集合与简易逻辑专题训练

合集下载

高考数学 集合与简易逻辑 专题

高考数学  集合与简易逻辑  专题

高考数学 集合与简易逻辑 专题一.选择题(1) 设集合M =},412|{Z k k x x ∈+=,N =},214|{Z k k x x ∈+=, 则 ( )A.M=NB.M ⊂NC.M ⊃ND.M I N=Φ(2) 若集合M={y | y =x-3},P={y | y =33-x }, 则M ∩P= ( )A {y | y >1}B {y | y ≥1}C {y | y >0}D {y | y ≥0} (3)不等式312≥-xx 的解集为( )A.)0,1[-B.),1[∞+-C.]1,(--∞D.),0(]1,(∞+--∞Y (4) 集合M={x |4|3|≤-x }, N={x x y y -+-=22|}, 则 M I N = ( )A.{0}B.{2}C. ΦD. {}72|≤≤x x (5)下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C. {}|2x x x < D .}01|{2=+-x x x(6)已知集合M={a 2, a+1,-3}, N={a -3, 2a -1, a 2+1}, 若M ∩N={-3}, 则a 的值是 ( )A -1B 0C 1D 2(7) 对任意实数x , 若不等式k x x >+++|1||2|恒成立, 则实数k 的取值范围是 ( )A k ≥1B k >1C k ≤1D k <1(8) 一元二次方程2210,(0)ax x a ++=≠有一个正根和一个负根的充分不必要条件是: ( )A .0a <B .0a >C .1a <-D .1a >(9) 设命题甲:0122>++ax ax 的解集是实数集R;命题乙:10<<a ,则命题甲是命题乙成立的( )A . 充分非必要条件 B.必要非充分条件C. 充要条件D. 既非充分又非必要条件 (10) 函数f(x)=⎩⎨⎧∈-∈,,,,M x x P x x 其中P ,M 为实数集R 的两个非空子集,又规定f(P)={y|y=f(x),x ∈P},f(M)={y|y=f(x),x ∈M}.给出下列四个判断:①若P ∩M=∅,则f(P)∩f(M)=∅; ②若P ∩M ≠∅,则f(P)∩f(M) ≠∅; ③若P ∪M=R ,则f(P)∪f(M)=R ; ④若P ∪M ≠R ,则f(P) ∪f(M)≠R. 其中正确判断有( )A 0个B 1个C 2个D 4个二.填空题(11)若不等式02<-ax x 的解集是{}10<<x x ,则=a ________(12) 抛物线16)(2+-=x x x f 的对称轴方程是 .(13) 已知全集U {}5,4,3,2,1=,A {}3,1=,B {}4,3,2=,那么=⋃)(B C A U ___. (14) 设二次函数)0()(2≠++=a c bx ax x f ,若)()(21x f x f =(其中21x x ≠),则)2(21x x f +等于 _____. 三.解答题(15) 用反证法证明:已知R y x ∈,,且2>+y x ,则y x ,中至少有一个大于1。

高一数学集合与简易逻辑练习题

高一数学集合与简易逻辑练习题

高一数学集合与简易逻辑练习题集合与简易逻辑一.选择题1、(湖南文1)已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则A .{}6,4=?N M U N M B = .C .U M N C u = )( D. NN M C u = )(2、(天津理6)设集合{}3|2||>-=x x S ,a x T |{=<x <}8+a ,R T S =?,则a 的取值范围是(A )-3<a <-1 (B )-3≤a ≤-1(C )a ≤-3或a ≥ - 1 (D )a <-3或a >- 13、(江西文1)“x y =”是“x y =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4、(江西文2)定义集合运算:{}|A B z z xy x A y B *==∈∈,,.设{}12A =,,{}02B =,,则集合A B *的所有元素之和为()A .0B .2C .3D .65、(四川理1)若集合{1,2,3,4,5}U =,{1,3}A =2,,{234}B =,,,则()U C A B = ( )(A ){2,3} (B) {1,4,5} (C) {4,5} (D) {1,5}6、(安徽理2)集合A={|lg 1y R y x x ∈=>}、B={-2,-1,1,2},则下列结论中正确的是( )(A)A ∩B={-2,-1} (B){ C R A}∪B=(-∞,0)(C)A ∪B=(0,+ ∞) (D)(C R A) ∩B={-2,-1}7、(安徽理7)a <0是方程2210ax x ++=至少有一个负数根的( )(A)必要不充分条件 (B)充分不必要条件(C)充分必要条件 (D)既不充分也不必要条件8、(浙江理2)已知},1|{},0|{,-≤=>==x x B x x A R U 则)()(A C B B C A U U =( )(A) φ (B) }0|{≤x x (C)}1|{->x x (D ) 0|{>x x 或}1-≤x 9、(浙江理3)已知b a ,都是实数,那么”“22b a >是”“b a >的 ()(A)充分而不必要条件 (B) 必要而不充分条件(C)充分必要条件(D )既不充分也不必要条件10、(广东文1)第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A =(参加北京奥运会比赛的运动员),集合B =(参加北京奥运会比赛的男运动员)。

高一数学上学期单元测试题(三)——集合与简易逻辑

高一数学上学期单元测试题(三)——集合与简易逻辑

高一数学上学期单元测试题(三)——集合与简易逻辑1.集合运算中一定要分清代表元的含义。

[举例]已知集合P={y|y=x2,x∈R},Q={y|y=2x,x∈R}求P∩Q。

解析:集合P、Q均为函数值域(不要误以为是函数图象,{(x,y)| y=x2,x∈R}才表示函数图象),P=[0,+ ,Q=(0,+ ,P∩Q=Q。

[提高]A={x|y=3x+1,y∈Z},B={y|y=3x+1,x∈Z},求A∩B。

2.空集是任何集合的子集,空集是任何非空集合的真子集。

[举例]若A={x|x2<a} B={x|x>2}且A∩B=Φ,求a的范围(注意A有可能为Φ)。

解析:当a>0时,集A=(- ,),要使A∩B=Φ,则≤2,得0<a≤4,当a≤0时,A=Φ,此时A∩B=Φ,综上:a≤4(A=Φ的情况很容易疏漏!)[巩固]若A={x∣ax=1},B={x∣x2=1}且B∩A=A,求a的所有可能的值的集合。

[关注]A∩B=A等价于A B3.充要条件可利用集合包含思想判定:若A B,则A是B充分条件;若A B,则A 是B必要条件;若A B且A B即A=B,则A是B充要条件。

换言之:由A B则称A是B的充分条件,此时B是A的必要条件;由B A则称B是A的充分条件,此时A是B的必要条件。

有时利用原命题与逆否命题等价,“逆命题”与“否命题”等价转换去判定也很方便。

充要条件的问题要十分细心地去辨析:“哪个命题”是“哪个命题”的充分(必要)条件;注意区分:“甲是乙的充分条件(甲乙)”与“甲的充分条件是乙(乙甲)”。

[举例] 若非空集合,则“或”是“”的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分又非必要条件解析:命题“或”等价于“∈”,显然是的真子集,∴“或”是“”的必要不充分条件。

[巩固]已知直线、和平面,则‖的一个必要但不充分条件是()()‖且‖()且()、与成等角()‖且4.命题“A或B”真当且仅当“A、B中至少要一个真”;命题“A或B”假当且仅当“A、B全假”。

专题1.1 集合与简易逻辑(测试卷)(原卷版)

专题1.1 集合与简易逻辑(测试卷)(原卷版)

专题一 集合与简易逻辑测试卷一.填空题(14*5=70分)1.【温州二外2016届上学期高三10月阶段性测试1】已知}22{≤≤-=x x M ,}1{x y x N -==,那么=N M .2.【江苏省泰州中学2015--2016学年度第一学期高三第二次月考】命题“02016,10200>-+->∃x x x ”的否定是 .3.【哈尔滨市第六中学2016届上学期期中考试】已知集合}1,1{-=M ,},4221|{1Z ∈<<=+x x N x ,则=⋂N M __________.4.【山东师范大学附属中学2016届高三上学期第二次模拟】已知集合{}cos0,sin 270A =,{}20B x x x =+=,则A B ⋂为 .5.【重庆市巴蜀中学2016级高三学期期中考试】已知命题1p :函数22x x y -=-在R 上为增函数,2p :函数22x x y -=+在R 上为减函数,在下列四个命题112:q p p ∨;212:q p p ∧;()312:q p p ⌝∨和()412:q p p ∧⌝中,真命题是 .6.【江苏省泰州中学2015--2016学年度第一学期高三第二次月考】已知命题1211:≤+-x p ,命题)0(012:22><-+-m m x x q ,若p 是q 的充分不必要条件,则实数m 的范围是 .7.【河北省衡水中学2016届高三二调】设全集{}1,3,5,6,8U =,集合{}1,6A =,集合{}5,6,8B =,则()U A B ⋂= .8.【江苏省清江中学2016届高三上学期周练】若函数()f x 是定义在R 上的函数,则“()00f =”是“函数()f x 为奇函数”的 条件(“充分不必要” “必要不充分” “充要” “既不充分也不必要”中选一个).9.【哈尔滨市第六中学2016届上学期期中】定义在R 上的函数)(x f y =满足5522f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,5()02x f x ⎛⎫'-> ⎪⎝⎭,则对任意的21x x <,都有)()(21x f x f >是521<+x x 的 条件.10.【泰州市2015届高三第三次调研测试】给出下列三个命题:①“a >b ”是“3a >3b”的充分不必要条件; ②“α>β”是“cos α<co s β”的必要不充分条件;③“0a =”是“函数()()32f x x ax x =+∈R 为奇函数”的充要条件.其中正确命题的序号为 .11.【黑龙江省牡丹江市一高2016届高三10月】已知, a b 是两个非零向量,给定命题:p ⋅=a b a b ,命题:q t ∃∈R ,使得t =a b ,则p 是q 的________条件.12.【吉林省长春外国语学校2016届上学期高三第一次质量检测】设集合}log ,3{2a P =,{}b a Q ,=,若}0{=Q P ,则=Q P ________.13.【2016届河北省邯郸市馆陶县一中高三7月调研考试】下列说法中,正确的是________.①任取x >0,均有3x >2x ;②当a >0,且a ≠1时,有a 3>a 2; ③y =(3)-x 是增函数;④y =2|x |的最小值为1; ⑤在同一坐标系中,y =2x 与y =2-x的图象关于y 轴对称. 14.【2016届湖北省部分重点中学高三上学期起点考试】以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]MM -.例如,当31()x x ϕ=,2()s i n x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈.现有如下命题: ①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b ∀∈R ,a D ∃∈,()f a b =”;②函数()f x B∈的充要条件是()f x 有最大值和最小值; ③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B+∉; ④若函数2()ln(2)1x f x a x x =+++(2x >-,a ∈R )有最大值,则()f x B ∈. 其中的真命题有__________________.(写出所有真命题的序号)二.解答题(6*12=72分)15.【湖北宜昌一中、龙泉中学2016届高三十月联考】已知函数()(2)()f x x x m =-+-(其中2m >-),()22x g x =-﹒(1)若命题“2log ()1g x ≤”是真命题,求x 的取值范围;(2)设命题p :(1,)x ∀∈+∞,()0f x <或()0g x <,若p ⌝是假命题,求m 的取值范围﹒16.【江西临川一中2016届上学期高三期中】已知集合{}015A x ax =∈<+≤R ,()1202B x x a ⎧⎫=∈-<≤≠⎨⎬⎩⎭R . ⑴若B A =,求出实数a 的值;⑵若命题,:A x p ∈命题B x q ∈:且p 是q 的充分不必要条件,求实数a 的取值范围.17.【山东省潍坊第一中学2016届高三10月月考16】已知集合{}2log 8A x x =<,204x B x x ⎧⎫+=<⎨⎬-⎩⎭,{}|1C x a x a =<<+.(1)求集合A B ⋂; (2)若B C B ⋃=,求实数a 的取值范围.18.【山东省潍坊第一中学2016届高三10月月考】设命题p :函数1y kx =+在R 上是增函数,命题q :x ∃∈R ,2(23)10x k x +-+=,如果p q ∧是假命题,p q ∨是真命题,求k 的取值范围.19.【辽宁省葫芦岛市一高2016届上学期期中考试】已知命题p :函数()log 21a y x =+在定义域上单调递增;命题q :不等式2(2)2(2)40a x a x -+--<对任意实数x 恒成立,若p 且q ⌝为真命题,求实数a 的取值范围.20.【江苏省阜宁中学2016届高三年级第一次调研考试】已知命题p :指数函数()()26xf x a =-在R 上是单调减函数;命题q :关于x 的方程223210x ax a -++=的两根均大于3,若p 或q 为真,p 且q 为假,求实数a 的范围.。

高中数学第一章集合与常用逻辑用语考点专题训练(带答案)

高中数学第一章集合与常用逻辑用语考点专题训练(带答案)

高中数学第一章集合与常用逻辑用语考点专题训练单选题1、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.2、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n−2与3p+1都是表示同一类数,6m−5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m−56,m∈Z},x=m−56=6m−56=6(m−1)+16,对于集合N={x|x=n2−13,n∈Z},x=n2−13=3n−26=3(n−1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n−1)+1与3p+1表示的数都是3的倍数加1,6(m−1)+1表示的数是6的倍数加1,所以6(m−1)+1表示的数的集合是前者表示的数的集合的子集,所以M⊆N=P.故选:B.3、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.4、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|〉3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D5、设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M答案:A分析:先写出集合M,然后逐项验证即可由题知M={2,4,5},对比选项知,A正确,BCD错误故选:A6、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.8、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、已知集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},且x1、x2∈A,x3∈B,则下列判断正确的是()A.x1x2∈A B.x2x3∈BC.x1+x2∈B D.x1+x2+x3∈A答案:ABC分析:本题首先可根据题意得出A表示奇数集,B表示偶数集,x1、x2是奇数,x3是偶数,然后依次对x1x2、x2x3、x1+x2、x1+x2+x3进行判断,即可得出结果.因为集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},所以集合A表示奇数集,集合B表示偶数集,x1、x2是奇数,x3是偶数,A项:因为两个奇数的积为奇数,所以x1x2∈A,A正确;B项:因为一个奇数与一个偶数的积为偶数,所以x2x3∈B,B正确;C项:因为两个奇数的和为偶数,所以x1+x2∈B,C正确;D项:因为两个奇数与一个偶数的和为偶数,所以x1+x2+x3∈B,D错误,故选:ABC.11、已知命题p:∃x∈R,ax2−4x−4=0,若p为真命题,则a的值可以为()A.-2B.-1C.0D.3答案:BCD分析:根据给定条件求出p为真命题的a的取值范围即可判断作答,当a=0时,x=−1,p为真命题,则a=0,当a≠0时,若p为真命题,则Δ=16+16a≥0,解得a≥−1且a≠0,综上,p为真命题时,a的取值范围为a≥−1.故选:BCD12、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.13、已知集合P={1,2},Q={x|ax+2=0},若P∪Q=P,则实数a的值可以是()A.−2B.−1C.1D.0答案:ABD分析:由题得Q⊆P,再对a分两种情况讨论,结合集合的关系得解.因为P∪Q=P,所以Q⊆P.由ax+2=0得ax=−2,当a=0时,方程无实数解,所以Q=∅,满足已知;当a≠0时,x=−2a ,令−2a=1或2,所以a=−2或−1.综合得a=0或a=−2或a=−1.故选:ABD小提示:易错点睛:本题容易漏掉a=0. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解.填空题14、已知集合A={x|3≤x<7},C={x|x>a},若A⊆C,求实数a的取值范围_______.答案:(−∞,3)分析:根据集合的包含关系画出数轴即可计算.∵A⊆C,∴A和C如图:∴a<3.所以答案是:(−∞,3).15、若A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,则m的取值范围是__.答案:m>﹣4.解析:根据题意可得A是空集或A中的元素都是小于等于零的,然后再利用判别式以及韦达定理求解即可.解:A∩R+=∅知,A有两种情况,一种是A是空集,一种是A中的元素都是小于等于零的,若A=∅,则Δ=(m +2)2﹣4<0,解得﹣4<m<0 ,①若A≠∅,则Δ=(m +2)2﹣4≥0,解得m≤﹣4或m≥0,又A中的元素都小于等于零∵两根之积为1,∴A中的元素都小于0,∴两根之和﹣(m+2)<0,解得m>﹣2∴m≥0,②由①②知,m>﹣4,所以答案是:m>﹣4.小提示:易错点点睛:本题考查利用交集的结果求参数,本题在求解中容易忽略A=∅的讨论,导致错解,同时本题也可以采取反面考虑结合补集思想求解.16、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−3解答题17、已知集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0},集合C={x|x2+2x−8=0}.(1)若A∩B={2},求实数a的值;(2)若A∩B≠∅,A∩C=∅,求实数a的值.答案:(1)−3(2)−2分析:(1)求出集合B={2,3},由A∩B={2},得到2∈A,由此能求出a的值,再注意3∉A检验即可;(2)求出集合C={−4,2},由A∩B≠∅,A∩C=∅,得3∈A,由此能求出a,最后同样要注意检验.(1)因为集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0}={2,3},且A∩B={2},所以2∈A ,所以4−2a +a 2−19=0,即a 2−2a −15=0,解得a =−3或a =5.当a =−3时,A ={x |x 2+3x −10=0}={−5,2},A ∩B ={2},符合题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},A ∩B ={2,3},不符合题意.综上,实数a 的值为−3.(2)因为A ={x |x 2−ax +a 2−19=0},B ={2,3},C ={x |x 2+2x −8=0}={−4,2},且A ∩B ≠∅,A ∩C =∅,所以3∈A ,所以9−3a +a 2−19=0,即a 2−3a −10=0,解得a =−2或a =5.当a =−2时,A ={x |x 2+2x −15=0}={−5,3},满足题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},不满足题意.综上,实数a 的值为−2.18、设α:m −1≤x ≤2m ,β:2≤x ≤4,m ∈R ,α是β的必要条件,但α不是β的充分条件,求实数m 的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4},所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].。

第一章《集合与简易逻辑》练习题.docx

第一章《集合与简易逻辑》练习题.docx

第一章《集合与简易逻辑》练习题一. 选择题1.若关于 x 的不等式 ax 2bx c 0 (a 0) 的解集是空集 , 则( )( A ) a0且 b 2 4ac(B)a0且 b 2 4ac( C ) a 0且 b 2 4ac 0 (D)a 0且b 24ac2.如果命题“ p 或 q ”与命题“非p ”都是真命题,那么()( A )命题 p 不一定是假命题 ( B )不一定是真命题( C )命题 q 一定是真命题( D )命题 p 与命题 q 真值相同3.设全集 U=R ,集合22UM={ x ︱ x -2x - 3>0}, N={ x ︱ 3+2x - x >0}。

则 M ( C N )等于( )( A ) M( B ) N( C ) C U M(D ) C U N4.下列说法准确的是( )( A ) x ≥ 3 是 x>5 的充分不必要条件 ( B ) x ≠± 1 是 x ≠1 的充要条件 ( C )若﹁ p ﹁ q ,则 p 是 q 的充分条件( D )一个四边形是矩形的充分条件是它是平行四边形5.若 A ∩ B={ a , b }, A ∪ B={ a , b , c , d },则符合条件的不同的集合A 、B 有()( A ) 16 对 ( B )8 对 ( C ) 4 对 ( D )3 对6.已知集合 M{ x | x 1} , P { x | x t} ,若 M P,则实数t 应该满足的φ条件是 ( )( A ) t 1 ( B ) t 1( C ) t 1(D ) t 17.方程 mx 2 2x 1 0 至少有一个负根,则()( A ) 0 m 1 或 m 0( B ) 0m 1 ( C ) m 1( D ) m 18.当 a0 时,关于 x 的不等式 x 2 4ax 5a 2 0的解集是 ( )( A ) { x | x 5a 或 x a } ( B ) { x | x 5a 或 x a }( C ) { x | a x 5a }( D ){ x | 5a x a }9. 抛 物 线 yax 2 bx c 与 X 轴 的 两 个 交 点 为2, 0 , 2, 0 则 不 等 式ax 2 bxc0 的解集为()(A)x 2 x 2(B) x x 2或 x 2( C ) x x2(D)不确定 , 与 a 值相关 . 10.“ x 2+2x-8=0 ”是“ x-2=2 x ”的 ()(A) 充分不必要条件 (B)必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件11.已知集合 A={y|y=-x2∈R}, B={y|y=-x+3,x ∈ R}, 则 A ∩ B=()+3,x (A){(0,3),(1,2)} (B){0,1}(C){3,2}(D){y|y ≤ 3}12.已知集合 A={x|x1 0 },B={x|x ≤ a} ,若 A ∩ B=B,则 a 的取值范围是( )x2(A)a ≥ 1 (B)a ≥2(C)a ≤ -2 (D) a<-213.设全集为 S,对任意子集合 A, B 若 A B , 则下列集合为空集的是 ( )(A) A C S B(B)C S AC S B(C)C S AB(D)AB14.“ a 2 b 20 ”的含义是 ( )(A)a, b 全不为 0(B) a, b不全为 0(C) a, b至少有一个为 0 (D) a, b至少有一个不为 015.已知 P :∣ 2x -3∣>1; q :10 ;则﹁ p 是﹁ q 的()条件x2x 6( A )充分不必要条件 ( B )必要不充分条件( C )充分必要条件( D )既非充分条件又非必要条件16.如果命题“ P 或 Q ”是真命题,命题“ P 且 Q ”是假命题,那么()(A)命题 P 和命题 Q 都是假命题(B)命题 P 和命题 Q 都是真命题 ( C )命题 P 和命题“非 Q ”真值不同(D) 命题 Q 和命题“非 P ”真值相同17.满足关系 {1}B{11 , 2,3, 4} 的集合 B 有( )( A ) 5 个( B ) 7 个( C ) 8 个( D ) 6 个18. a 、 b ∈R +是 a+b > 2 ab 的()( A )充分条件但不是必要条件 ( B ) 必要条件但不是充分条件( C )充分必要条件( D ) 既不充分也不必要条件29.已知 I=R , M={x ︱( x-2 )( 3-x )> 0} , N={x ︱x1> 2} ,则 C U M ∩N 是()x 1( A ) { x | x 3 }( B ) { x | 2 x1 }( C ) { x | 3 x 2 }( D )ф20.如果集合 Mx | xk 1, Nk 1 , k Z ,那么()2 , k Zy | y2( ) M N44(B) MN (C)MN (D)MNA21.下列命题中假命题 是()...( A )“正三角形边长与高的比是2︰ 3 ”的逆否命题( B )“若 x,y 不全为0,则 x 2y 2 0 ”的否命题 ( C )“ p 或 q 是假命题”是“非 p 为真命题”的充分条件( D )若 A B A C ,则 B C22.已知集合( A )φA 是全集 S 的任一子集,下列关系中准确的是() C S A ( B ) C S A S( C )( A ∩ C S A ) =φ ( D )( A ∪ C S A )S23.设全集 U={(x,y)|x∈R,y ∈ R},集合 M={(x,y)|y22( A )( C U M )∩( C U N ) (B )( C U M ≠ x})∪ N,N={(x,y)|y≠ -x},则集合( C )( C U M )∪( C U N )(D ) M ∪( C U N )24.下列说法:①若一个命题的否命题是真命题,则这个命题不一定是真命题;②若一个命题的逆否命题是真命题,则这个命题是真命题;③若一个命题的逆命题是真命题,则这个命题不一定是真命题;④若一个命题的逆命题和否命题都是真命题,则这个命题一定是真命题;其中准确的说法是( )( A )①②( B )①③④ ( C )②③④( D )①②③25.若二次不等式 ax 2+bx+c>0 的解集是x | 1 x1,那么不等式 2cx 2-2bx-a<0 的解54集是( )( A ) x | x 10或 x 1 ( B ) ( C ) x | 4x 5( D )1x1x |5 4 x | 5 x426.集合 {x-1 , x 2-1, 2} 中的 x 不能取值个数是()( A ) 2( B ) 3( C )4( D ) 527.设 M={2,a 2-3a+5,5},N={1,a2-6a+10,3},且 M ∩ N={2,3} 则 a 的值是 ( ) ( A ) 1 或 2 ( B ) 2 或 4( C ) 2( D ) 1二.填空题28. x>y 是x >1 成立的 _________________________________________ 条件 .y29.若集合 A 1,3, x , B1, x 2 ,且 AB 1,3, x ,则 x30.使x 2 x 2成立的充要条件是 _______________________________.x 2 3xx 23x31.写出命题“个位数是5 的自然数能被 5 整除”的逆命题、否命题及逆否命题,并判定其真假。

高考数学强基计划专题1集合与简易逻辑

高考数学强基计划专题1集合与简易逻辑

2022年高考数学尖子生强基计划专题1集合与简易逻辑 一、真题特点分析:1. 突出对思维能力的考查。

例1.【2020年武汉大学9】设A 是集合{}12345678910,,,,,,,,,的子集,只含有3个元素,且不含相邻的整数,则这种子集A 的个数为( ) A. 32B. 56C. 72D. 84答案:B 进行分类讨论例2.【2020 年清华大学】已知集合{},,1,2,3,,2020A B C ⊆,且A B C ⊆⊆,则有序集合组(),,A B C 的个数是( ).A .20202B .20203C .20204D .20205答案:C例3.【北大】已知()01,2,...,i x i n >=11.n i i x ==∏求证:))11.nni i x =≥∏【解析】不等式;柯西不等式或AM GM -平均不等式. 法一:AM GM -不等式.调和平均值n n ni n H G =≤=⎛⎫∑≤n i n ⎛⎫∑ni ≤∑ni ⎛⎫≤∑1nn i i n n +⎛⎫≤+=∑∑,即)1≤,即))1n ni ix ≤∏法二:由11.ni ix ==∏及要证的结论分析,由柯西不等式得))211i i x x ⎫≥⎪⎭,从而可设1i i y x =,且1111.n ni i i iy x ====∏∏从而本题也即证))11.n ni i y =≥∏从而))211nni ii x x ⎫+≥⎪⎭∏,即))21nnii ix y ≥∏,假设原式不成立,即))11,nni i x =<∏则))11.nni i y =<∏从而))21nnii ix y <∏,矛盾.得证.2.注重和解题技巧,考查学生应用知识解决问题的能力。

例4.【北大】10、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根. 【解析】设()2,f x ax bx c =++()2,g x dx ex f =++则由()()f x g x =,可得()()()()()()220,40.a d x b e x c f b e a d c f -+-+-=∆=----=由()()30f x g x +=可得()()()()()()223330,34330.a d x b e x c f b e a d c f +++++=∆=+-++=化简得223124,b e ac df +=+即()22434e df ac b -=-又240.b ac ->240.e df ∴-<()g x ∴没有实根.二、应试和准备策略1. 注意知识点的全面数学题目被猜中的可能性很小,一般知识点都是靠平时积累,因此,要求学生平时要把基础知识打扎实。

高中数学必修1 集合与简易逻辑 训练题

高中数学必修1 集合与简易逻辑 训练题

第一章 集合与简易逻辑三、基础训练题1.给定三元集合},,1{2x x x -,则实数x 的取值范围是___________。

2.若集合},,012{2R x R a x ax x A ∈∈=++=中只有一个元素,则a =___________。

3.集合}3,2,1{=B 的非空真子集有___________个。

4.已知集合}01{},023{2=+==+-=ax x N x x x M ,若M N ⊆,则由满足条件的实数a 组成的集合P =___________。

5.已知}{},2{a x x B x x A ≤=<=,且B A ⊆,则常数a 的取值范围是___________。

6.若非空集合S 满足}5,4,3,2,1{⊆S ,且若S a ∈,则S a ∈-6,那么符合要求的集合S 有___________个。

7.集合}14{}12{Z k k Y Z n n X ∈±=∈+=与之间的关系是___________。

8.若集合}1,,{-=xy xy x A ,其中Z x ∈,Z y ∈且0≠y ,若A ∈0,则A 中元素之和是___________。

9.集合}01{},06{2=-==-+=mx x M x x x P ,且P M ⊆,则满足条件的m 值构成的集合为___________。

10.集合},9{},,12{2R x x y y B R x x y x A ∈+-==∈+==+,则=B A ___________。

11.已知S 是由实数构成的集合,且满足1)2;1S ∉)若S a ∈,则S a∈-11。

如果∅≠S ,S 中至少含有多少个元素?说明理由。

12.已知B A C a x y y x B x a y y x A =+====},),{(},),{(,又C 为单元素集合,求实数a 的取值范围。

四、高考水平训练题1.已知集合},,0{},,,{y x B y x xy x A =+=,且A =B ,则=x ___________,=y ___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合与简易逻辑专题训练
一、选择题:(本大题共12小题,每小题4分,共48分)
题号 1 2 3 4 5 6 7 8 9 10 11 12 得分 答案
1、下列表示方法正确的是 A 、1⊆{0,1,2}
B 、{1}∈{0,1,2}
C 、{0,1,2}⊆{0,1,3}
D 、φ
{0}
2、已知A={1,2,a 2-3a -1},B={1,3},=B A {3,1}则a 等于
A 、-4或1
B 、-1或4
C 、-1
D 、4
3、设集合},3{a M =,},03|{2
Z x x x x N ∈<-=,}1{=N M ,则N M 为
A 、 {1,3,a}
B 、 {1,2,3,a}
C 、 {1,2,3}
D 、 {1,3}
4、集合P=},2|),{(R x y x y x ∈=-,Q=},2|),{(R x y x y x ∈=+,则P Q
A 、(2,0)
B 、{(2,0 )}
C 、{0,2}
D 、{}|2y y ≤
5、下列结论中正确的是 A 、命题p 是真命题时,命题“P 且q ”一定是真命题。

B 、命题“P 且q ”是真命题时,命题P 一定是真命题 C 、命题“P 且q ”是假命题时,命题P 一定是假命题
D 、命题P 是假命题时,命题“P 且q ”不一定是假命题
6、“0232=+-x x ”是“x=1”的 A 、充分不必要条件 B 、必要不充分条件
C 、充要条件
D 、既不充分也不必要条件
7、一个命题与它的逆命题、否命题、逆否命题这四个命题中 A 、真命题的个数一定是奇数 B 、真命题的个数一定是偶数
C 、真命题的个数可能是奇数也可能是偶数
D 、上述判断都不正确
8、设集合},2|{Z n n x x A ∈==,},2
1
|{Z n n x x B ∈+==,则下列能较准确表示A 、B 关系的图是
9、命题“对顶角相等”的否命题是
A 、对顶角不相等
B 、不是对顶角的角相等
C 、不是对顶角的角不相等
D 、存在对顶角不相等
10、已知锐角三角形ABC 中,C B ∠=∠2,用反证法证明045>∠A 。

第一步要假设 A 、045<∠A
B 、045>∠A 成立
C 、C B ∠≠∠2
D 、045≤∠A
11、已知集合}1|{≤=x x M ,}|{t x x P >=,若φ=P M ,则实数t 满足的条件是
A 、1>t
B 、1≥t
C 、1<t
D 、1≤t
12、当0<a 时,关于x 的不等式05422>--a ax x 的解集是 A 、{|x a x 5>或a x -<} B 、{|x a x 5<或a x ->}
C 、{|x a x a 5<<-}
D 、{|x a x a -<<5}
二、填空题:(本大题共4小题,每小题4分,共16分)
13、集合M 中含有8个元素,N 中含有13个元素,(1)若N M 有6个元素,则N M 含有__________
个元素;(2)当N M 含__________个元素时,φ=N M 。

14、0>>y x 是
y
x 1
1<的___________条件。

(填充要性) 15、满足P
⊆}1,0{{0,1,2,3,4}的集合P 的个数有____________个。

16、要使函数)1()1(2
-+-+=m x m mx y 的值恒为正数,则m 的取值范围是__________. 三、解答题:(本大题共4小题,共36分)
17、(本小题满分8分)已知集合A={a 2,a+1,-3},B={a -3,2a -1,a 2+1},若A B={-3},求实数a 的
值。

18、(本小题满分8分)已知全集R U =,集合}02)2(|{2
≥---=a x a x x A ,}21|{≤≤=x x B ,
若A B A = ,求实数a 的取值范围。

19、(本小题满分10分)已知p :方程012=++mx x 有两个不等的实数根,q :方程
01)2(442=+-+x m x 无实根。

若p 或q 为真,p 且q 为假,求实数m 的范围。

20、(本小题满分10分)求证:直线100=+y y x x (x 0,y 0不同时为零)与单位圆12
2=+y x 相离的
充要条件是点P ),(00y x 位于单位圆12
2=+y x 内。

参考答案
一、选择题:
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
D
B
C
B
B
B
B
A
C
D
B
B
二、填空题:13、15 21 14、充分不必要 15、 7 16、 m>1 三、解答题:
17、解:由题意得:B ∈-3
(1)当33-=-a ,则a=0。

经检验}3,1{-=B A ,不全题意。

(2)当2a-1=-3,则a=-1。

此时}3{-=B A 符合题意。

(3)当312-=+a ,显然无解。

综上所述实数a=-1。

18、解:因A B A = ,所以A B ⊆,而02)2(2≥---a x a x ,得0))(2(≥-+a x x 。

当a<-2时,如数轴表示,符合题意。

同理,当12≤≤-a ,也合题意。

但当a>1 时,不合题意。

综上可知}1|{≤a a 19、解:p 或q 为真,p 且q 为假,由这句话可知p 、q 命题为一真一假。

(1)当p 真q 假时, ⎪⎩
⎪⎨⎧≥-->-016)2(160
42
2m m ,得32≥-<m m 或 (2)当p 假q 真时,⎪⎩
⎪⎨⎧<--≤-016)2(160
42
2m m ,得21≤<m 综上所述 m 的范围是}3212|{≥≤<-<m m m m 或或
20、证明:100=+y y x x 与单位圆122=+y x 相离等价于圆心(0,0)到直线的距离大于1 。

即:
1120
2
>+y
x ——(1)点P ),(00y x 位于单位圆122=+y x 内等价于点P 与圆心的距离
小于半径1。

即:1
2020<+y x —————(2)显然:(1)式与(2)式等价,所以原命题成立。

相关文档
最新文档