变形监测概述76883-完整版
变形监测知识点

变形监测知识点概述变形监测是指通过各种监测手段对建筑物、土木工程等结构的变形进行实时监测和分析的技术。
变形监测旨在及时发现和识别结构变形隐患,为工程的安全运行提供科学依据。
变形监测的知识点涉及多个学科领域,包括测量学、力学、数学等。
变形监测方法1. 系统测量法系统测量法是一种常用的变形监测方法,通过经过布设的测点对结构的变形进行连续测量。
常见的系统测量法包括全站仪测量法、GPS测量法、倾斜仪测量法等。
这些方法可以对结构的位移、倾斜、变形形态等进行准确测量,从而获得结构的变形信息。
2. 传感器监测法传感器监测法是一种基于传感器的变形监测方法,通过布设传感器对结构的变形进行实时监测。
常见的传感器监测法包括应变计监测法、压力传感器监测法、位移传感器监测法等。
这些传感器可以对结构的应变、压力、位移等参数进行实时监测,从而获取结构的变形信息。
3. 非接触监测法非接触监测法是一种基于无接触测量原理的变形监测方法,通过光学、雷达等技术对结构的变形进行监测。
常见的非接触监测法包括激光测量法、摄像头监测法、遥感监测法等。
这些方法可以实现对结构变形的非接触式测量,具有高精度、高效率的特点。
变形监测参数在进行变形监测时,常常需要对一些重要的变形参数进行测量和分析。
常见的变形监测参数包括位移、倾斜、应变等。
1. 位移位移是指结构在空间上相对变形前位置的偏移。
位移监测可以得到结构的变形形态和位移速率等信息,从而判断结构的变形状态。
2. 倾斜倾斜是指结构某一部分相对于参考平面产生的倾斜变化。
倾斜监测可以获得结构的整体倾斜状况,从而判断结构变形的情况。
3. 应变应变是指材料在受力时产生的变形量与初始长度之比。
应变监测可以判断结构变形所受到的力的大小和方向,从而评估结构的工作性能和安全性。
数据分析与评估变形监测的数据分析与评估是对监测数据进行处理和判断的过程。
常见的数据分析与评估方法包括数据拟合、统计分析、数学模型等。
1. 数据拟合数据拟合是指通过数学函数和曲线拟合对监测数据进行分析和处理的方法。
变形监测分析与预报的的基础理论

模型参数估计
利用已知数据对模型参数 进行估计,确保模型能够 准确反映变形规律。
变形监测数据处理
数据筛选
根据监测目标和实际情况 筛选出有价值的数据。
数据融合
将多个来源的数据进行融 合,提高数据精度和可靠 性。
数据降噪
去除数据中的噪声和干扰, 提高数据质量。
变形分析方法
趋势分析
分析变形数据的长期变化趋势, 预测未来变形情况。
感谢您的观看
05 变形监测的实践应用
大型工程结构的变形监测
大型桥梁
对大型桥梁进行实时监测,确保其结构安全和稳定性,预防因变 形过大而引发的安全事故。
高层建筑
高层建筑在施工和使用过程中,通过变形监测确保其垂直度和水平 度在安全范围内,防止倾斜或沉降。
大型水利工程
对水库大坝、水电站等大型水利工程进行变形监测,及时发现异常 变形,保障工程安全。
对比分析
将不同时间或不同地点的变形数据 进行对比,找出相似点和差异点。
回归分析
利用已知变量预测变形量,建立回 归模型,为变形预报提供依据。
04 变形监测的预报与预警
变形监测的预报模型
回归分析模型
通过选择对变形结果影响显著 的因素作为自变量,建立回归
方程,预测变形趋势。
时间序列分析模型
利用时间序列分析方法,对变 形数据进行处理和分析,预测 未来变形情况。
目的
通过对变形体的监测,了解其变形情 况,分析变形的规律和原因,预测变 形的趋势,为工程安全、灾害防治等 提供科学依据。
变形监测的重要性
工程安全保障
通过对建筑物、桥梁、隧道等工程设施的变形监测,及时发现异常 变形,采取措施防止事故发生,保障人民生命财产安全。
变形监测完整版资料

变形监测完整版资料1、变形监测定义是指对被监测的对象或物体进行测量以确定其空间位置及内部形态随时间的变化特征。
2、变形监测的目的1)分析和评价建筑物的安全状态2)验证设计参数3)反馈设计施工质量4)研究正常的变形规律和预报变形的方法3、变形监测的意义对于机械技术设备,则保证设备安全、可靠、高效地运行,为改善产品质量和新产品的设计提供技术数据;对于滑坡,通过监测其随时间的变化过程,可进一步研究引起滑坡的成因,预报大的滑坡灾害;通过对矿山由于矿藏开挖所引起的实际变形观测,可以采用控制开挖量和加固等方法,避免危险性变形的发生,同时可以改变变形预报模型;在地壳构造运动监测方面,主要是大地测量学的任务,但对于近期地壳垂直和水平运动以及断裂带的应力积聚等地球动力学现象、大型特种精密工程以及铁路工程也具有重要的意义。
4、变形监测的特点1)周期性重复观测2)精度要求高3)多种观测技术的综合应用4)监测网着重于研究电位的变化5、为了最大限度地测量出建筑物的变形特征数据,减少测量仪器、外界条件等引起的系统性误差影响,每次观测时,测量的人员、仪器、作业条件等都应相对固定。
例如,在进行沉降观测时,要求在规定的日期,按照设计线路和精度进行观测,水准网形原则上不准改变,测量仪器一般也不准更改,对于某些测量要求较高的情况,测站的位置也应基本固定。
6、建筑物变形的一般分类在通常情况下,变形可分为静态变形和动态变形两大类。
静态变形主要指变形体随时间的变化而发生的变形,这种变形一般速度较慢,需要较长的时间才能被发觉。
动态变形主要指变形体在外界荷载的作用下发生的变形,这种变形的大小和速度与荷载密切相关,在通常情况下,荷载的作用将使变形即刻发生。
7、按变形特征分类变形可分为变形体自身的形变和变形体的刚体位移。
1)自身变形,伸缩,错动,弯曲扭转。
2)钢体的位移,整体平移,转动,升降,倾斜。
8、变形监测的主要内容现场巡视;位移监测;渗流监测;应力监测等。
变形监测资料

名称解释1.变形监测:变形监测是对被监测的对象或物体(简称变形体)进行测量以确定其空间位置及内部形态随时间的变化特征。
2.瞬间变形:是指在短时间荷载作用下发生的瞬间变形。
3.液体静力水准测量:也称连通管测量,是利用相互连通的且静力平衡时的液面进行高程传递的测量方法。
4.长周期变形:指在比较长的时间段内发生的循环变形过程。
5.变形监测点:是直接埋设在变形体上的能反映建筑物变形特征的测量点,又称观测点,一般埋在建筑物内部,并根据测定他们的变化来判断这些建筑物的沉陷与位移。
6.视准线法:利用经纬仪或视准仪的视准轴构成基准线,通过该基准线的铅垂面作为基准面,并以此铅垂面为标准,测定其他观测点相对于该铅垂面的水平位移量的一种方法。
7.引张线:在两个工作基点间拉紧一根不锈钢丝而建立的一条基准线。
8.挠度:建筑物在应力作用下产生弯曲和扭曲,弯曲变形时横截面形心沿与轴线垂直方向的线位移成为挠度。
9.深层水平位移:基坑围护桩墙和土体在不同深度上的水平位移。
10.土体分层沉降:指地表以下不同深度土层内点的沉降或隆起。
11.基坑回弹:基坑开挖后,由于卸除地基自重,引起基坑底面及坑外一定范围内土体相对于开挖前的回弹变形。
12.激光垂准法:利用激光垂准仪,测定建筑物底部和顶部距离垂准激光束的距离差,从而计算建筑物某轴线(某一面)的倾斜度。
13.正垂线:将钢丝上端悬挂于建筑物顶部,通过竖井至建筑物的底部,在下端悬挂重锤,并放置在油桶之中便于垂线的稳定,以此来测定建筑物顶部至底部的相对位移。
14.倒垂线:将钢丝的一端与锚块固定,而另一端与浮托设备相连,在浮力作用下,钢丝被张紧,只要锚块稳定不动,钢丝将始终位于同一铅垂线位置上,从而为变形监测提供一条稳定的基准线。
15.土体回弹测量:测量地铁盾构隧道掘进后相对于地铁盾构隧道掘进前的隧道底部和两侧土体的回弹量。
16.桥面挠度:是指桥面沿轴线的垂直位移。
简答1.变形监测的主要目的有哪些?(1)分析和评价建筑物的安全状态(2)验证设计参数(3)反馈设计施工质量(4)研究正常的变形规律和预报变形的方法2.变形监测的主要内容有哪些?(1)现场巡视(2)位移监测(3)渗流监测(4)应力监测(5)环境量监测(6)周边监测3.变形监测点分哪几类?各有什么要求?1)基准点:基准点埋设在稳固的基岩上或变形区域以外,尽可能长期保存,稳定不动,每个工程一般应建立3个基准点,以便相互校核,确保坐标系统的一致。
变形监测

第一章变形、变形(Deformation)是指物体在外来因素作用下产生的形状、大小或者位置的改变。
引起变形的外来因素主要包括外加力和温度。
变形监测,也称为变形测量或变形观测,是指对物体的变形进行监视测量。
变形监测是一项用各种测量仪器(传感器)对所监测物体在荷载和环境变化作用下产生的变形,进行数据采集、数据计算处理、变形分析与预报的测量工作。
变形观测方法一般分为四类:1、地面测量方法2、空间测量技术3、摄影测量和地面激光扫瞄4、专门测量手段变形观测数据分析内容1、几何分析——是分析变形体在空间中和时域中的变形特性;2、物理解释——是分析变形与变形原因之间的关系,用于预报变形,理解变形的机理。
变形的物理解释方法1、统计分析法(或称回归分析法)——回归分析法是通过分析所观测的变形和变形成因之间的相关性来建立2、确定函数法——确定函数模型法是利用荷载、变形体的几何性质和物理性质,以及应力第二章建筑物垂直位移观测应该在基坑开挖之前进行,并且贯穿于整个施工过程中,而且延续到建成后若干年,直至沉降现象基本停止为止。
垂直位移测量通常采用水准测量方法为了减少系统误差的影响,一般考虑采取以下措施:(1)固定观测路线——设置固定的安置仪器点和立尺点(2)固定观测仪器和人员——监测工作中使用固定仪器和水准标尺,有条件时最好固定人员进行观测。
三固定:路线、仪器、人员保证水准基点稳定的措施远离——深埋——成组埋设——如果布设的水准基点与沉陷观测点之间的距离较远,需要在水准基点和沉陷观测点之间布置联系点,称为工作基点,垂直位移观测包括:①基坑回弹观测——②地基土分层沉降观测——③建(构)筑物基础——④建(构)筑物本身的沉降观测——⑤地表沉降观测——目前垂直位移观测最常用的是精密水准测量方法,有的情况下也有应用液体静力水准测量方法观测。
观测点布设有以下要求:(1)在基坑中央和距基坑底边缘约1/4坑底宽度处,以及其他变形特征位置设观测点。
变形监测概述

1.2 变形监测技术及其发展
变形信息获取方法的选择取决于变形体的特征、 变形监测的目的、变形大小和变形速度等因素。 在全球性变形监测方面,空间大地测量是最基本最 适用的技术,它主要包括全球定位系统(GPS)、甚长 基线射电干涉测量(VLBI)、卫星激光测距(SLR)、 激光测月技术(LLR)以及卫星重力探测技术(卫星测 高、卫星跟踪卫星和卫星重力梯度测量)等技术手段;
LOREM IPSUM DOLOR
LOREM IPSUM DOLOR
欢迎 各位同学!
课程:变形监测与数据处理
授课教师: 陈志伟 黑龙江工业学院
资源工程系
变形监测数据处理
主要参考书:
1.陈永奇,吴子安,吴中如.变形监测分析与预报. 北京:测绘出版社,1998
2.吴子安.工程建筑物变形观测数据处理. 北京:测绘出版社,1989
1.1 变形监测的内容、目的与意义
1.1.2 变形监测的内容
2)水工建筑物:对于土坝,其观测项目主要为水 平位移、垂直位移、渗透以及裂缝观测。对于混 凝土坝,以混凝土重力坝为例,由于水压力、外 界温度变化、坝体自重等因素的作用, 其主要观 测项目主要为垂直位移(从而可以求得基础与坝 体的转动)、水平位移(从而可以求得坝体的扭 曲)以及伸缩缝的观测,这些内容通常称为外部 变形观测。此外,为了了解混凝土坝结构内部的 情况,还应对混凝土应力、钢筋应力、温度等进 行观测,这些内容通常称为内部观测。
变形监测技术的未来gps在工程中的应用gpsgps在高层建筑动态监测中的在高层建筑动态监测中的应用应用gps动态监测监测方案gpsgps在在高层建筑高层建筑动态监测中的应用动态监测中的应用结构振动频段信号的频谱分析及对比结构振动频段信号的频谱分析及对比gps用于桥梁的安全监测gps在工程中的应用gps用于桥梁的安全监测gps在工程中的应用武汉长江二桥gps动态监测gps在工程中的应用武汉长江二桥gps动态监测020406024026028030频率fhz监测点wh02相对于基准站wh01在h方向的频谱图gps在工程中的应用武汉长江二桥gps动态监测监测点wh02相对于参考点wh03在h方向的频谱图020406024026028030频率fhzgps在工程中的应用武汉长江二桥gps动态监测参考点wh03相对于基准站wh01在h方向的频谱图020406024026028030频率fhz在动态监测方面过去一般采用加速度计激光干涉仪等测量设备测定建筑结构的振动特性但是随着建筑物高度的增高以及连续性实时性和自动化监测程度的要求加强常规测量技术已越来越受到局限
变形监测

保密
3.变形监测基本方法
常规测量方法
保密
摄影测量方法
保密
空间测量方法
保密
特殊测量方法
保密
小角法 小角法是水平位移监测中常用的方法,通过测定基准线 方向与观测点的视线方向之间的微小角度从而计算观 测点相对于基准线的偏离值,根据偏离值在各观测周期 中的变化确定位移量。
保密
小角法偏移距离计算公式:d=
保密
第五题( 18 分) 某城市建设一座 50 层的综合大楼,距离 1 号运营地铁线的最近水平距离为 40 m,需对开挖 基坑、综合大楼及相邻的地铁隧道进行变形监测,变形监测按照《工程测量规范》( GB 50026-2007) 和《城市轨道交通工程测量规范》( GB 50308-2008)中变形监测Ⅱ等精度要 求实施。开挖基坑监测:基坑上边缘尺寸为 l00 m× 80 m,开挖深度为 25 m,在基坑周边布 设了四个工作基点 A、 B、 C、 D,变形监测点布设在基坑壁的顶部、中部和底部;监测内容 包括水平位移、垂直位移和基坑回填等;基坑开挖初期监测频率为 1 次/周,随着基坑开挖 深度的增加,相应增加监测频率;监测从基坑开挖开始至基坑回填结束。监测到第 12 期时, 发现由工作基点 A 测量的所有监测点整体向上位移,而由工作基点 B、C、 D 测量的监测点 整体下沉或不变。综合大楼监测:大楼的监测点布设顶部、中部和基础上,沿主墙角和立柱 布设;监测内容包括基础沉降、基础倾斜和大楼倾斜等;监测频率为 1 次/周;监测从基础 施工·184·201 3 年度全国注册测绘师资格考试试题解析开始至大楼竣工后 1 年。 地铁隧道监测:监测范围为综合大楼相邻的 200 m 区段;监测内容包括隧道拱顶下沉、衬砌 结构收敛变形及侧墙位移等;变形监测点按断面布设,断面间距为 5 m,每个断面上布设 5 个监测点,每个点上安装圆棱镜,采用 2 台高精度自动全站仪自动测量;监测频率为 2 次/ 天;隧道监测从基坑开挖前一个月至大楼竣工后 1 年。监测数据采用 SQL数据库进行管理, 数据库表单包括周期表单、工程表单、原始数据表单、测量仪器表单、坐标与高程表单等。 监测成果包含监测点坐标数据、变形过程线及成果分析等。 问题: 1 .该段地铁隧道变形监测中,总共需布设多少个断面监测点?对两台高精度自动全站仪的 安置位置有什么要求? 2.利用数据库生成监测点的变形过程线时,需要调用到哪些表单?并说明理由。 3.从测量角度判断有工作基点 A 测量的基坑监测点向上位移的原因,并提出验证
变形监测概述 PPT

水库蓄水后 (2~3年)
3~6个月 半个月 1季度 1季度
正常运营
半年 1个月 6~12个月 半年
如遇特别情况,如暴雨、洪水、地震等,应进行加测。 及时进行第一周期的观测有重要意义。因为延误最初的测量就估计失去差不多发 生的变形数据,而且以后各周期的重复测量成果都是与第一次成果相比较的,因此 应特别重视第一次的观测质量。
变形测量的实用意义——安全监测。
坚持长期的、严密的变形测量能够幸免或减少损失。
瑞士的Zeuzier拱坝,高156m,在竣工后20多年中,大坝运行正常,但1978 年突然发现异常,坝顶下沉10cm,拱座间距离缩短5cm,拱冠顶向上游移动 9cm,超出估计变形值一倍以上。发现异常后,泄放了库中90﹪的水,发现 坝体已产生裂缝。认真检查和分析原因,得知这是由于离坝不远处(距大坝 1400m、比坝低300m),正在开挖一条穿过阿尔卑斯山的公路隧道所造成 的,当隧道工程停止后,坝体变形明显减小。
✓反馈设计施工质量 ✓验证设计参数 ✓研究正确的变形规律和预报变形的方法
3、变形测量的特点
✓ 周期性重复观测
变形测量的主要任务是周期性地对观测点进行重复观测, 以求得其在观测周期内的变形信息。周期性是指观测的时 间间隔是固定的,不能随意更改;重复性是指观测的条件、 方法和要求等基本相同。
✓ 着重于研究点位的变化
5、变形测量的精度
国际测量师联合会(FIG)1971年第13次大会上,变形 测量小组提出:“如果变形测量是为了确保建筑物的安全、 使变形值不超过某一允许的数值,则其观测值的误差应小于
变形允许值的 1 1 ;如果是为了研究变形的过程,则其 10 20
误差应比上面这个数值小得多(小于变形允许值的
1 1 ),甚至应采用目前测量手段和仪器所能达到的最 20 100