从5名男生中选出2人”和“从4名女生中选出2人”的选法数目,由分步计数原理计算可得答案;(Ⅱ)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“甲乙都没有入选”的选法数目,即可得答案;(Ⅲ)用间接法分析:先计算在9人中任选4人的选法数目,再排除其中“只有男生”和“只有女生”的选法数目,即可得答案.本题考查排列、组合的应用,涉及分步、分类计数原理的应用,(Ⅱ)(Ⅲ)中可以选用间接法分析.30. 某次文艺晚会上共演出8个节目,其中2个唱歌、3个舞蹈、3个曲艺节目,求分别满足下列条件的排节目单的方法种数:(1)一个唱歌节目开头,另一个压台; (2)两个唱歌节目不相邻;(3)两个唱歌节目相邻且3个舞蹈节目不相邻.【答案】解:(1)先排歌曲节目有A 22种排法,再排其他节目有A 66种排法,所以共有A 22A 66=1440种排法.(2)先排3个舞蹈节目,3个曲艺节目,有A 66种排法,再从其中7个空(包括两端)中选2个排歌曲节目,有A 72种插入方法,所以共有A 66A 72=30240种排法.(3)两个唱歌节目相邻,用捆绑法,3个舞蹈节目不相邻,利用插空法,共有A 44A 53A 22=2880种. 【解析】(1)先排歌曲节目,再排其他节目,利用乘法原理,即可得出结论; (2)先排3个舞蹈,3个曲艺节目,再利用插空法排唱歌,即可得到结论;(3)两个唱歌节目相邻,用捆绑法,3个舞蹈节目不相邻,利用插空法,即可得到结论.本题考查排列组合知识,考查学生利用数学知识解决实际问题的能力,属于中档题.。
2021年高考数学真题和模拟题分类汇编专题13排列组合与二项式定理含解析

主席派人来》4 首独唱歌曲和《没有共产党就没有新中国》《我和我的祖国》2 首合唱歌曲
中共选出 4 首歌曲安排演出,要求最后一首歌曲必须是合唱,则不同的安排方法共有(
A.14
B.48
C.72
)
D.120
【答案】D.
【解析】根据题意,在 2 首合唱歌曲中任选 1 首,安排在最后,有 2 种安排方法,
专题 13 排列组合与二项式定理
一、选择题部分
1.(2021•河南开封三模•理 T11)某校组织甲、乙两个班的学生到“农耕村”参加社会实践活动,
某天安排有酿酒、油坊、陶艺、打铁、纺织、竹编制作共六项活动可供选择,每个班上午、
下午各安排一项活动(不重复),且同一时间内每项活动都只允许一个班参加,则活动安
令 x=﹣1,则 f(﹣1)=a0﹣a1+a2﹣a3+a4﹣a5+a6﹣a7=(a﹣1)(﹣1﹣1)5=0;②
①﹣②得,2(a1+a3+a5+a7)=64(a﹣1),∴a1+a3+a5+a7=32(a﹣1)=64,
解得 a=3.
3.(2021•河南焦作三模•理 T7)为了加强新型冠状病毒疫情防控,某社区派遣甲、乙、丙、丁、
排方案的种数为(
A.126
)
B.360
C.600
D.630
【答案】D.
【解析】第一类,上下午共安排 4 个活动(上午 2 个,下午 2 个)分配给甲,乙,故有 A62A42
=360 种,
第二类,上下午共安排 3 个活动,(上午 2 个下午 1 个,或上午 1 个下午 2 个)分配给甲,
历年高考排列组合试题及其答案

二项式定理历年高考试题荟萃(三)一、填空题 ( 本大题共 24 题, 共计 102 分)1、 (1+2x)5的展开式中x2的系数是________.(用数字作答)2、的展开式中的第5项为常数项,那么正整数的值是 .3、已知,则( 的值等于 .4、(1+2x2)(1+)8的展开式中常数项为。
(用数字作答)5、展开式中含的整数次幂的项的系数之和为(用数字作答).6、(1+2x2)(x-)8的展开式中常数项为。
(用数字作答)7、的二项展开式中常数项是 (用数字作答).8、 (x2+)6的展开式中常数项是 .(用数字作答)9、若的二项展开式中的系数为,则______(用数字作答).10、若(2x3+)n的展开式中含有常数项,则最小的正整数n等于.11、(x+)9展开式中x3的系数是 .(用数字作答)12、若展开式的各项系数之和为32,则n= ,其展开式中的常数项为。
(用数字作答)13、的展开式中的系数为.(用数字作答)14、若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=__________.15、(1+2x)3(1-x)4展开式中x2的系数为 .16、的展开式中常数项为 ; 各项系数之和为.(用数字作答)17、 (x)5的二项展开式中x2的系数是____________.(用数字作答)18、 (1+x3)(x+)6展开式中的常数项为_____________.19、若x>0,则(2+)(2-)-4(x-)=______________.20、已知(1+kx2)6(k是正整数)的展开式中,x8的系数小于120,则k=______________.21、记(2x+)n的展开式中第m项的系数为b m,若b3=2b4,则n= .22、 (x+)5的二项展开式中x3的系数为_____________.(用数字作答)23、已知(1+x+x2)(x+)n的展开式中没有常数项,n∈N*且2≤n≤8,则n=_____________.24、展开式中x的系数为.二项式定理历年高考试题荟萃(三)答案一、填空题 ( 本大题共 24 题, 共计 102 分)1、40解析:T3=C(2x)2,∴系数为22·C=40.2、解:∵的展开式中的第5项为,且常数项,∴,得3、-256解析:(1-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.令x=1,则有a0+a1+a2+a3+a4+a5=0,即(a0+a2+a4)+(a1+a3+a5)=0;①令x=-1,则有a0-a1+a2-a3+a4-a5=25,即(a0+a2+a4)-(a1+a3+a5)=25.②联立①②有∴(a0+a2+a4)(a1+a3+a5)=-28=-256.4、57解析:1×1+2×=57.5、答案:72解析:∵T r+1= (=,∴r=0,4,8时展开式中的项为整数次幂,所求系数和为++=72.6、答案:-42解析:的通项T r+1==,∴(1+2x2)展开式中常数项为=-42.7、8、15解析:T r+1=x2(6-r)x-r=x12-3r,令12-3r=0,得r=4,∴T4==15.9、答案:2解析:∵=,∴a=2.10、答案:7解析:T r+1=C(2x3)n-r()r=2Cxx=2Cx令3n-r=0,则有6n=7r,由展开式中有常数项,所以n最小值为7.11、84 T r+1=,∴9-2r=3.∴r=3.∴84.12、5 10 解析:令x=1可得展开式中各项系数之和为2n=32.∴n=5.而展开式中通项为Tr+1=(x2)r()5-r=x5r-15.令5r-15=0,∴r=3.∴常数项为T4=C35=10.13、84 由二项式定理得(1-)7展开式中的第3项为T3=·(-)2=84·,即的系数为84.14、31 解析:由二项式定理中的赋值法,令x=0,则a0=(-2)5=-32.令x=1,则a0+a1+a2+a3+a4+a5=-1.∴a1+a2+a3+a4+a5=-1-a=31.15、-6解析:展开式中含x2的项m=·13·(2x)0··12·(-x)2+·12(2x)1··13·(-x)1+11(2x)2·14(-x)0=6x2-24x2+12x2=展开式中x2的系数为-6x2,∴系数为-6.16、10 32 展开式中通项为T r+1=(x2)5-r()r=,其中常数项为T3==10;令x=1,可得各项系数之和为25=32.17、40解析:∵·(x3)·()2=10×1×(-2)2·x2=40x2,∴x2的系数为40.18、答案:35 (x+)6展开式中的项的系数与常数项的系数之和即为所求,由Tr+1=·()r=·x6-3r,∴当r=2时,=15.当r=3时,=20.故原展开式中的常数项为15+20=35.19、答案:-23 原式=4-33-4+4=-23.20、答案:1解析:x8的系数为k4=15k4,∵15k4<120,k4<8,k∈Z+,∴k=1.21、5 记(2x+)n的展开式中第m项为T m=a n-m+1b m-1=·(2x)n-m+1·()m-1,则b m=·2n-m+1.又∵b3=2b4,∴·2n-2=2×·2n-3=,解得n=5.22、答案:10 ·x4·=5×2=10.23、答案:5解析:(x+)n展开式中不含x0、x-1、x-2项即可,由Fr+1=x n-r()r=x n-4r.∵2≤n≤8,可以验证n=5时成立.24、2 展开式中含x的项n=·13·(2x)0··13·(-x)1+·12(2x)1··14(-x)0=-4x+6x=2x,∴展开式中x的系数为2.。
高三数学 专题训练排列组合和二项式定理解析 试题

仲元中学高三数学专题训练测试系列本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
(排列组合和二项式定理)时间是:120分钟 分值:150分一、选择题(每一小题5分,一共60分)1.(2021·海淀期末)5个人分4张同样的足球票,每人至多分1张,而且票必须分完,那么不同的分法种数是( )A .54B .45C .5×4×3×2D.5×4×3×24!解析:依题意得,不同的分法即是从5个人中选出4人来分,因此相应的方法数为C 45=5×4×3×24!,选D.答案:D2.(x +2)6的展开式中x 3的系数为( )A .20B .40C .80D .160解析:注意到(x +2)6的展开式的通项是T r +1=C r6·x 6-r·2r =C r 6·2r ·x6-r,令6-r =3得r =3.因此(x +2)6的展开式中x 3的系数是C 36·23=160,选D.答案:D3.五个人排成一排,甲、乙不相邻,且甲、丙也不相邻的不同排法的种数为( )A .60B .48解析:五个人排成一排,其中甲、乙不相邻且甲、丙也不相邻的排法可分为两类:一类是甲、乙、丙互不相邻,此类方法有A22·A33=12种(先把除甲、乙、丙外的两个人排好,有A22种方法,再把甲、乙、丙插入其中,有A33种方法,因此此类方法有A22·A33=12种);另一类是乙、丙相邻但不与甲相邻,此类方法有A23·A22·A22=24种方法(先把除甲、乙、丙外的两人排好,有A22种方法,再从这两人所形成的三个空位中任选2个,作为甲和乙、丙的位置,此类方法有A23·A22·A22=24种).综上所述,满足题意的方法种数一共有12+24=36,选C.答案:C4.某小组一共有8名同学,其中男生6人,女生2人,现从中按性别分层随机抽取4人参加一项公益活动,那么不同的抽取方法有( ) A.40种B.70种C.80种D.240种解析:依题意得,所选出的4人必是3名男生、1名女生,因此满足题意的抽取方法一共有C36C12=40种,选A.答案:A5.用0,1,2,…,9这十个数字组成无重复数字的三位数的个数是( ) A.9A29B.A310C.A310-A39D.A39解析:百位上有9种排法;其他数位上有A29种排法.一共有9A29个三位数,应选A.如用间接法,应为A310-A29.答案:A6.(2021·质量预测)在(x2-1x3)n的展开式中含有常数项,那么正整数n的最小值是( )A.4 B.5解析:其通项为T r +1=C r n x2(n -r )(-1)r x -3r=(-1)r C r n x 2n -5r.∵(x 2-1x3)n 的展开式中含有常数项,∴2n -5r =0,那么n 的最小值为5,选B. 答案:B7.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数一共有( )A .288个B .240个C .144个D .126个解析:个位是0的有C 14·A 34=96个; 个位是2的有C 13·A 34=72个; 个位是4的有C 13·A 34=72个; 所以一共有96+72+72=240个. 答案:B8.(2021·质量预测)(x 3-2x )2+(x +1x)8的展开式中的整理后的常数项等于( )A .-38B .38C .-32D .70解析:要求展开式的常数项,即求(x +1x )8的常数项,因为T r +1=C r 8x 8-r (1x)r =C r 8x 8-2r,所以由题意得8-2r =0,即r =4,∴T 5=C 48=70.答案:D9.(2021·东北三校一模)在一条南北方向的步行街同侧有8块广告牌,广告牌的底色可选用红、蓝两种颜色,假设只要求相邻两块广告牌的底色不都为红色,那么不同的配色方案一共有( )A .55种B .56种C.46种D.45种解析:C08+C18+C27+C36+C45=55.答案:A10.(2021·质检)有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是( ) A.18 B.26C.29 D.58解析:假设把两人都安排在前排,那么有A23=6种方法,假设把两人都安排在后排,那么有A24=12种方法,假设两人前排一个,后排一个,那么有4×5×2=40种方法,因此一共有58种方法,故正确答案是D.答案:D11.(2021·联考)假设自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,那么称n 为“可连数〞.例如:32是“可连数〞,因32+33+34不产生进位现象;23不是“可连数〞,因23+24+25产生进位现象.那么,小于1000的“可连数〞的个数为( ) A.27 B.36C.39 D.48解析:根据题意,要构造小于1000的“可连数〞,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数〞为一位数时:有C13=3个;当“可连数〞为两位数时:个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C13C13=9个;当“可连数〞为三位数时:有C13C14C13=36个;故一共有:3+9+36=48个,应选D.答案:D12.(2021·二诊)为支持地震灾区的灾后重建工作,某公司决定分四天每天各运送一批物资到A、B、C、D、E五个受灾地点.由于A地间隔该公司较近,安排在第一天或者最后一天送达;B、C两地相邻,安排在同一天上、下午分别送达(B在上午、C在下午与B在下午、C在上午为不同运送顺序),且运往这两地的物资算作一批;D、E两地可随意安排在其余两天送达.那么安排这四天送达五个受灾地点的不同运送顺序的种数为( ) A.72 B.18C.36 D.24解析:可分三步完成:第一类是安排送达物资到受灾地点A,有A12种方法;第二步是在余下的3天中任选1天,安排送达物资到受灾地点B、C,有A13A22种方法;第三步是在余下的2天中安排送达物资到受灾地点D、E,有A22种方法.由分步计数原理得不同的运送顺序一共有A12·(A13A22)·A22=24种,应选D.答案:D二、填空题(每一小题4分,一共16分)13.沿海某区对口支援贫困山区教育,需从本区3所重点中学抽调5名老师分别到山区5所任教,每校1人;每所重点中学至少抽调1人,那么一共有__________种不同的支教方案.解析:5名重点中学老师到山区5所有A55种,而3所重点中学的抽调方法种数可由列举法一一列出为6种.故一共有6A55=720种不同的支教方案.答案:72014.(2021·模拟)一个五位数由数字0,1,1,2,3构成,这样的五位数的个数为__________.解析:分两类:(1)万位取1,其余不同的四个数放在不同的四个位置上时有A44个:(2)万位取2或者3,在余下的四个不同的位置中选两个位置放数字0与3或者2时有2A24个,故总一共有A44+2A24=48.答案:4815.(2021·一模)(4x2-4x+1)5的展开式中,x2的系数为__________.(用数字答题)解析:C15·4+C25·(-4)2·1=180.答案:18016.(2021·质检二)假设(1+mx)6=a0+a1x+a2x2+…+a6x6,且a1+a2+…+a6=63,那么实数m的值是__________.解析:令x =1,(1+m )6=a 0+a 1+…+a 6 ①, 令x =0,1=a 0 ②,①-②,得:a 1+…+a 6=(1+m )6-1 ∴(1+m )6-1=63 ∴(1+m )6=64 ∴1+m =±2 ∴m =1或者m =-3. 答案:1或者-3三、解答题(本大题一一共6个小题,一共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.(12分)(1)求值:C 5-nn +C 9-nn +1; (2)解不等式:1C 3n -1C 4n <2C 5n.解:利用组合数定义与公式求解.(1)由组合数定义知:⎩⎪⎨⎪⎧0≤5-n ≤n ,0≤9-n ≤n +1,解得4≤n ≤5.∵n ∈N *,∴n =4或者5. 当n =4时,原式=C 14+C 55=5; 当n =5时,原式=C 05+C 46=16. (2)由组合数公式,原不等式可化为3!(n -3)!n !-4!(n -4)!n !<2×5!(n -5)!n !,不等式两边约去3!(n -5)!n !,得(n -3)(n -4)-4(n -4)<2×5×4,即n 2-11n -12<0,解得-1<n <12.又∵n ∈N *,且n ≥5,∴n =5,6,7,8,9,10,11.18.(12分)有5张卡片的正反面分别写有0与1、2与3、4与5、6与7、8与9,将其中任三张并排组成三位数,可组成多少个数字不重复的三位数?解:解法1:(直接法)由于三位数的百位数字不能为0,所以分两种情况:当百位数字为1时,不同的三位数有A 18·A 16=48个;当百位数为2、3、4、5、6、7、8、9中的任意一个时,不同的三位数有A 18A 18A 16=8×8×6=384个.综上,一共可组成不重复的三位数48+384=432个.解法2:(间接法)任取3张卡片一共有C 35·C 12·C 12·C 12·A 33种排法,其中0在百位不能构成三位数,这样的排法有C 24·C 12·C 12·A 22种,故符合条件的三位数一共有C 35·C 12·C 12·C 12·A 33-C 24·C 12·C 12·A 22=432个.19.(12分)假设(1+2x )100=a 0+a 1(x -1)+a 2·(x -1)2+…+a 100(x -1)100,求a 1+a 3+a 5+…+a 99. 解:令x -1=t ,那么x =t +1,于是恒等式可变为(2t +3)100=a 0+a 1t +a 2t 2+…+a 100t 100, 又令f (t )=(2t +3)100,那么a 1+a 3+a 5+…+a 99=12[f (1)-f (-1)]=12[(2+3)100-(-2+3)100]=12(5100-1). 20.(12分)平面上有n 个点,无三点一共线,过其中每两点作直线,这些直线中无两条直线平行,且除原n 个点外无三线一共点,问除平面上原有n 个点之外,这些直线还会有多少个新交点?解:(图形法)先从n 个点中选4点,有C 4n 种选法.如图1,设所选点为A 、B 、C 、D .因为在每选出的4点中,两点一组分成两组,每两点确定一条直线,两条直线相交就有符合题意的一个交点,所以A 、B 、C 、D 四点两两连线,可得3个新增交点.故符合题意的交点个数为3C 4n =18n (n -1)(n -2)(n -3).图121.(12分)(3a -3a )n 的展开式的各项系数之和等于(43b -15b)5的展开式中的常数项,求: (1)(3a-3a )n展开式的二项式系数和;(2)(3a-3a )n 的展开式中a -1项的二项式系数.解:依题意,令a =1,得(3a -3a )n 展开式中各项系数和为(3-1)n =2n,(43b -15b)5展开式中的通项为T r +1=C r 5(43b )5-r (-15b)r =(-1)r C r 545-r5-r 2b 10-5r 6.假设T r +1为常数项,那么10-5r6=0,即r =2,故常数项为T 3=(-1)2C 25·43·5-1=27, 于是有2n=27,得n =7.(1)(3a-3a )n展开式的二项式系数和为2n=27=128.(2)(3a-3a )7的通项为T ′r +1=C r 7(3a)7-r·(-3a )r =C r 7(-1)r ·37-r·a 5r -216,令5r -216=-1,得r =3, ∴所求a -1项的二项式系数为C 37=35. 22.(14分)(1)求证:kC k n =nC k -1n -1; (2)等比数列{a n }中,a n >0,化简:A =lg a 1-C 1n lg a 2+C 2n lg a 3-…+(-1)n C nn lg a n +1.解:(1)∵左式=k ·n !k !(n -k )!=n ·(n -1)!(k -1)!(n -k )!=n ·(n -1)!(k -1)![(n -1)-(k -1)]!=nC k -1n -1=右式,∴kC k n =nC k -1n -1. (2)由:a n =a 1qn -1,∴A =lg a 1-C 1n (lg a 1+lg q )+C 2n (lg a 1+2lg q )-C 3n (lg a 1+3lg q )+…+(-1)n C nn (lg a 1+n lg q ) =lg a 1[1-C 1n +C 2n -…+(-1)n C n n ]-lg q [C 1n -2C 2n +3C 3n -…+(-1)n -1C n n ·n ]=lg a 1·(1-1)n-lg q[nC0n-1-nC1n-1+nC2n-1-…+(-1)n-1·nC n-1n-1]=0-n lg q[C0n-1-C1n-1+C2n-1-…+(-1)n-1·C n-1n-1]=-n lg q(1-1)n-1=0.本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
排列组合和二项式定理(高三)

十、排列、组合和二项式定理1.排列数mn A 中1,n m n m ≥≥∈N 、、组合数mn C 中,1,0,n m n m n m ≥≥≥∈、N .(1)排列数公式!(1)(2)(1)()()!mn n A n n n n m m n n m =---+=≤-;!(1)(2)21nn A n n n n ==--⋅。
如(1)1!+2!+3!+…+n !(*4,n n N ≥∈)的个位数字为 (答:3);(2)满足2886x x A A -<的x = (答:8)(2)组合数公式()(1)(1)!()(1)21!!m mn nm m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-;规定01!=,01nC =. 如已知16m n mn m n C C A +++=,求 n ,m 的值(答:m =n =2)(3)排列数、组合数的性质:①m n m n n C C -=;②111m m m n n n C C C ---=+;③11k k n n kC nC --=;④1121++++=++++r n r n r r r r r r C C C C C ;⑤!(1)!!n n n n ⋅=+-;⑥11(1)!!(1)!n n n n =-++.2.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合.如(1)将5封信投入3个邮筒,不同的投法共有 种 (答:53);(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有 种(答:70);(3)从集合{}1,2,3和{}1,4,5,6中各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是___(答:23);(4)72的正约数(包括1和72)共有 个(答:12);(5)A ∠的一边AB 上有4个点,另一边AC 上有5个点,连同A ∠的顶点共10个点,以这些点为顶点,可以构成_____个三角形(答:90);(6)用六种不同颜色把右图中A 、B 、C 、D 四块区域分开,允许同一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有 种不同涂法; (答:480)(7)同室4人各写1张贺年卡,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有 种(答:9);(8)f 是集合{},,M a b c =到集合{}1,0,1N =-的映射,且()()f a f b +()f c =,则不同的映射共有 个(答:7);(9)满足}4,3,2,1{ C B A 的集合A 、B 、C 共有 组(答:47)3.解排列组合问题的方法有:(1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。
高中排列组合与二项式定理练习题

株洲市十七中高二排列、组合与二项式定理测试卷一、选择题:(本大题共10小题,每小题5分,共50分)1.若从集合P 到集合Q={a,b,c}所有不同的映射共有81个,则从集合Q 到集合P 可作的不同的映射共有( ) A .32个B .27个C .81个D .64个2.某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两 个节目插入原节目单中,则不同的插法总数为( ) A .42B .36C .30D .123.全班48名学生坐成6排,每排8人,排法总数为P ,排成前后两排,每排24人,排法 总数为Q,则有( ) A .P>QB .P=QC .P<QD .不能确定4.从正方体的六个面中选取3个面,其中有2个面不相邻的选法共有( )种 A .8B .12C .16D .205.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配 方案共有( ) A .4448412C C CB .44484123CC CC .334448412AC C CD .334448412A C C C 6.某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊、大厅的地面及楼 的外墙,现有编号为1~6的六种不同花色的装饰石材可选择,其中1号石材有微量的放射性, 不可用于办公室内,则不同的装饰效果有( )种 A .350B .300C .65D .507.有8人已站成一排,现在要求其中4人不动,其余4人重新站位,则有( )种 重新站位的方法 A .1680B .256C .360D .2808.一排九个坐位有六个人坐,若每个空位两边都坐有人,共有( )种不同的坐法 A .7200 B .3600 C .2400 D .1200 9.在(311x x )n的展开式中,所有奇数项二项式系数之和等于1024,则中间项 的二项式系数是 ( ) A. 462 B. 330 C.682 D.792 10.在(1+a x )7的展开式中,x 3项的系数是x 2项系数与x 5项系数的等比中项,则a 的值为( ) A.510 B.35 C.925 D.325二、填空题(本大题共5小题,每小题4分,共20分)11.某公园现有A 、B 、C 三只小船,A 船可乘3人,B 船可乘2人,C 船可乘1人,今有 三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由大人陪同方 可乘船,他们分乘这些船只的方法有_____________种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合与二项式定理一、排列组合1.(2016年四川高考)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )(A )24 (B )48 (C )60 (D )72【答案】D 【解析】由题意,要组成没有重复的五位奇数,则个位数应该为1、3、5,其他位置共有44A ,所以其中奇数的个数为44372A =,故选D. 2.(2015年四川高考)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个【答案】B 【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个.选B. 3. (2015年广东高考)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答)【答案】1560.【解析】依题两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了24040391560A =⨯=条毕业留言,故应填入1560.4.(2014大纲全国,理5)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ).A .60种B .70种C .75种D .150种答案:C 解析:从6名男医生中选出2名有26C 种选法,从5名女医生中选出1名有15C 种选法,故共有216565C C 57521⨯⋅=⨯=⨯种选法,选C. 5.(2014福建,理10)用a 代表红球,b 代表蓝球,c 代表黑球.由加法原理及乘法原理,从1个红球和1个蓝球中取出若干个球的所有取法可由(1+a )(1+b )的展开式1+a +b +ab 表示出来,如:“1”表示一个球都不取、“a ”表示取出一个红球、而“ab ”则表示把红球和蓝球都取出来.依此类推,下列各式中,其展开式可用来表示从5个无区别的红球、5个无区别的蓝球、5个有区别的黑球中取出若干个球,且所有的蓝球都取出或都不取出的所有取法的是( ).A .(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5B .(1+a 5)(1+b +b 2+b 3+b 4+b 5)(1+c )5C .(1+a )5(1+b +b 2+b 3+b 4+b 5)(1+c 5)D .(1+a 5)(1+b )5(1+c +c 2+c 3+c 4+c 5)答案:A 解析:本题可分三步:第一步,可取0,1,2,3,4,5个红球,有1+a +a 2+a 3+a 4+a 5种取法;第二步,取0或5个蓝球,有1+b 5种取法;第三步,取5个有区别的黑球,有(1+c )5种取法.所以共有(1+a +a 2+a 3+a 4+a 5)(1+b 5)(1+c )5种取法.故选A.6.(2014辽宁,理6)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ).A .144B .120C .72D .24答案:D 解析:插空法.在已排好的三把椅子产生的4个空档中选出3个插入3人即可.故排法种数为34A =24.故选D.7.(2014四川,理6)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ).A .192种B .216种C .240种D .288种答案:B 解析:(1)当最左端排甲的时候,排法的种数为55A ;(2)当最左端排乙的时候,排法种数为1444C A . 因此不同的排法的种数为514544A +C A =120+96=216.8.(2014重庆,理9)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( ).A .72B .120C .144D .168答案:B 解析:解决该问题分为两类:第一类分两步,先排歌舞类33A ,然后利用插空法将剩余3个节目排入左边或右边3个空,故不同排法有3333A 2A 72⋅=.第二类也分两步,先排歌舞类33A ,然后将剩余3个节目放入中间两空排法有122222C A A ,故不同的排法有32213222A A A C 48=,故共有120种不同排法,故选B. 9.(2014浙江,理14)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).答案:60解析:不同的获奖情况分为两种,一是一人获两张奖券一人获一张奖券,共有2234C A =36种;二是有三人各获得一张奖券,共有34A =24种.因此不同的获奖情况有36+24=60种.10.(2014北京,理13)把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有__________种.答案:36解析:产品A ,B 相邻时,不同的摆法有2424A A =48种.而A ,B 相邻,A ,C 也相邻时的摆法为A 在中间,C ,B 在A 的两侧,不同的摆法共有2323A A =12(种).故产品A 与产品B 相邻,且产品A 与产品C 不相邻的不同摆法有48-12=36(种).11.(2013山东,理10)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A .243B .252C .261D .279B [解析] (排除法)十个数排成不重复数字的三位数求解方法是:第一步,排百位数字,有9种方法(0不能作首位),第二步,排十位数字,有9种方法,第三步,排个位数字,有8种方法,根据乘法原理,共有9×9×8 = 648(个)没有重复数字的三位数.可以组成所有三位数的个数:9×10×10=900,所以可以组成有重复数字的三位数的个数是:900-648=252.12.(2013福建,理5) 满足a ,b ∈{-1,0,1,2},且关于x 的方程ax 2+2x +b =0有实数解的有序数对(a ,b )的个数为( )A .14B .13C .12D .10B [解析] 当a =0时,2x +b =0,∴ x =-b 2,有序数对(0,b )有4个;当a ≠0时,Δ=4-4ab ≥0,∴ ab ≤1,有序数对(-1,b )有4个,(1,b )有3个,(2,b )有2个,综上共有4+4+3+2=13个,故选B.13.(2013大纲全国,理14)6个人排成一行,其中甲、乙两人不相邻的不同排法共有________种.(用数字作答)480 [解析] 先排另外四人,方法数是A 44,再在隔出的五个位置安插甲乙,方法数是A 25,根据乘法原理得不同排法共有A 44A 25=24×20=480种.14.(2013北京,理13) 将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.96 [解析] 5张参观券分为4堆,有2个连号有4种分法,然后每一种全排列有A 44种方法,所以不同的分法种数是4A 44=96.解析:按照要求要把序号分别为1,2,3,4,5的5张参观券分成4组,然后再分配给4人,连号的情况是1和2,2和3,3和4,4和5,故其方法数是4A 44=96.15.(2013浙江,理14) 将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有________种(用数字作答).480 [解析一] 先在6个位置找3个位置,有C 36种情况,A ,B 均在C 的同侧,有CAB ,CBA ,ABC ,BAC ,而剩下D ,E ,F 有A 33种情况,故共有4C 36A 33=480种.解析二:本题考查对排列、组合概念的理解,排列数、组合数公式的运用,考查运算求解能力以及利用所学知识解决问题的能力.“小集团”处理,特殊元素优先,C 36C 12A 22A 33=480. 16.(2012·安徽卷)6位同学在毕业聚会活动中进行纪念品的交换,任意两位同学之间最多交换一次,进行交换的两位同学互赠一份纪念品.已知6位同学之间共进行了13次交换,则收到4份纪念品的同学人数为( )A .1或3B .1或4C .2或3D .2或4D [解析] 任意两个同学之间交换纪念品共要交换C 26=15次,如果都完全交换,每个人都要交换5次,也就是得到5份纪念品,现在6个同学总共交换了13次,少交换了2次,这2次如果不涉及同一个人,则收到4份纪念品的同学人数有4人;如果涉及同一个人,则收到4份纪念品的同学人数有2人,答案为D.17.(2012·辽宁卷)一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数为( )A .3×3!B .3×(3!)3C .(3!)4D .9!C [解析] 本小题主要考查排列组合知识.解题的突破口为分清是分类还是分步,是排列还是组合问题.由已知,该问题是排列中捆绑法的应用,即先把三个家庭看作三个不同元素进行全排列,而后每个家庭内部进行全排列,即不同坐法种数为A 33·A 33·A 33·A 33=(3!)4.18.(2011北京,理12)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有__________个.(用数字作答)【答案】14【解析】个数为42214-=.19.(2010山东,理8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( )(A )36种 (B )42种 (C)48种 (D )54种【答案】B 【解析】分两类:一类为甲排在第一位共有4424A =种,另一类甲排在第二位共有133318C A =种,故编排方案共有241842+=种,故选B.20.(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A. 360B. 288C. 216D. 96解析:6位同学站成一排,3位女生中有且只有两位女生相邻的排法有32223342A C A A 432=种,其中男生甲站两端的有1442223232212=A A C A A ,符合条件的排法故共有288解析2:由题意有2221122222322323242A (C A )C C +A (C A )A 288⋅⋅⋅⋅⋅⋅⋅=,选B.21.(2009天津卷理)用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有 个(用数字作答)解析:个位、十位和百位上的数字为3个偶数的有:901333143323=+C A C A C 种;个位、十位和百位上的数字为1个偶数2个奇数的有:23413332313143323=+C A C C C A C 种,所以共有32423490=+个.22.(2009浙江卷理)甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答).答案:336 【解析】对于7个台阶上每一个只站一人,则有37A 种;若有一个台阶有2人,另一个是1人,则共有2237C A 种,因此共有不同的站法种数是336种.23.(2009·宁夏、海南,12)7名志愿者中安排6人在周六、周日两天参加社区公益活动.若每天安排3人,则不同的安排方案共有________种(用数字作答).解析:法一:先从7人中任取6人,共有C 67种不同的取法.再把6人分成两部分,每部分3人,共有C 36C 33A 22种分法.最后排在周六和周日两天,有A 22种排法,∴C 67×C 36C 33A 22×A 22=140种.法二:先从7人中选取3人排在周六,共有C 37种排法.再从剩余4人中选取3人排在周日,共有C 34种排法,∴共有C 37×C 34=140种.答案:14024.(2010浙江,10)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人.则不同的安排方式共有________种(用数字作答). 解析:上午测试安排有A 44种方法,下午测试分为:(1)若上午测试“台阶”的同学下午测试“握力”,其余三位同学有2种方法测试;(2)若上午测试“台阶”的同学下午不测试“握力”,则有C 13种方法选择,其余三位同学选1人测试“握力”有C 13种方法,其余两位只有一种方法,则共有C 13·C 13=9种, 因此测试方法共有A 44·(2+9)=264种.答案:264 25.(2009·辽宁,5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有( )A .70种B .80种C .100种D .140种解析:分恰有2名男医生和恰有1名男医生两类,从而组队方案共有:C 25×C 14+C 15×C 24=70种.答案:A26.(2013重庆,5)从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是________(用数字作答).解析:本题考查排列组合问题,意在考查考生的思维能力.直接法分类,3名骨科,内科、脑外科各1名;3名脑外科,骨科、内科各1名;3名内科,骨科、脑外科各1名;内科、脑外科各2名,骨科1名;骨科、内科各2名,脑外科1名;骨科、脑外科各2名,内科1名.所以选派种数为C 33·C 14·C 15+C 34·C 13·C 15+C 35·C 13·C 14+C 24·C 25·C 13+C 23·C 25·C 14+C 23·C 24·C 15=590.答案:59027.(2012新课标全国,5)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A .12种B .10种C .9种D .8种解析:先安排1名教师和2名学生到甲地,再将剩下的1名教师和2名学生安排到乙地,共有C 12C 24=12种安排方案.答案:A二、二项式定理1、(2016年北京高考)在6(12)x -的展开式中,2x 的系数为__________________.(用数字作答)【答案】60.2、(2016年山东高考)若(a x 2)5的展开式中x 5的系数是—80,则实数a =_______. 【答案】-2 3、(2016年上海高考)在n x x ⎪⎭⎫ ⎝⎛-23的二项式中,所有项的二项式系数之和为256,则常数项等于_________ 【答案】1124、(2016年四川高考)设i 为虚数单位,则6(i)x +的展开式中含x 4的项为( )(A )-15x 4 (B )15x 4 (C )-20i x 4 (D )20i x 4【答案】A5、(2016年天津高考)281()x x -的展开式中x 2的系数为__________.(用数字作答)【答案】56-6、(2016年全国I 高考)5(2x +的展开式中,x 3的系数是 .(用数字填写答案)【答案】10。