建筑力学分类题型计算桁架
静定桁架的内力计算

第二节平面静定桁架的内力计算桁架是工程中常见的一种杆系结构,它是由若干直杆在其两端用铰链连接而成的几何形状不变的结构。
桁架中各杆件的连接处称为节点。
由于桁架结构受力合理,使用材料比较经济,因而在工程实际中被广泛采用。
房屋的屋架(见图3-10)、桥梁的拱架、高压输电塔、电视塔、修建高层建筑用的塔吊等便是例子。
图3-10房屋屋架杆件轴线都在同一平面内的桁架称为平面桁架(如一些屋架、桥梁桁架等),否则称为空间桁架(如输电铁塔、电视发射塔等)。
本节只讨论平面桁架的基本概念和初步计算,有关桁架的详细理论可参考“结构力学”课本。
在平面桁架计算中,通常引用如下假定:1)组成桁架的各杆均为直杆;2)所有外力(载荷和支座反力)都作用在桁架所处的平面内,且都作用于节点处;3)组成桁架的各杆件彼此都用光滑铰链连接,杆件自重不计,桁架的每根杆件都是二力杆。
满足上述假定的桁架称为理想桁架,实际的桁架与上述假定是有差别的,如钢桁架结构的节点为铆接(见图3-11)或焊接,钢筋混凝土桁架结构的节点是有一定刚性的整体节点,图3-11 钢桁架结构的节点它们都有一定的弹性变形,杆件的中心线也不可能是绝对直的,但上述三点假定已反映了实际桁架的主要受力特征,其计算结果可满足工程实际的需要。
分析静定平面桁架内力的基本方法有节点法和截面法,下面分别予以介绍。
一、节点法因为桁架中各杆都是二力杆,所以每个节点都受到平面汇交力系的作用,为计算各杆内力,可以逐个地取节点为研究对象,分别列出平衡方程,即可由已知力求出全部杆件的内力,这就是节点法。
由于平面汇交力系只能列出两个独立平衡方程,所以应用节点法往往从只含两个未知力的节点开始计算。
例3-8 平面桁架的受力及尺寸如图3-12a所示,试求桁架各杆的内力。
图3-12 例3-8图解:(1)求桁架的支座反力以整体桁架为研究对象,桁架受主动力2F以及约束反力、、作用,列平衡方程并求解:,=0,2×-=0,=,+-2=0,=2-=(2)求各杆件的内力设各杆均承受拉力,若计算结果为负,表示杆实际受压力。
桁架内力计算

21
一、节点法 (1)一般先研究整体,求支座约束力; (2)逐个取各节点为研究对象; (3)求杆件内力; (4)所选节点的未知力数目不大于2,由此 开始计算。
练习1
判断结构中的零杆
F F
F
FP
2015-3-5
15
结点法
基本概念 结点法 截面法 联合法 小结
۞
练习2
计算桁架各杆件内力
2F a
4×a
第一步:求支座反力 第二步:判断零杆和单杆,简化问题 第三步:逐次去结点,列平衡方程 第四步:自我检查
16
2015-3-5
结点法
基本概念 结点法 截面法 联合法 小结
目 ≤ 独立方程数(即2个);
小结
基本思路:尽可能简化问题,一般先求支座反力,
然后逐次列结点平衡方程。
2015-3-5 10
结点法
۞
例题1
如图所示为一施工托架计算简图,求图示 荷载作用下各杆轴力(单位:kN)。
基本概念 结点法 截面法 联合法 小结
8 A
1.5m
8
C 6 E8 G F
8
B
截面法
基本概念
۞ 例题2
求图示桁架25、34、35三杆内力(单位:kN)。 10 20
I 4
7 2m 8
结点法
10
3
a
截面法 联合法 小结
1
2
5 I8 m
6
解: 1)求支座反力。2)截面法,取分离体受力 分析,求内力。
工程力学32 静定平面桁架结构的内力计算

定
12kN
12kN
结 构
3m 3
6kN D
F
J
6kN
L
的 内 力
FxA
AC E G
IK
B
4m 6
FyA
FyB
计 算 1.求支座反力
FxA 0 FyA 36kN FyB 36kN
2020/10/4
重庆工程职业技术学院
11
静定桁架
结 构
12kN 12kN
12kN H 12kN
12kN
力 学
3m 3
静 定
3、注意:
结
(1)一般结点上的未知力不能多余两个。
构 的
(2)可利用比例关系求解各轴力的铅直、水平分量。
内
力
计
算
2020/10/4
重庆工程职业技术学院
10
静定桁架
结 三、静定平面桁架的内力计算
构 (一)结点法
力
以一个结点为隔离体,用汇交力系的平衡方程求解
学
各杆的内力的方法。
静
12kN
12kN H 12kN
结 构 力 学
静 定 结 构 的 内 力 计 算
结 一、概述 构 力 学
静定桁架
静
定
结
构
的
主桁架
内
力
计
算
2020/10/4
重庆工程职业技术学院
2
结 一、概述 构
力 学
静定桁架
静 理想桁架的三点假设:
定
结
(1)所有的结点都是无摩擦的理想铰结点;
构
(2)各杆的轴线都是直线,并通过铰的中心;
的
(3)荷载和支座反力都作用在结点上。
理论力学桁架网络练习题

理论力学桁架网络练习题一、基本概念题1. 请简述桁架结构的特点。
2. 桁架中的杆件主要承受哪种类型的载荷?3. 什么是节点?桁架中的节点有哪些类型?4. 简述静定桁架与超静定桁架的区别。
5. 桁架结构中的零杆具有什么性质?二、计算题1. 已知一简单桁架,各杆件的长度和材料相同,求各杆件的内力。
2. 计算如下图所示桁架结构中各杆件的内力(图中已给出各杆件长度和载荷)。
3. 有一静定桁架,部分杆件长度和载荷已知,求剩余杆件的长度。
4. 已知一超静定桁架,求各杆件的内力。
5. 分析下图所示桁架结构,判断其是否为静定桁架,并说明理由。
三、分析题1. 分析桁架结构在不同载荷作用下的受力特点。
2. 论述桁架结构在工程中的应用及其优缺点。
3. 比较分析不同材料桁架的受力性能。
4. 针对一个实际桁架工程案例,分析其设计合理性。
5. 讨论桁架结构在地震作用下的稳定性问题。
四、作图题1. 根据给定条件,绘制一个静定桁架的受力图。
2. 绘制一个超静定桁架的受力图,并标明各杆件的内力。
3. 根据下图所示桁架结构,绘制其节点载荷图。
4. 绘制一个桁架结构的弯矩图和剪力图。
5. 请绘制一个简支桁架在均布载荷作用下的受力图。
五、综合题2. 分析一个实际桁架结构,提出改进措施,使其受力更加合理。
3. 针对一个超静定桁架,采用力法求解各杆件的内力。
4. 讨论桁架结构在温度变化影响下的受力特点。
5. 结合工程实际,论述桁架结构在施工过程中的注意事项。
六、判断题1. 桁架结构中的杆件只能承受轴向力。
()2. 所有桁架结构都必须是静定的。
()3. 在桁架结构中,节点载荷可以分解为各杆件的轴力。
()4. 超静定桁架的杆件内力可以通过静力平衡方程直接求出。
()5. 桁架结构的稳定性只与杆件长度有关。
()七、选择题A. 受拉杆件B. 受压杆件C. 零杆D. 弯曲杆件2. 桁架中的节点是:A. 杆件连接处B. 载荷作用点C. 支撑点D. 所有上述选项A. 杆件数量等于节点数减去支撑数B. 杆件数量等于节点数加上支撑数C. 载荷作用点等于节点数D. 支撑数等于节点数A. 力法B. 位移法C. 力矩分配法D. 直接平衡法5. 桁架结构的优化设计主要目的是:A. 减轻结构重量B. 提高结构稳定性C. 降低材料成本D. 所有上述选项八、填空题1. 桁架结构主要由______、______和______组成。
理论力学4.1、平面简单桁架的内力计算

F3 12.31(kN) F2 2.82(kN) F1 8.72(kN)
10
课堂练习题1 求图4.1-6a/b所示桁架结构中带数字 编号的各杆件内力。
I
F
I
11
课堂练习题2,图4.1-7a所示桁架结构中 Fp 10 KN 求JO杆、FK杆的内力
12
各图桁架中带有编号 的杆是否都是零力杆?
13
零杆作用:可以把处 于受压状态的细长杆 “割断”成“短粗杆 ”,避免其“突然变 形”
14
15
C
D
E FE
A
B
G FG H FH
F1
F4
F3
FAy F1
F3 F5 F2
F2
G
E
D
C
B
A
FAy
FBy
FBx
16
3m
C 1D
E
2
FE
A
3
B
G FG H FH
A
C
E
1
2
6
3
7H 45
J
B DF GF I
Fix
0
F2
F1
c os30
0
F2
8.66(kN)
研究对象:D节点(图c);
Fix Fiy
0 0
F5 F3
F2 8.66(kN) P 10(kN)
研究对象:C节点(图d)
Fix 0 F4 cos30 F1 cos30 0 F4 10(kN) 9
(刚化公理的应用)
6
平面简单桁架:以三角形框架为基础,每增加一个节点 就要增加两根杆,而且所有的杆件都在同一平面内;
桁架力学计算公式

mm mm mm
参考2版<<钢结构>>P20,lc=l(几何长度) 参考2版<<钢结构>>P20,lc=0.8 l(几何长度) 参考2版<<钢结构>>P20,lc=0.8 l(几何长度)
λ p=120 手册P21-97 λ p=150 手册P21-97 λ p=200 手册P21-97 λ p=150 手册P21-97 手册P21-97 表21-5-6 MPa 许用应力σ p=120MPa 手册P21-97 表21-5-6 MPa 许用应力σ p=120MPa 参考第2版《钢结构》P420,近似计算公式
N N N
32.545 -157.52 192.287
KN KN KN 参考手册P21-37
A1 ix1 A2 ix2 A3 ix3 A4 ix4 σ c1 σ c2 σ c3 σ c4
24.37 3.85 24.37 3.85 19.26 3.05 12.303 2.44 -6.677 6.677 -40.893 78.146
2 1 1 2 3 4
代号
数值
单位
说 明
M L N h0 β q x RA RB Mmax Q
8 44 8 2.2 0.96 7.16 10 214.8 214.8 71.6 157.52
m m m m 弧度 kN/m m kN kN kN.m KN 参考手册P21-11 单位为弧度,弧度=度/180*3.1416 雪载0.3kN/㎡ 以左端为基准
桁架的跨中截面对水平心轴的毛截面惯性矩
206*1000=E
c㎡ cm c㎡ cm c㎡ cm c㎡ cm MPa MPa MPa MPa
选75×75×8角钢2根
第三章 建筑力学-结构力学(二)

第三节 结构分析与计算
2)关于等力杆的判断 ①X型结点:成X型汇交的四杆结点无荷载作用,则彼此 共线的杆件的内力两两相等。
第三节 结构分析与计算
②K型结点:成K型汇交的四杆结点,其中两杆共线,而另外 两杆在此直线同侧且交角相等,若结点上无荷载作用,则不共线 的两杆内力大小相等而符号相反。
③Y型结点:成Y型汇交的三杆结点,其中两杆分别在第三杆 的两侧且交角相等,若结点上无与该第三杆轴线方向偏斜的荷载 作用,则该两杆内力大小相等且符号相同。
第三节 结构分析与计算
注意:桁架中的零杆,不承担载荷,只起到维持结构几 何稳定性的作用。故虽列平衡方程时零杆不起作用,但不可 将零杆去掉。
第三节 结构分析与计算
【2016年真题】在如图所示体系,具有( )个多余约束。 A.0 B.1 C.2 D.3 网校答案:B
第三节 结构分析与计算
【多选】关于力对点的矩的说法,正确的是( ) A.力对点的矩与力的大小和方向有关,而与矩心位置无关 B.力对点的矩不会因为力沿其作用线移动而改变 C.力的数值为零或力的作用线通过矩心时,力矩均为零 D.互相平衡的两个力,对同一点之矩的代数和等于零 网校答案:BC
第三节 结构分析与计算
利用对称性判定桁架零杆 1)在对称荷载作用下,位于对称轴处的K型结点,若无 外力作用,则两斜杆轴力为零。
第三节 结构分析与计算
2)在反对称荷载作用下,位于对称轴上且与对称轴线垂 直的横杆或与对称轴线重合的竖杆轴力均为零。
第三节 结构分析与计算
例:试求图示桁架各杆的轴力。
解:(1)利用桁架的整体平衡条件,求出支座A、B的反力。 (2)判分析与计算
2.桁架计算 静定桁架的内力计算主要有两种方法。 (1)结点法 利用结点平衡的特殊情况,判定零杆和等力杆
理论力学桁架计算 ppt课件

焊接
铆接
螺栓连接
实际建筑 中的桁架
结构
各杆件轴线不在同一平面内的桁架,称为空间桁架。 各杆件轴线都在同一平面内的桁架,称为平面桁架。
空间桁架
平面桁架
二、建立平面桁架力学模型
考虑如下几点假设:
1.各杆件为直杆,各杆轴线位于同一平面内。 2.杆件与杆件间均用光滑铰链连接。 3.外力都作用在节点上。 4.各杆件自重不计或平均分布在节点上。
MD0, 求出杆1的内力F1。
2F
F
a
a
D 3
m
B
得
F A C sF iA 6n y 0 9 43 P F A E9 23 P
对节点C由平面汇交力系平衡条件列平衡方程
F y 0 ,F C c A 3 o F 0 C s c E 3 o 0 0 s
F x0,
F 1 F Cc E6 o 0 s F Cc A6 o 0 s 0
F 19 43P F CE 9 43P
理想桁架
桁架中每根杆件均为二力杆
三、简单理想桁架的内力计算
对于简单理想桁架,各杆所传递的力均可通过力系的 平衡方程来计算。 节点法—— 应用平面汇交力系平衡条件,逐一研究桁架上
每个节点的平衡。 截面法—— 应用平面任意力系的平衡条件,研究桁架由截
面切出的某些部分的平衡。
注意
1.无论采用哪种方法,往往都应先求支座的约束反力。
对节点E由平面汇交力系平衡条件列平衡方程
F y 0 , F E s C 6 i n F 0 2 s6 i n P 0
F x 0 , F E F A E c C 6 o F 3 0 F s 2 c 6 o 0 0 s
F292 3P
F3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 计算图4所示桁架的支座反力及1、2杆的轴力。
解:
(1)求支座反力
由∑=0A M 得,09303404=⨯+⨯-⨯By F 即)(↓-=kN 5.37By F
由∑=0x F 得,)(kN 10←=Ax F
由∑=0y
F
得,)
(↑=+=kN 5.575.3720Ay F (2)求杆1、2的轴力
截面法
(压)
(压)
kN 5.370
930536
kN 500340512
02211-==⨯+⨯=-==⨯+⨯
=∑∑N N B
N N A F F M
F F M
2. 计算图1所示静定桁架的支座反力及1、2杆的轴力。
图1
解:
(1)求支座反力
由∑=0A M 得,0420820121016=⨯-⨯-⨯-⨯By F 即)(↑=kN 5.22By F 由
∑=0x
F
得,0=Ax F
由
∑=0y
F
得,)
(↑=-=kN 5.275.2250Ay F (2)求杆1、2的轴力
截面法
(压)
(压)kN 77.162
5150
kN 2044
200
1
-≈-==-=⨯-==∑∑N I
NGE A
F M
F M 结点H
kN 14.14210kN 10022-=⨯-=-==∑N y N y F F F (压)
3. 计算图1所示桁架的支座反力及1、2杆的轴力。
图1 解:
(1)求支座反力 (4分)
由∑=0A M 得,012304=⨯+⨯By
F 即)(↓-=kN 90By F
由
∑=0x F 得,0=Ax F
由∑=0y
F
得,)
(↑=+=kN 1203090Ay F (2).求杆1、2的轴力 (6分)
kN 901-=N F (压) kN 502-=N F (压)
4. 计算图所示桁架的支座反力及1、2杆的轴力。
解:
5.计算图所示桁架的支座反力及1、2杆的轴力。
解:
6.计算图所示桁架的支座反力及1、2杆的轴力。
解:
7.计算图所示桁架的支座反力及1、2杆的轴力。
解:。