树转换成二叉树-树的前序、后序的递归、非递归和层次序的非递归

合集下载

完全二叉树非递归无堆栈先序遍历算法的研究

完全二叉树非递归无堆栈先序遍历算法的研究

又 被 Mateti等人于 1988年改进 0 。国内也一直有 学者在做 相 关 的 研 究 。可 从 文 献 [4.12]的研 究 主 题 可 以看 出 ,近 10年 来 对 此 主 题 的研 究 从 未 间 断 ,并 且 近 几 年 的 关 注 度 更 高 。
0 引 言
二 叉 树 作 为 一种 重 要 的 数 据 结 构 是 工农 业 应 用 与 开 发 的 重要工 具。满 二叉树 的中序序列 能够与一 条有 向连续 曲线上 的 点 列 建 立 自起 点 到 终 点 的 一 一 对 应 的 关 系 ;二 叉 树 的 先 序 序 列 ,能 与 植 物 从 根 部 向枝 叶 的生 长 发 育 过 程 建 立 关 联 ,可 作 为 植 物 生 产 建 模 的 基 本 数 据 结 构 模 型 。因 此 ,研 究 二 叉 树 的 先 序 、中序 相 关 算 法 成 为 工 农 业 信 息 技 术 领 域 的关 注 点 。
Abstract: Through a study on the analytic relationship am ong a full binary tree, its sequential storage sequence a n d its preorder-traversal sequence, a algorithms is obtained,which can conve ̄ a full binary t ree a n d its sequential storage sequence into its preorder-traversal se· quence. Consequentl ̄ non—recursive and stack-free algorithms are deduced for preorder t raversal ofa complete binary tree and for inter- conversionsbetweenthe sequential storage sequen ce andthepreorder-tmversal seque n ce. The algor ithms carla1]SWe r a quer y ofanode in constant tim e an d perform a traversal in linear tim e. Being derived from exact m athem atical a n alysis and inosculated with deductions ofbinary encodes that naturally fit the bitwise operation, the algorithms are available for both conventional programming and professional developments such as embedded system and SO on. A sample example is presented to demonstrate the application of the algorithms in virtual-plants modeling. Key words: binary t ree; sequential storage m odel; preorder traversal; non--recursive and stack--free; virtual pla n ts

树和二叉树习题集与答案解析

树和二叉树习题集与答案解析

一、填空题1. 不相交的树的聚集称之为森林。

2. 从概念上讲,树与二叉树是两种不同的数据结构,将树转化为二叉树的基本目的是_树可采用孩子-兄弟链表(二叉链表)做存储结构,目的是利用二叉树的已有算法解决树的有关问题。

3. 深度为k的完全二叉树至少有2 k-1个结点。

至多有2 k-1个结点,若按自上而下,从左到右次序给结点编号(从1开始),则编号最小的叶子结点的编号是2 k-2+1。

4. 在一棵二叉树中,度为零的结点的个数为n 0,度为2的结点的个数为n 2,则有n0= n2+1。

5. 一棵二叉树的第i(i≥1)层最多有2 i-1个结点;一棵有n(n>0)个结点的满二叉树共有(n+1)/2个叶子和(n-1)/2个非终端结点。

6.现有按中序遍历二叉树的结果为abc,问有5种不同形态的二叉树可以得到这一遍历结果。

7. 哈夫曼树是带权路径最小的二叉树。

8. 前缀编码是指任一个字符的编码都不是另一个字符编码的前缀的一种编码方法,是设计不等长编码的前提。

9. 以给定的数据集合{4,5,6,7,10,12,18}为结点权值构造的Huffman 树的加权路径长度是165 。

10. 树被定义为连通而不具有回路的(无向)图。

11. 若一棵根树的每个结点最多只有两个孩子,且孩子又有左、右之分,次序不能颠倒,则称此根树为二叉树。

12. 高度为k,且有个结点的二叉树称为二叉树。

2k-1 满13. 带权路径长度最小的二叉树称为最优二叉树,它又被称为树。

Huffman14. 在一棵根树中,树根是为零的结点,而为零的结点是结点。

入度出度树叶15. Huffman树中,结点的带权路径长度是指由到之间的路径长度与结点权值的乘积。

结点树根16. 满二叉树是指高度为k,且有个结点的二叉树。

二叉树的每一层i上,最多有个结点。

2k-1 2i-1二、单选题1. 具有10个叶结点的二叉树中有(B) 个度为2的结点。

(A)8 (B)9 (C)10 (D)112.对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,则可采用_(3)次序的遍历实现编号。

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系一、引言在计算机科学中,数据结构是非常重要的知识点之一。

而树这一数据结构,作为基础的数据结构之一,在软件开发中有着广泛的应用。

本文将重点探讨二叉树、树和森林遍历之间的对应关系,帮助读者更加全面地理解这些概念。

二、二叉树1. 二叉树的定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树可以为空,也可以是一棵空树。

2. 二叉树的遍历在二叉树中,有三种常见的遍历方式,分别是前序遍历、中序遍历和后序遍历。

在前序遍历中,节点的访问顺序是根节点、左子树、右子树;在中序遍历中,节点的访问顺序是左子树、根节点、右子树;在后序遍历中,节点的访问顺序是左子树、右子树、根节点。

3. 二叉树的应用二叉树在计算机科学领域有着广泛的应用,例如用于构建文件系统、在数据库中存储有序数据、实现算法中的搜索和排序等。

掌握二叉树的遍历方式对于理解这些应用场景非常重要。

三、树1. 树的定义树是一种抽象数据类型,由n(n>0)个节点组成一个具有层次关系的集合。

树的特点是每个节点都有零个或多个子节点,而这些子节点又构成了一颗子树。

树中最顶层的节点称为根节点。

2. 树的遍历树的遍历方式有先根遍历、后根遍历和层次遍历。

在先根遍历中,节点的访问顺序是根节点、子树1、子树2...;在后根遍历中,节点的访问顺序是子树1、子树2...,根节点;在层次遍历中,节点的访问顺序是从上到下、从左到右依次访问每个节点。

3. 树的应用树广泛用于分层数据的表示和操作,例如在计算机网络中的路由算法、在操作系统中的文件系统、在程序设计中的树形结构等。

树的遍历方式对于处理这些应用来说至关重要。

四、森林1. 森林的定义森林是n(n>=0)棵互不相交的树的集合。

每棵树都是一颗独立的树,不存在交集。

2. 森林的遍历森林的遍历方式是树的遍历方式的超集,对森林进行遍历就是对每棵树进行遍历的集合。

3. 森林的应用森林在实际编程中经常用于解决多个独立树结构的问题,例如在数据库中对多个表进行操作、在图像处理中对多个图形进行处理等。

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。

对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。

由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。

⽐⽅堆了。

所以。

对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。

四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。

求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。

然后在訪问左⼦树和右⼦树。

所以。

对于随意结点node。

第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。

若为空。

则须要訪问右⼦树。

注意。

在訪问过左孩⼦之后。

数据结构大纲知识点

数据结构大纲知识点

数据结构大纲知识点一、绪论。

1. 数据结构的基本概念。

- 数据、数据元素、数据项。

- 数据结构的定义(逻辑结构、存储结构、数据的运算)- 数据结构的三要素之间的关系。

2. 算法的基本概念。

- 算法的定义、特性(有穷性、确定性、可行性、输入、输出)- 算法的评价指标(时间复杂度、空间复杂度的计算方法)二、线性表。

1. 线性表的定义和基本操作。

- 线性表的逻辑结构特点(线性关系)- 线性表的基本操作(如初始化、插入、删除、查找等操作的定义)2. 顺序存储结构。

- 顺序表的定义(用数组实现线性表)- 顺序表的基本操作实现(插入、删除操作的时间复杂度分析)- 顺序表的优缺点。

3. 链式存储结构。

- 单链表的定义(结点结构,头指针、头结点的概念)- 单链表的基本操作实现(建立单链表、插入、删除、查找等操作的代码实现及时间复杂度分析)- 循环链表(与单链表的区别,操作特点)- 双向链表(结点结构,基本操作的实现及特点)三、栈和队列。

1. 栈。

- 栈的定义(后进先出的线性表)- 栈的基本操作(入栈、出栈、取栈顶元素等操作的定义)- 顺序栈的实现(存储结构,基本操作的代码实现)- 链栈的实现(与单链表的联系,基本操作的实现)- 栈的应用(表达式求值、函数调用栈等)2. 队列。

- 队列的定义(先进先出的线性表)- 队列的基本操作(入队、出队、取队头元素等操作的定义)- 顺序队列(存在的问题,如假溢出)- 循环队列的实现(存储结构,基本操作的代码实现,队空和队满的判断条件)- 链队列的实现(结点结构,基本操作的实现)- 队列的应用(如操作系统中的进程调度等)四、串。

1. 串的定义和基本操作。

- 串的概念(字符序列)- 串的基本操作(如连接、求子串、比较等操作的定义)2. 串的存储结构。

- 顺序存储结构(定长顺序存储和堆分配存储)- 链式存储结构(块链存储结构)3. 串的模式匹配算法。

- 简单的模式匹配算法(Brute - Force算法)的实现及时间复杂度分析。

树和二叉树——精选推荐

树和二叉树——精选推荐

第6章 树和二叉树内容概要:本章主要介绍树,二叉树,最优二叉树的相关概念和操作,存储结构和相应的操作,并在综合应用设计中,给出了对应算法的C 语言实现。

教学目标1.理解各种树和森林与二叉树的相应操作。

2.熟练掌握二叉树的各种遍历算法,并能灵活运用遍历算法实现二叉树的其他操作。

3.熟练掌握二叉树和树的各种存储结构及其建立的算法。

4.掌握哈夫曼编码的方法。

5.通过综合应用设计,掌握各种算法的C 语言实现过程。

基本知识点:树和二叉树的定义、二叉树的存储表示、二叉树的遍历以及其它操作的实现、树和森林的存储表示、树和森林的遍历以及其它操作的实现、最优树和赫夫曼编码重点:二叉树的性质、二叉树的遍历及其应用,构造哈夫曼树。

难点:编写实现二叉树和树的各种操作的递归算法。

本章知识体系结构:课时安排:6个课时树的定义 树树的性质 树的逻辑表示法 树形表示法 树的存储结构 双亲存储结构 文氏表示法凹入表示法 括号表示法 孩子存储结构 孩子双亲存储结构二叉树二叉树的定义 二叉树的性质二叉树的逻辑表示法(采用树的逻辑表示法)二叉树的存储结构二叉树的顺序存储结构先序遍历 中序遍历 后序遍历二叉树的遍历 二叉树的链式存储结构(二叉链) 由先序序列和中序序列构造二叉树 由中序序列和后序序列构造二叉树二叉树的构造 二叉树的线索化 哈夫曼树二叉树和树之间的差别 二叉树与树、森林之间的转换二叉树和树课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握树、二叉树的基本概念和术语,二叉树的性质教学重点二叉树的定义、二叉树的性质、链式存储结构教学难点二叉树的性质、链式存储二叉树的基本操作组织教学一、树的定义二、树的基本概念三、二叉树的定义、性质四、二叉树的顺序存储结构和链式存储结构五、小结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标掌握二叉树遍历的三种方法及二叉树的基本操作教学重点二叉树的遍历算法教学难点中序与后序遍历的非递归算法组织教学一、复习二叉树的定义二、遍历二叉树的三种方法三、递归法遍历二叉树四、二叉树的基本操作五、总结作业复习本讲内容并预习下一讲内容课堂情况及课后分析课程数据结构教学教具多媒体课件学时2班级06网络教学日期/课时 /2课时教学单元第6章树和二叉树教学方法讲授(PPT)教学目标理解树与森林的转换,掌握哈夫曼树教学重点哈夫曼树教学难点树与森林的转换组织教学一、导入二、树与森林三、哈夫曼树四、小结作业习题6课堂情况及课后分析前面几章讨论的数据结构都属于线性结构,线性结构的特点是逻辑结构简单,易于进行查找、插入和删除等操作,可用于描述客观世界中具有单一前驱和后继的数据关系。

前序后序中序详细讲解

前序后序中序详细讲解

前序后序中序详细讲解1.引言1.1 概述在数据结构与算法中,前序、中序和后序是遍历二叉树的三种基本方式之一。

它们是一种递归和迭代算法,用于按照特定的顺序访问二叉树的所有节点。

通过遍历二叉树,我们可以获取有关树的结构和节点之间关系的重要信息。

前序遍历是指先访问根节点,然后递归地访问左子树,最后递归地访问右子树。

中序遍历是指先递归地访问左子树,然后访问根节点,最后递归地访问右子树。

后序遍历是指先递归地访问左子树,然后递归地访问右子树,最后访问根节点。

它们的不同之处在于访问根节点的时机不同。

前序遍历可以帮助我们构建二叉树的镜像,查找特定节点,或者获取树的深度等信息。

中序遍历可以帮助我们按照节点的大小顺序输出树的节点,或者查找二叉搜索树中的某个节点。

后序遍历常用于删除二叉树或者释放二叉树的内存空间。

在实际应用中,前序、中序和后序遍历算法有着广泛的应用。

它们可以用于解决树相关的问题,例如在Web开发中,树结构的遍历算法可以用于生成网页导航栏或者搜索树结构中的某个节点。

在图像处理中,前序遍历可以用于图像压缩或者图像识别。

另外,前序和后序遍历算法还可以用于表达式求值和编译原理中的语法分析等领域。

综上所述,前序、中序和后序遍历算法是遍历二叉树的重要方式,它们在解决各种与树有关的问题中扮演着关键的角色。

通过深入理解和应用这些遍历算法,我们可以更好地理解和利用二叉树的结构特性,并且能够解决更加复杂的问题。

1.2文章结构文章结构是指文章中各个部分的布局和组织方式。

一个良好的文章结构可以使读者更好地理解和理解文章的内容。

本文将详细讲解前序、中序和后序三个部分的内容和应用。

首先,本文将在引言部分概述整篇文章的内容,并介绍文章的结构和目的。

接下来,正文部分将分为三个小节,分别对前序、中序和后序进行详细讲解。

在前序讲解部分,我们将定义和解释前序的意义,并介绍前序在实际应用中的场景。

通过详细的解释和实例,读者将能更好地理解前序的概念和用途。

树和二叉树习题及答案

树和二叉树习题及答案

树和二叉树习题及答案一、填空题1. 不相交的树的聚集称之为森林。

2. 从概念上讲,树与二叉树是两种不同的数据结构,将树转化为二叉树的基本目的是_树可采用孩子-兄弟链表(二叉链表)做存储结构,目的是利用二叉树的已有算法解决树的有关问题。

3. 深度为k的完全二叉树至少有2 k-1个结点。

至多有2 k-1个结点,若按自上而下,从左到右次序给结点编号(从1开始),则编号最小的叶子结点的编号是2 k-2+1。

4. 在一棵二叉树中,度为零的结点的个数为n,度为2的结点的个数为n2,则有n= n2+1。

5. 一棵二叉树的第i(i≥1)层最多有2 i-1个结点;一棵有n (n>0)个结点的满二叉树共有(n+1)/2个叶子和(n-1)/2个非终端结点。

6.现有按中序遍历二叉树的结果为abc,问有5种不同形态的二叉树可以得到这一遍历结果。

7. 哈夫曼树是带权路径最小的二叉树。

8. 前缀编码是指任一个字符的编码都不是另一个字符编码的前缀的一种编码方法,是设计不等长编码的前提。

9. 以给定的数据集合{4,5,6,7,10,12,18}为结点权值构造的Huffman树的加权路径长度是 165 。

10. 树被定义为连通而不具有回路的(无向)图。

11. 若一棵根树的每个结点最多只有两个孩子,且孩子又有左、右之分,次序不能颠倒,则称此根树为二叉树。

12. 高度为k,且有个结点的二叉树称为二叉树。

2k-1 满13. 带权路径长度最小的二叉树称为最优二叉树,它又被称为树。

Huffman14. 在一棵根树中,树根是为零的结点,而为零的结点是结点。

入度出度树叶15. Huffman树中,结点的带权路径长度是指由到之间的路径长度与结点权值的乘积。

结点树根16. 满二叉树是指高度为k,且有个结点的二叉树。

二叉树的每一层i上,最多有个结点。

2k-1 2i-1二、单选题1. 具有10个叶结点的二叉树中有 (B) 个度为2的结点。

(A)8 (B)9 (C)10 (D)112.对二叉树的结点从1开始进行连续编号,要求每个结点的编号大于其左右孩子的编号,同一结点的左右孩子中,其左孩子的编号小于其右孩子的编号,则可采用_(3)次序的遍历实现编号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#include <>
#include <>
#include <>
#define MAX_TREE_SIZE 100
typedef struct
{
int data;
int parent; ata,[i].parent);
printf("\n");
}
}
/*用双亲表示法创建树*/
PTree CreatTree(PTree T)
{
int i=1;
int fa,ch;
PTNode p;
for(i=1;ch!=-1;i++)
{
printf("输入第%d结点:\n",i);
scanf("%d,%d",&fa,&ch);
printf("\n");
=ch;
=fa;
++;
[].data = ;
[].parent = ;
}
printf("\n");
printf("创建的树具体情况如下:\n");
print_ptree(T);
return T;
}
/*一般树转换成二叉树*/
BTNode *change(PTree T)
{
int i,j=0;
BTNode p[MAX_TREE_SIZE];
BTNode *ip,*is,*ir,*Tree;
ip=(BTNode *)malloc(sizeof(BTNode));
is=(BTNode *)malloc(sizeof(BTNode));
ir=(BTNode *)malloc(sizeof(BTNode));
Tree=(BTNode *)malloc(sizeof(BTNode));
for(i=0;i<;i++)
{
p[i]=GetTreeNode[i].data);
}
for(i=1;i<;i++)
{
ip=&p[i];
is=&p[j];
while[i].parent!=is->data)
{
j++;
is=&p[j];
}
if(!(is->firstchild))
{
is->firstchild=ip;
ir=ip;
}
else
{
ir->rightsib=ip;
ir=ip;
}
}
Tree=&p[0];
return Tree;
}
/*主菜单*/
void Menu()
{
printf("=================主菜单=======================\n");
printf("***输入-以双亲法创建一棵一般树***\n");
printf("***输入2-------------树的前序遍历(递归)*******\n");
printf("***输入3-------------树的后序遍历(递归)*******\n");
printf("***输入4-------------树的前序遍历(非递归)*****\n");
printf("***输入5-------------树的后序遍历(非递归)*****\n");
printf("***输入6-------------层次序的非递归遍历*******\n");
printf("***输入0-------------退出程序*****************\n");
printf("==============================================\n");
printf("请输入执行的指令:");
}
/*副菜单*/
void Menu2()
{
printf("*****************副菜单*******************\n");
printf("***9-------------返回主菜单继续操作*******\n");
printf("***0-------------退出程序*****************\n");
}
/*主函数*/
void main()
{
int i=0,c1,c2;
PTree T;
BTNode *Tree;
init_ptree(&T);
loop:
Menu();
scanf("%d",&c1);
switch(c1)
{
case 1:
printf("建立一般树,依次输入各个结点情况:\n");
printf("输入结点方式:双亲数据,整型数据(第一个结点双亲数据为-1,最后以-1,-1结束)\n例子:-1,1 1,3\n");
T=CreatTree(T);
Tree=change(T);
printf("一般树转换成二叉树后的情况:\n");
PrintBTree(Tree,i);
getchar();
break;
case 2:
printf("树的前序遍历(递归):\n");
preorder(Tree);
printf("\n");
break;
case 3:
printf("树的后序遍历(递归):\n");
inoeder(Tree);
printf("\n");
break;
case 4:
printf("树的前序遍历(非递归):\n");
preorder2(T);
printf("\n");
break;
case 5:
printf("树的后序遍历(非递归):\n");
inoeder2(T);
printf("\n");
break;
case 6:
printf("树的层次遍历:\n");
level(T);
printf("\n");
break;
case 0:
exit(1);
break;
}
Menu2();
scanf("%d",&c2);
if(c2==9)
goto loop;
else if(c2==0)
exit(1);
}。

相关文档
最新文档