广东省清远市中考数学试卷
清远市2020版中考数学试卷A卷

清远市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题. (共12题;共24分)1. (2分) |-2|的绝对值的相反数是()A . -2B . 2C . -3D . 32. (2分)(2017·官渡模拟) H7N9禽流感病毒的直径大约为0.0000000805米,这个数用科学记数法表示为()A . 8.05×10﹣8B . 8.05×10﹣7C . 80.5×10﹣9D . 0.805×10﹣73. (2分)下列调查中,最适合采用普查方式的是()A . 对重庆市中小学视力情况的调查B . 对“神舟”载人飞船重要零部件的调查C . 对市场上老酸奶质量的调查D . 对浙江卫视“奔跑吧,兄弟”栏目收视率的调查4. (2分) (2017八下·和平期末) 若在实数范围内有意义,则x的取值范围是()A . x>1B . x≥1C . x≠1D . x>﹣15. (2分)(2017·成都) 下列计算正确的是()A . a5+a5=a10B . a7÷a=a6C . a3•a2=a6D . (﹣a3)2=﹣a66. (2分)在市委市政府的领导下,经过全市人民的努力,义乌市获“全国文明城市”提名,为此小兵特制了一个正方体玩具,其展开图如图所示,正方体中与“全”字所在的面正对面上标的字是()A . 文B . 明C . 城D . 国7. (2分) (2019八上·滦南期中) 下列命题中,属于假命题的是()A . 三角形三个内角和等于B . 两直线平行,同位角相等C . 同位角相等,两直线平行D . 相等的两个角是对顶角8. (2分)当分式方程中的a取下列某个值时,该方程有解,则这个a是()A . 0B . 1C . -1D . -29. (2分) (2017七下·宜城期末) 如图,直线AB与CD相交于E,在∠CEB的平分线上有一点F,FM∥AB.当∠3=10°时,∠F的度数是()A . 80°B . 82°C . 83°D . 85°10. (2分)如图,用半径为,面积的扇形无重叠地围成一个圆锥,则这个圆锥的高为()A . 12cmB . 6cmC . 6√2 cmD . 6 cm11. (2分) (2015九下·深圳期中) 如图,已知直线y=﹣x+4与两坐标轴分别相交于点A,B两点,点C是线段AB上任意一点,过C分别作CD⊥x轴于点D,CE⊥y轴于点E.双曲线与CD,CE分别交于点P,Q两点,若四边形ODCE为正方形,且,则k的值是()A . 4B . 2C .D .12. (2分)如图,矩形ABCD的对角线AC,BD交于点O,AC=4cm,∠AOD=120°,则BC的长为()A . 4cmB . 4cmC . 2cmD . 2cm二、填空题 (共6题;共9分)13. (4分)(1)有一列数:1,-2,-3,4,-5,-6,7,-8,….那么接下来的3个数分别是________ ,________ , ________ ;(2)有一列数:,,,,….那么接下来的第7个数是________ .14. (1分)(2019·高台模拟) 把多项式mx2﹣4my2分解因式的结果是________.15. (1分) (2017八下·南通期中) 一组数据2,x,4,3,3的平均数是3,则这组数据的方差是________.16. (1分)(2017·天津模拟) 如图,在⊙O中,已知∠BAC=∠CDA=20°,则∠ABO的度数为________.17. (1分) (2018八上·东湖期中) 如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过________秒时,△DEB与△BCA全等.18. (1分) (2018九上·江苏期中) 如图,过点C(2,1)分别作x轴、y轴的平行线,交直线y=﹣x+4于B、A两点,若二次函数y=ax2+bx+c的图象经过坐标原点O,且顶点在矩形ADBC内(包括边上),则a的取值范围是________.三、解答题 (共8题;共75分)19. (5分)计算:.20. (10分)如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为 A(﹣3,0),B(﹣3,﹣3),C(﹣1,﹣3)(1)求Rt△ABC的面积(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F的坐标.21. (10分) (2016九上·蓬江期末) 如图,点A、B在反比例函数的图象上,且点A、B的横坐标分别为a、2a(a>0),AC⊥x轴,垂足为C,且△AOC的面积为2,(1)求该反比例函数的解析式;(2)求△AOB的面积.22. (8分)(2018·陕西) 对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表依据以上统计信息,解答下列问题:(1)求得m=________,n=________;(2)这次测试成绩的中位数落在________组;(3)求本次全部测试成绩的平均数.23. (10分)(2012·盐城) 如图所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E为BC上一点,∠BDE=∠DBC.(1)求证:DE=EC;(2)若AD= BC,试判断四边形ABED的形状,并说明理由.24. (15分) (2015八下·南山期中) 某校为开展好大课间活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x(个),购买两种球的总费用为y(元),请你写出y与x的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?(3)从节约开支的角度来看,你认为采用哪种方案更合算?25. (7分)如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)填空:①若⊙O的半径为5,tanB=,则CF=________;②若⊙O与BF相交于点H,当∠B的度数为________时,四边形OBHE为菱形.26. (10分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.(2)请在(1)的基础上,完成下列填空:①写出点的坐标:C、D;②⊙D的半径=(结果保留根号);③∠ADC的度数为.④求过A,B,C三点的抛物线的解析式。
2023清远中考数学试题及答案

2023清远中考数学试题及答案2023年清远中考数学试题及答案一、选择题(每题3分,共30分)1. 以下哪个数是整数?A. 3.14B. 0.5C. -2D. 0.33333答案:C2. 以下哪个表达式等于2?A. 3 + 1B. 2 × 1C. 4 ÷ 2D. 5 - 3答案:C3. 如果一个数的平方是9,那么这个数可能是?A. 3B. -3C. 3和-3D. 以上都不是答案:C4. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 梯形D. 任意三角形答案:B5. 以下哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D6. 以下哪个方程的解是x=2?A. 2x - 4 = 0B. 3x + 6 = 12C. x^2 - 4 = 0D. 2x + 3 = 7答案:A7. 以下哪个函数是一次函数?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = √x答案:A8. 以下哪个选项是正确的三角函数值?A. sin(30°) = 1/2B. cos(60°) = √3/2C. tan(45°) = √2D. cot(30°) = √3答案:A9. 以下哪个选项是正确的统计量?A. 平均数B. 中位数C. 众数D. 以上都是答案:D10. 以下哪个选项是正确的几何定理?A. 勾股定理B. 泰勒斯定理C. 欧拉定理D. 以上都是答案:A二、填空题(每题3分,共30分)11. 一个数的相反数是-5,那么这个数是______。
答案:512. 如果一个角的补角是120°,那么这个角是______。
答案:60°13. 一个等腰三角形的底角是45°,那么顶角是______。
答案:90°14. 一个圆的半径是5cm,那么它的周长是______。
2024年广东省中考数学真题卷含答案解析

机密★启用前2024年广东省初中学业水平考试数学满分120分 考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B 铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是( )A. 2B. -2C. 8D. -82. 下列几何图形中,既是中心对称图形也是轴对称图形的是( )A. B. C. D.3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A. 43.8410⨯B. 53.8410⨯C. 63.8410⨯D.538.410⨯4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A. 120︒B. 90︒C. 60︒D. 30︒5. 下列计算正确的是( )A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a -+=D. ()5210a a =6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )A 14 B. 13 C. 12 D. 347. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 208. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >>9. 方程233x x=-的解为( )A. 3x = B. 9x =- C. 9x = D. 3x =-10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是().A. B. C. D.二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.14. 计算:333a a a -=--_______.15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.三、解答题(一):本大题共3小题,每小题7分,共21分.16. 计算:011233-⨯-+-.17. 如图,ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A 6879在B7787C 8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】的步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.的【23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.机密★启用前2024年广东省初中学业水平考试数学满分120分考试用时120分钟注意事项:1.答题前,考生务必用黑色字迹的签字笔或钢笔将自己的准考证号、姓名、考场号和座位号填写在答题卡上.用2B铅笔在“考场号”和“座位号”栏相应位置填涂自己的考场号和座位号,将条形码粘贴在答题卡“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的签字笔或钢笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 计算-5+3的结果是()A. 2B. -2C. 8D. -8【答案】B【解析】【分析】根据有理数的加法法则,即可求解.【详解】∵-5+3=-(5-3)=-2,故答案是:B.【点睛】本题主要考查有理数的加法法则,掌握“异号两数相加,取绝对值较大的数的符号,并把较大数的绝对值减去较小数的绝对值”是解题的关键.2. 下列几何图形中,既是中心对称图形也是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题主要考查了中心对称图形和轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.根据轴对称图形和中心对称图形的定义进行逐一判断即可.【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .不是轴对称图形,是中心对称图形,故不符合题意;C .既是轴对称图形,又是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意;故选:C .3. 2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A. 43.8410⨯B. 53.8410⨯C. 63.8410⨯D. 538.410⨯【答案】B【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值.根据绝对值大于1的数,用科学记数法表示为10n a ⨯,其中110a ≤<,n 的值为整数位数少1.【详解】解:384000大于1,用科学记数法表示为10n a ⨯,其中 3.84a =,5n =, ∴384000用科学记数法表示为53.8410⨯,故选:B .4. 如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A. 120︒B. 90︒C. 60︒D. 30︒【答案】C【解析】【分析】本题考查了平行线的性质.熟练掌握平行线的性质是解题的关键.由题意知,AC DE ∥,根据ACE E ∠=∠,求解作答即可.【详解】解:由题意知,AC DE ∥,∴60ACE E ∠=∠=︒,故选:C .5. 下列计算正确的是( )A. 2510a a a ⋅=B. 824a a a ÷=C. 257a a a -+=D. ()5210a a =【答案】D【解析】【分析】本题主要考查了同底数幂乘除法计算,幂的乘方计算,合并同类项,熟知相关计算法则是解题的关键.【详解】解:A 、257a a a ⋅=,原式计算错误,不符合题意;B 、826a a a ÷=,原式计算错误,不符合题意;C 、253a a a -+=,原式计算错误,不符合题意;D 、()5210a a =,原式计算正确,符合题意;故选:D .6. 长江是中华民族的母亲河,长江流域孕育出藏羌文化、巴蜀文化、荆楚文化、吴越文化等区域文化.若从上述四种区域文化中随机选一种文化开展专题学习,则选中“巴蜀文化”的概率是( )A. 14 B. 13 C. 12 D. 34【答案】A【解析】【分析】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.直接根据概率公式求解即可.【详解】解:根据题意,选中“巴蜀文化”的概率是14,故选:A .7. 完全相同的4个正方形面积之和是100,则正方形的边长是( )A. 2B. 5C. 10D. 20【答案】B【解析】【分析】本题主要考查了算术平方根的应用,先求出一个正方形的面积,再根据正方形的面积计算公式求出对应的边长即可.【详解】解:∵完全相同的4个正方形面积之和是100,∴一个正方形的面积为100425÷=,∴5=,故选:B .8. 若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A. 321y y y >>B. 213y y y >>C. 132y y y >>D. 312y y y >>【答案】A【解析】【分析】本题考查了二次函数的图象和性质、二次函数图象上点的坐标特征等知识点,根据二次函数的解析式得出函数图象的对称轴是y 轴(直线0x =),图象的开口向上,在对称轴的右侧,y 随x 的增大而增大,再比较即可.【详解】解∶ 二次函数2y x =的对称轴为y 轴,开口向上,∴当0x >时, y 随x 的增大而增大,∵点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,且012<<,∴321y y y >>,故选∶A .9. 方程233x x=-的解为( )A. 3x = B. 9x =- C. 9x = D. 3x =-【答案】C【解析】【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:233x x=-去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.10. 已知不等式0kx b +<的解集是2x <,则一次函数y kx b =+的图象大致是( )A. B. C. D.【答案】B【解析】【分析】本题考查一次函数与一元一次不等式,解不等式的方法:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围.找到当2x <函数图象位于x 轴的下方的图象即可.【详解】解∶∵不等式0kx b +<的解集是2x <,∴当2x <时,0y <,观察各个选项,只有选项B 符合题意,故选:B .二、填空题:本大题共5小题,每小题3分,共15分.11. 数据2,3,5,5,4的众数是____.【答案】5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.12. 关于x 的不等式组中,两个不等式的解集如图所示,则这个不等式组的解集是______.【答案】3x ≥##3x≤【解析】【分析】本题主要考查了求不等式组解集,在数轴上表示不等式组的解集,根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:由数轴可知,两个不等式的解集分别为3x ≥,2x >,∴不等式组的解集为3x ≥,故答案为:3x ≥.13. 若关于x 的一元二次方程220x x c ++=有两个相等的实数根,则c =_______.【答案】1【解析】【分析】由220x x c ++=有两个相等的实数根,可得240b ac ∆=-=进而可解答.【详解】解:∵220x x c ++=有两个相等的实数根,∴24440b ac c ∆=-=-=,∴1c =.故答案为:1.【点睛】本题主要考查根据一元二次方程根的情况求参数,掌握相关知识是解题的关键.14. 计算:333a a a -=--_______.【答案】1【解析】的【分析】本题主要考查了同分母分式减法计算,根据同分母分式减法计算法则求解即可.【详解】解:331333a a a a a --==---,故答案为:1.15. 如图,菱形ABCD 的面积为24,点E 是AB 的中点,点F 是BC 上的动点.若BEF △的面积为4,则图中阴影部分的面积为______.【答案】10【解析】【分析】本题考查了菱形的性质,三角形中线的性质,利用菱形的性质、三角形中线的性质求出6ADE S = ,8ABF S = ,根据ABF △和菱形的面积求出23BF BC =,2BF CF=,则可求出CDF 的面积,然后利用ADE BEF CDF ABCD S S S S S =---阴影菱形 求解即可.【详解】解:连接AF BD 、,∵菱形ABCD 的面积为24,点E 是AB 的中点,BEF △的面积为4,∴1116222ADE ABD ABCD S S S ==⨯=菱形 ,28ABF BEF S S == ,设菱形ABCD 中BC 边上的高为h ,则12ABFABCD BF h S S BC h ⋅=⋅菱形 ,即18224BF BC=,∴23BF BC =,∴2BF CF=,∴12212ABF CDF BF h S BF S CFCF h ⋅===⋅ ,∴4CDF S =△,∴10ADE BEF CDF ABCD S S S S S =---=阴影菱形 ,故答案为:10.三、解答题(一):本大题共3小题,每小题7分,共21分.16.计算:011233-⨯-+-.【答案】2【解析】【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算乘法,最后计算加减法即可.【详解】解:011233-⨯-+-111233⨯+-=11233=+-2=.17. 如图,在ABC 中,90C ∠=︒.(1)实践与操作:用尺规作图法作A ∠的平分线AD 交BC 于点D ;(保留作图痕迹,不要求写作法)(2)应用与证明:在(1)的条件下,以点D 为圆心,DC 长为半径作D .求证:AB 与D 相切.【答案】(1)见解析(2)证明见解析【解析】【分析】本题考查了尺规作角平分线,角平分线的性质定理,切线的判定等知识.熟练上述知识是解题的关键.(1)利用尺规作角平分线的方法解答即可;(2)如图2,作DE AB ⊥于E ,由角平分线性质定理可得DE DC =,由DE 是半径,DE AB ⊥,可证AB 与D 相切.【小问1详解】解:如图1,AD 即为所作;【小问2详解】证明:如图2,作DE AB ⊥于E ,∵AD 是CAD ∠的平分线,DC AC ⊥,DE AB ⊥,∴DE DC =,∵DE 是半径,DE AB ⊥,∴AB 与D 相切.18. 中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,的GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.【答案】(1)6.1m(2)66.7m【解析】【分析】本题主要考查了矩形的性质,解直角三角形的实际应用:(1)先由矩形的性质得到90Q P ∠=∠=︒,再解Rt ABQ 得到AQ =,接着解直角三角形得到BC =,进而求出AP =,据此可得答案;(2)解Rt BCE 得到 3.2m BE =,解Rt ABQ 得到 2.7m BQ =,再根据有20个停车位计算出QM 的长即可得到答案.【小问1详解】解:∵四边形PQMN 是矩形,∴90Q P ∠=∠=︒,在Rt ABQ 中,60ABQ ∠=︒, 5.4m AB =,∴sin AQ AB ABQ =⋅=∠,30QAB ∠=︒,∵四边形ABCD 是矩形,∴90AD BC BAD BCD ABC BCE =====︒,∠∠∠∠,∴30CBE ∠=︒,∴tan CE BC CBE ==∠,∴AD =;∵180309060PAD =︒-︒-︒=︒∠,∴cos AP AD PAD =⋅=∠,∴ 6.1m PQ AP AQ =+=≈【小问2详解】解:在Rt BCE 中, 3.2m sin CE BE CBE==∠,在Rt ABQ 中,cos 2.7m BQ AB ABQ =⋅=∠,∵该充电站有20个停车位,∴2066.7m QM QB BE =+=,∵四边形ABCD 是矩形,∴66.7m PN QM ==.四、解答题(二):本大题共3小题,每小题9分,共27分.19. 端午假期,王先生计划与家人一同前往景区游玩,为了选择一个最合适的景区,王先生对A 、B 、C 三个景区进行了调查与评估.他依据特色美食、自然风光、乡村民宿及科普基地四个方面,为每个景区评分(10分制).三个景区的得分如下表所示:景区特色美食自然风光乡村民宿科普基地A 6879B7787C 8866(1)若四项所占百分比如图所示,通过计算回答:王先生会选择哪个景区去游玩?(2)如果王先生认为四项同等重要,通过计算回答:王先生将会选择哪个景区去游玩?(3)如果你是王先生,请按你认为的各项“重要程度”设计四项得分的百分比,选择最合适的景区,并说明理由.【答案】(1)王先生会选择B 景区去游玩(2)王先生会选择A 景区去游玩(3)最合适的景区是B 景区,理由见解析【解析】【分析】本题主要考查了求平均数和求加权平均数:(1)根据加权平均数的计算方法分别计算出三个景区的得分即可得到答案;(2)根据平均数计算方法分别计算出三个景区的得分即可得到答案;(3)设计对应的权重,仿照(1)求解即可.小问1详解】解:A 景区得分为630%815%740%915%7.15⨯+⨯+⨯+⨯=分,B 景区得分为730%715%840%715%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%815%640%615%6.9⨯+⨯+⨯+⨯=分,∵6.97.157.4<<,∴王先生会选择B 景区去游玩;【小问2详解】的【解:A 景区得分67897.54+++=分,B 景区得分77877.254+++=分,C 景区得分668874+++=分,∵77.257.5<<,∴王先生会选择A 景区去游玩;【小问3详解】解:最合适的景区是B 景区,理由如下:设特色美食、自然风光、乡村民宿及科普基地四个方面的占比分别为30%20%40%10%,,,,A 景区得分为630%820%740%910%7.1⨯+⨯+⨯+⨯=分,B 景区得分为730%720%840%710%7.4⨯+⨯+⨯+⨯=分,C 景区得分为830%820%640%610%7⨯+⨯+⨯+⨯=分,∵77.17.4<<,∴王先生会选择B 景区去游玩.20. 广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【解析】【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润⨯销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,()()5210050w x x =--+的25050300x x =-++2150312.52x ⎛⎫=--+ ⎪⎝⎭,∵500-<,∴当12x =时,w 有最大值,最大值为312.5,∴5 4.5x -=,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.21. 综合与实践【主题】滤纸与漏斗【素材】如图1所示:①一张直径为10cm 的圆形滤纸;②一只漏斗口直径与母线均为7cm 的圆锥形过滤漏斗.【实践操作】步骤1:取一张滤纸;步骤2:按如图2所示步骤折叠好滤纸;步骤3:将其中一层撑开,围成圆锥形;步骤4:将围成圆锥形的滤纸放入如图1所示漏斗中.【实践探索】(1)滤纸是否能紧贴此漏斗内壁(忽略漏斗管口处)?用你所学的数学知识说明.(2)当滤纸紧贴漏斗内壁时,求滤纸围成圆锥形的体积.(结果保留π)【答案】(1)能,见解析(23cm 【解析】【分析】本题考查了圆锥,解题的关键是:(1)利用圆锥的底面周长=侧面展开扇形的弧长求出圆锥展开图的扇形圆心角,即可判断;(2)利用圆锥的底面周长=侧面展开扇形的弧长,求出滤纸围成圆锥形底面圆的半径,利用勾股定理求出圆锥的高,然后利用圆锥体积公式求解即可.【小问1详解】解:能,理由:设圆锥展开图的扇形圆心角为n ︒,根据题意,得77180n ππ⋅=,解得180n =°,∴将圆形滤纸对折,将其中一层撑开,围成圆锥形,此时滤纸能紧贴此漏斗内壁;【小问2详解】解:设滤纸围成圆锥形底面圆的半径为cm r ,高为cm h ,根据题意,得18052180ππr ⨯=,解得52r =,∴h ==,∴圆锥的体积为223115332r h ππ⎛⎫=⨯= ⎪⎝⎭.五、解答题(三):本大题共2小题,第22题13分,第23题14分,共27分.22. 【知识技能】(1)如图1,在ABC 中,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' .当点E 的对应点E '与点A 重合时,求证:AB BC =.【数学理解】(2)如图2,在ABC 中()AB BC <,DE 是ABC 的中位线.连接CD ,将ADC △绕点D 按逆时针方向旋转,得到A DC '' ,连接A B ',C C ',作A BD ' 的中线DF .求证:2DF CD BD CC ⋅='⋅.【拓展探索】(3)如图3,在ABC 中,4tan 3B =,点D 在AB 上,325AD =.过点D 作DE BC ⊥,垂足为E ,3BE =,323CE =.在四边形ADEC 内是否存在点G ,使得180AGD CGE ∠+∠=︒?若存在,请给出证明;若不存在,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)存在,证明见解析【解析】【分析】本题考查了旋转的性质、中位线的性质、外角定理、相似三角形的判定与性质、勾股定理、三角函数,圆内接四边形的对角互补熟练.掌握知识点以及灵活运用是解题的关键.(1)根据中位线的性质、旋转的性质即可证明;(2)利用旋转的性质、外角定理、中位线的性质证明A FD DGC ''△∽△后即可证明;(3)当两圆相交,连接交点与两圆心所构成的四边形为圆内接四边形,其中一组对角互补,即两角之和为180︒.根据圆内接四边形的对角互补,将问题转化为求出两圆的位置关系即可证明.【详解】证明:(1) DE 是ABC 的中位线,∴12DE BC =且12AD DB AB ==.又 ADC △绕点D 按逆时针方向旋转得到A DC ''∴DE AD=∴AB BC =.(2)由题意可知:DC DC '=,DA DA '=,CDC ADA ''∠=∠.作DG CC '⊥,则12CG C G CC ''==且12CDG C DG CDC ''∠=∠=∠,又 BD DA DA '==,∴A BD BA D ''∠=∠.根据外角定理A DA A BD BA D '''∠=∠-∠,∴12BA D A DA ''∠=∠,∴BA D C CG ''∠=∠.又 DB DA '=,DF 是A BD ' 的中位线,∴'DF A B ⊥,∴90A FD '∠=︒,∴A FD DGC ''△∽△,∴DF A DC G CD '='',∴12DF BDCD C C =',∴2DF CD BD CC ⋅='⋅.(3)假设存在点G 使得180AGD CGE ∠+∠=︒,如图分别以AD ,CE 为直径画圆,圆心分别为1O ,2O ,半径分别为r ,R ,则165r =,163R =.过点1O 作1O H BC ⊥于点H ,过点D 作1DF O H ⊥于点F ,则有DF BC ∥,四边形DEHF 为长方形,∴190O FD FHB DEB ∠=∠=∠=︒,1O DF DBE ∠=∠,∴1O FD DEB △∽△,∴11O DO F DF DB DE BE ==,11O DDBDE O F =.又 在BDE 中,4·tan 343DE BE B ==⨯=,5BD ===,1516r O D ==,根据勾股定理可得:4DE FH ==,5DB =,∴16425O F =,4825DF EH ==.∴111644 6.5625O H O F =+==,216482563.4132575O H R EH =-=-=≈.在12Rt O HO △中,127.39O O =≈.又 16168.553r R +=+≈,∴12O O r R <+,∴两圆有交点,满足180AGD CGE ∠+∠=︒.23. 【问题背景】如图1,在平面直角坐标系中,点B ,D 是直线()0y ax a =>上第一象限内的两个动点()OD OB >,以线段BD 为对角线作矩形ABCD ,AD x ∥轴.反比例函数k y x =的图象经过点A .【构建联系】(1)求证:函数k y x=的图象必经过点C .(2)如图2,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E 落在y 轴上,且点B 的坐标为()1,2时,求k 的值.【深入探究】(3)如图3,把矩形ABCD 沿BD 折叠,点C 的对应点为E .当点E ,A 重合时,连接AC交BD 于点P .以点O 为圆心,AC 长为半径作O .若OP =O 与ABC 的边有交点时,求k 的取值范围.【答案】(1)证明见解析;(2)163k =;(3)68k ≤≤【解析】【分析】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,用含,m k 的代数式表示出,k C am am ⎛⎫ ⎪⎝⎭,再代入k y x=验证即可得解;(2)先由点B 的坐标和k 表示出2DC k =-,再由折叠性质得出2DE BE=,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,证出DHE EFB ∽,由比值关系可求出24k HF =+,最后由HF DC =即可得解;(3)当O 过点B 时,如图所示,过点D 作DH x 轴交y 轴于点H ,求出k 的值,当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x 轴交y 轴于点H ,求出k 的值,进而即可求出k 的取值范围.【详解】(1)设(),B m ma ,则,k A m m ⎛⎫ ⎪⎝⎭,∵AD x 轴,∴D 点的纵坐标为k m , ∴将k y m =代入y ax =中得:k m ax =得,∴k x am=,∴,k k D am m ⎛⎫ ⎪⎝⎭,∴,k C am am ⎛⎫ ⎪⎝⎭,∴将k x am =代入k y x=中得出y am =,∴函数k y x =的图象必经过点C ;(2)∵点()1,2B 在直线y ax =上,∴2a =,∴2y x =,∴A 点的横坐标为1,C 点的纵坐标为2,∵函数ky x =的图象经过点A ,C ,∴22k C ⎛⎫⎪⎝⎭,,()1,A k ,∴2k D k ⎛⎫⎪⎝⎭,∴2DC k =-,∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,∴12kBE BC ==-,90BED BCD ∠=∠=︒,∴2212DC k DEk BC BE -===-,如图,过点D 作DH y ⊥轴,过点B 作BF y ⊥轴,∵AD x 轴,∴H ,A ,D 三点共线,∴90HED BEF ∠+∠=︒,90BEF EBF ∠+∠=︒,∴HED EBF ∠=∠,∵90DHE EFB ∠=∠=︒,∴DHE EFB ∽,∴2DHHEDEEF BF BE ===,∵1BF =,2kDH =∴2HE =,4kEF =,∴24kHF =+,由图知,HF DC =,∴224kk +=-,∴163k =;(3)∵把矩形ABCD 沿BD 折叠,点C 的对应点为E ,当点E ,A 重合,∴AC BD ⊥,∵四边形ABCD 为矩形,∴四边形ABCD 为正方形,45ABP DBC ∠=∠=︒,∴sin 45APAB BC CD DA =====︒,12AP PC BP AC ===,BP AC ⊥,∵BC x ∥轴,∴直线y ax =为一,三象限的夹角平分线,∴y x =,当O 过点B 时,如图所示,过点D 作DH x ∥轴交y 轴于点H ,∵AD x ∥轴,∴H ,A ,D 三点共线,∵以点O 为圆心,AC 长为半径作O ,OP =,∴23OP OB BP AC BP AP AP AP =+=+=+==∴AP =,∴2AB AD ===,2BD AP ==,2BO AC AP ===,∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,∴22HO DH ==,∴4HO HD ==,∴422HA HD DA =-=-=,∴()2,4A ,∴248k =⨯=,当O 过点A 时,根 据A ,C 关于直线OD 对轴知,O 必过点C ,如图所示,连AO ,CO ,过点D 作DH x ∥轴交y 轴于点H ,∵AO OC AC ==,∴AOC 为等边三角形,∵OP AC ⊥,∴160302AOP ∠=⨯︒=︒,∴tan 30AP OP PD =︒⨯===,2AC BD AP ===,∴AB AD ===,OD BP PD =+=+, ∵AB y ∥轴,∴DHO DAB ∽,∴HO DH DO AB AD BD==,==∴3HO HD ==+,∴33HA HD DA =-=+-=,∴(3A +,∴((336k =⨯+=,∴当O 与ABC 的边有交点时,k 的取值范围为68k ≤≤.【点睛】本题主要考查了相似三角形的判定和性质,解直角三角形,一次函数的性质,反比例函数的性质,矩形的性质,正方形的判定和性质,轴对称的性质,圆的性质等知识点,熟练掌握其性质,合理作出辅助线是解决此题的关键.。
清远市2020版中考数学试卷A卷

清远市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)下列关于“﹣1”的说法中,错误的是()A . ﹣1的相反数是1B . ﹣1是最小的负整数C . ﹣1的绝对值是1D . ﹣1是最大的负整数2. (2分) (2017八下·重庆期中) 计算2 × ÷ 的结果是()A .B .C .D . 23. (2分)(2017·迁安模拟) 下列几何体中,同一个几何体的主视图与俯视图不同的是()A .B .C .D .4. (2分)(2018·长沙) 下列说法正确的是()A . 任意掷一枚质地均匀的硬币10次,一定有5次正面向上B . 天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C . “篮球队员在罚球线上投篮一次,投中”为随机事件D . “a是实数,|a|≥0”是不可能事件5. (2分)关于x的方程(a﹣2)x2﹣2x﹣3=0有一根为﹣1,则另一根为()A . ﹣3B . 3C . 2D . 16. (2分)(2014·四川理) 已知直线y=-x+6和y=x-2,则它们与y轴所围成的三角形的面积为()A . 6B . 10C . 20D . 12二、填空题 (共10题;共11分)7. (1分) (2016七上·绍兴期中) 如果x2=64,那么 =________.8. (1分) 2015年1月29日,联合国贸易和发展会议公布的《全球投资趋势报告》称,2014年中国吸引外国投资达1280亿美元,成为全球外国投资第一大目的地国.1280亿美元用科学记数法表示为________美元.9. (1分)计算:3a3•a2﹣2a7÷a2=________ .10. (1分)(2017·深圳模拟) 分解因式:ax2﹣9a=________.11. (1分)某校九(1)班分成12小组做50米短跑练习,并且各组将每次的时间都记录下来,每组都跑五次,各组对谁的成绩比较稳定意见不一,如果你是其中的一员,你应该选用的统计量是________ .12. (1分) (2015八下·绍兴期中) 若方程(x﹣1)(x2﹣2x+m)=0的三个根可以作为一个三角形的三边之长,则m的取值范围:________.13. (1分)如图,在平行四边形ABCD中,BE平分∠ABC,交AD于点E,AB=3cm,ED= cm,则平行四边形ABCD的周长是________.14. (2分)如图,在△ABC中,AB=AC,AD⊥BC,E是AC的中点.若DE=5,则AB的长为________,若AD=8,则BC=________.15. (1分)已知关于x的不等式(1﹣a)x>2的解集为x<﹣3,则a________.16. (1分)如图,点P在正方形ABCD内,△PBC是正三角形,AC与PB相交于点E.有以下结论:①∠ACP=15°;②△APE是等腰三角形;③AE2=PE•AB;④△APC的面积为S1 ,正方形ABCD的面积为S2 ,则S1:S2=1:4.其中正确的是________ (把正确的序号填在横线上).三、解答题 (共10题;共99分)17. (10分) (2017八下·鹤壁期中) 计算:(1) |﹣5|+(π﹣3.1)0﹣()﹣1+(2)(x﹣2)• + .18. (13分)(2018·焦作模拟) 为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t ≤20分钟的学生记为A类,20分钟<t ≤40分钟的学生记为B类,40分钟<t ≤60分钟的学生记为C类,t>60分钟的学生记为D类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)这次共抽查了________名学生进行调查统计,m=________%,n=________%;(2)请补全上面的条形图;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人.19. (5分)一个不透明的袋中装有黄球、黑球和红球共40个,它们除颜色外都相同,其中红球有22个,且经过试验发现摸出一个球为黄球的频率接近0.125.(1)求袋中有多少个黑球;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个球是黄球的概率达到,问至少取出了多少个黑球?20. (5分) (2017八上·鄂托克旗期末) 如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.21. (5分)列方程或方程组解应用题:某学校准备组织部分学生到少年宫参加活动,陈老师从少年宫带回来两条信息:信息一:按原来报名参加的人数,共需要交费用320元,如果参加的人数能够增加到原来人数的2倍,就可以享受优惠,此时只需交费用480元;信息二:如果能享受优惠,那么参加活动的每位同学平均分摊的费用比原来少4元.根据以上信息,原来报名参加的学生有多少人?22. (10分)(2018·铜仁) 如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.23. (10分)(2017·马龙模拟) 如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF= ,求⊙O的半径r及sinB.24. (15分) (2018九上·大洼月考) 家惠商场服装部为促进营销、吸引顾客,决定试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%.试销过程中发现,销售量y(件)与销售单价x(元)之间存在一次函数关系y=-x+120.(1)求试销期间该服装部销售该品牌服装获得利润W(元)与销售单价x(元)的函数关系式;(2)销售单价定为多少元时,服装部可获得最大利润,最大利润是多少元?(3)若在试销期间该服装部获得利润不低于500元,试确定销售单价x的范围.25. (11分)(2019·北京模拟) 如图1,在△ABC中,∠ACB=90°,AC=BC,E为∠ACB平分线CD上一动点(不与点C重合),点E关于直线BC的对称点为F,连接AE并延长交CB延长线于点H,连接FB并延长交直线AH 于点G.(1)求证:AE=BF.(2)用等式表示线段FG,EG与CE的数量关系,并证明.(3)连接GC,用等式表示线段GE,GC与GF的数量关系是________.26. (15分)(2018·兴化模拟) 如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上. 对角线EG、FP相交于点O.(1)若AP=3,求AE的长;(2)连接AC,判断点O是否在AC上,并说明理由;(3)在点P从点A到点B的运动过程中,正方形PEFG也随之运动,求DE的最小值.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共11分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共99分)17-1、17-2、18-1、18-2、18-3、19-1、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、26-3、。
2022年广东清远中考数学真题及答案

2022年广东清远中考数学真题及答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.|2|-=()A.﹣2 B.2 C.12-D.122.计算22()A.1 B.2C.2 D.4 3.下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形4.如题4图,直线a//b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°5.如题5图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.14B.12C.1 D.26.在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)7.书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.14B.13C.12D.238.如题8图,在▱ABCD中,一定正确的是()A .AD=CDB .AC=BDC .AB=CD D .CD=BC9.点(1,1y ),(2,2y ),(3,3y ),(4,4y )在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( )A .1yB .2yC .3yD .4y10.水中涟漪(圆形水波)不断扩大,记它的半径为r ,则圆周长C 与r 的关系式为C =2πr .下列判断正确的是( )A .2是变量B .π是变量C .r 是变量D .C 是常量参考答案: 题号 1 2 3 4 5 6 7 8 9 10 答案 BDABDABCDC二、填空题:本大题共5小题,每小题3分,共15分. 11.sin 30°=____________.12.单项式3xy 的系数为____________.13.菱形的边长为5,则它的周长为____________. 14.若x =1是方程220x x a -+=的根,则a =____________.15.扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为____________. 参考答案: 题号 11 12 13 14 15答案 123201π三、解答题(二):本大题共3小题,每小题8分,共24分 16.解不等式组:32113x x ->⎧⎨+<⎩参考答案:32113x x ->⎧⎨+<⎩①② 由①得:1x > 由②得:2x <∴不等式组的解集:12x <<17.先化简,再求值:211a a a -+-,其中a =5.参考答案:原式=(1)(1)1211a a a a a a a -++=++=+-将a =5代入得,2111a +=18.如题18图,已知∠AOC =∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E . 求证:△OPD ≌△OPE . 参考答案:证明:∵PD ⊥OA ,PE ⊥OB ∴∠PDO =∠PEO=90° ∵在△OPD 和△OPE 中 PDO PEO AOC BOC OP OP ∠⎪∠⎧∠=⎩∠⎪⎨== ∴△OPD ≌△OPE (AAS )四、解答题(二):本大题共3小题,每小题9分,共27分.19.《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少? 参考答案:设学生人数为x 人8374x x -=+7x =则该书单价是8353x -=(元)答:学生人数是7人,该书单价是53元.20.物理实验证实:在弹性限度内,某弹簧长度y (cm )与所挂物体质量x (kg )满足看数关系y =kx +15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x 0 2 5 y151925(1)求y 与x 的函数关系式;(2)当弹簧长度为20cm 时,求所挂物体的质量. 参考答案:(1)将2x =和19y =代入y =kx +15得19=2k +15解得:2k =∴y 与x 的函数关系式:y =2x +15 (2)将20y =代入y =2x +15得20=2x +15解得: 2.5x =∴当弹簧长度为20cm 时,求所挂物体的质量是2.5kg .21.为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销售额定为多少合适?参考答案:(1)月销售额数据的条形统计图如图所示:(2)3445378210318715x +⨯+⨯++⨯+⨯+==(万元)∴月销售额的众数是4万元;中间的月销售额是5万元;平均月销售额是7万元. (3)月销售额定为7万元合适.五、解答题(三):本大题共2小题,每小题12分,共24分.22.如题22图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,∠ADB =∠CDB . (1)试判断△ABC 的形状,并给出证明; (2)若2AB =,AD =1,求CD 的长度.参考答案:(1)△ABC 是等腰直角三角形,理由如下:∵∠ADB =∠CDB ∴AB BC = ∴AB BC = ∵AC 是直径 ∴∠ABC 是90°∴△ABC 是等腰直角三角形 (2)在Rt △ABC 中222AC AB BC =+可得:2AC = ∵AC 是直径 ∴∠ADC 是90° ∴在Rt △ADC 中 222AC AD DC =+可得:3DC = ∴CD 的长度是323.如题23图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,A (1,0),AB =4,点P 为线段AB 上的动点,过P 作PQ //BC 交AC 于点Q . (1)求该抛物线的解析式;(2)求△CPQ 面积的最大值,并求此时P 点坐标. 参考答案:(1)∵A (1,0),AB =4∴结合图象点B 坐标是(﹣3,0)将(1,0),(﹣3,0)代入2y x bx c =++得 01093b c b c =++⎧⎨=-+⎩解得:23b c =⎧⎨=-⎩ ∴该抛物线的解析式:223y x x =+- (2)设点P 为(,0)m∵点C 是顶点坐标∴将1x =-代入223y x x =+-得4y =- ∴点C 的坐标是(1,4)--将点(1,4)--,(1,0)代入y kx b =+得 04k b k b =+⎧⎨-=-+⎩解得:22k b =⎧⎨=-⎩ ∴AC 解析式:22y x =-将点(1,4)--,(﹣3,0)代入y kx b =+得034k b k b =-+⎧⎨-=-+⎩解得:26k b =-⎧⎨=-⎩ ∴BC 解析式:26y x =-- ∵PQ //BC∴PQ 解析式:22y x m =-+ 2222y x m y x =-+⎧⎨=-⎩解得:121m x y m +⎧=⎪⎨⎪=-⎩ ∴点Q 坐标:1(,1)2mm +-(注意:点Q 纵坐标是负的) CPQ ABC APQ CPB S S S S =--△△△△11144(3)4(1)(1)222CPQ S m m m =⨯⨯-⨯+⨯-⨯-⨯-△21322CPQ S m m =--+△21(1)22CPQ S m =-++△当1m =-时,CPQ S △取得最大值2,此时点P 坐标是(﹣1,0) ∴△CPQ 面积最大值2,此时点P 坐标是(﹣1,0)。
2020年中考广东清远数学卷

① 当 M 点运动到何处时,△AMB 的面积最大?求出△AMB 的最大面积及此时点 M 的坐标。
② 当 M 点运动到何处时,四边形 AMCB 的面积最大?求出四边形 AMCB 的最大面积及此时点
M 的坐标.
y
【答案】
A
O Bx
C
5
23. 在平面直角坐标系 xOy 中,二次函数 y mx2 (m 3)x 3(m 0) 的图象与 x 轴交于 A、B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C。 (1)求点 A 的坐标。 (2)当 ABC 45 时,求 m 的值。 (3)已知一次函数 y kx b ,点 P(n,0)是 x 轴上的一个动点,在(2)的条件下,过点 P 垂 直 于 x 轴 的 直 线 交 这 个 一 次 函 数 的 图 象 于 点 M, 交 二 次 函 数 y mx2 (m 3)x 3(m 0) 的图象于 N。若只有当 2 n 2 时,点 M 位于点 N 的上方,
A
C
图6
【答案】
四、解答题(本大题共 3 小题,每小题 8 分,共 24 分)
22.(11·清远)如图 2,AB 是⊙O 的直径,AC 与⊙O 相切,切点为 A,D 为⊙O 上一点,AD 与 OC 相交
于点 E,且∠DAB=∠C.
(1)求证:OC∥BD。
(2)若 AO=5,AD=8,求线段 CE 的长.
都摸到黄球的概率. 【答案】 24.(11·清远)如图 8,在矩形 ABCD 中,E 是 BC 边上的点,AE=BC,DF⊥AE,垂足为 F,连接 DE. (1)求证:AB=DF。 (2)若 AD=10,AB=6,求 tan∠EDF 的值.
4
A
D
F
B
C
E
广东省清远市2020年(春秋版)中考数学试卷D卷

广东省清远市2020年(春秋版)中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2012·资阳) ﹣2的相反数是()A . 2B . ﹣2C . ±2D .2. (2分)函数中自变量x的取值范围为()A . x≥0B . x≥﹣1C . x>﹣1D . x≥13. (2分) (2017九上·井陉矿开学考) 已知a⊥b,b∥c,则直线a和直线c的关系为()A . 相交B . 垂直C . 平行D . 以上都不对4. (2分)若2n+2n+2n+2n=2,则n=()A . ﹣1B . ﹣2C . 0D .5. (2分)(2020·河池) 不等式组的解集在数轴上表示正确的是()A .B .C .D .6. (2分)(2018·海陵模拟) 一组数据1,2,4,x,6,8的众数是1,则这组数据的中位数是()A . 2B . 3C . 4D . 67. (2分)(2017·绵阳) 将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A . b>8B . b>﹣8C . b≥8D . b≥﹣88. (2分) (2018九上·西安期中) 下面的三视图对应的物体是()A .B .C .D .9. (2分)(2013·台州) 如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A . 3B . 4﹣C . 4D . 6﹣210. (2分)(2020·丰润模拟) 如图,内接于圆,,,若,则弧的长为()A .B .C .D .11. (2分) (2020八下·来宾期末) 如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC的长为半径画弧,两弧相交于D,E两点,作直线DE交AB于点F,交BC于点G。
广东省清远市2021版中考数学试卷(II)卷

广东省清远市2021版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列各组数中,结果相等的是()A . ﹣22与(﹣2)2B . 与() 3C . ﹣(﹣2)与﹣|﹣2|D . ﹣12017与(﹣1)20172. (2分)如图所示,AB⊥BD,AC⊥CD,∠D=35°,则∠A的度数为()A . 65°B . 35°C . 55°D . 45°3. (2分) 2012年4月30日,我国在西昌卫星发射中心用“长征三号乙”运载火箭成功发射两颗北斗导航卫星,其中静止轨道卫星的高度约为36000km.这个数据用科学记数法表示为()A . 36×103kmB . 3.6×103kmC . 3.6×104kmD . 0.36×105km4. (2分)(2017·邢台模拟) 计算正确的是()A . a3﹣a2=aB . (ab3)2=a2b5C . (﹣2)0=0D . 3a2•a﹣1=3a5. (2分)一个几何体的三视图如图所示,那么这个几何体是()A .B .C .D .6. (2分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a+bm<m(am+b)(m≠1);④(a+c)2<2;⑤a>.其中正确的是()A . ①⑤B . ①②⑤C . ②⑤D . ①③④7. (2分)下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()A . 4:00气温最低B . 6:00气温为24℃C . 14:00气温最高D . 气温是30℃的时刻为16:008. (2分)如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A . 116°B . 32°C . 58°D . 64°9. (2分)(2018·宜昌) 尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A .B .C .D .10. (2分) (2019七下·武昌期中) 不等式组的解集在数轴上表示为()A .B .C .D .11. (2分) (2019七下·长春月考) 如图,把一张长方形纸片ABCD沿EF折叠后,点C , D分别落在C , D 的位置上,EC交AD于点G ,已知∠EFG=58°,则∠BEG等于()A . 58°B . 116°C . 64°D . 74°12. (2分)观察下列钢管横截面图,则第13个图中钢管的个数是()A . 271B . 269C . 273D . 267二、填空题. (共6题;共6分)13. (1分) (2018七下·浦东期中) 化简()2+ =________.14. (1分)(2017·内江) 在函数y= + 中,自变量x的取值范围是________.15. (1分)如图,菱形ABCD周长为8,∠BAD=120°,P为BD上一动点,E为CD中点,则PE+PC的最小值长为________.16. (1分)(2011·宁波) 如图是七年级(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的人数是12人,那么参加绘画兴趣小组的人数是________人.17. (1分) (2019八下·锦江期中) 如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为________.18. (1分) (2017九上·安图期末) 如图,在△ABC中,DE∥BC,若 = ,DE=9,则BC的长为________.三、解答题. (共8题;共75分)19. (5分)(2016·南宁) 计算:|﹣2|+4cos30°﹣()﹣3+ .20. (5分)先化简再求值: ÷ ,其中x满足x2+x-2=0.21. (15分)(2018·绍兴模拟) 如图,已知点A(0,4)和点B(3,0)都在抛物线y=mx2+2mx+n上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为D,点B的对应点为C,若四边形ABCD为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AC的交点为点E,x轴上的点F,使得以点C、E、F为顶点的三角形与△ABE相似,请求出F点坐标.22. (10分) (2016七下·普宁期末) 手机微信推出了抢红包游戏,它有多种玩法,其中一种为“拼手气红包”,用户设定好总金额以及红包个数后,可以生成不等金额的红包.现有一用户发了三个“拼手气红包”,总金额为3元,随机被甲、乙、丙三人抢到.(1)判断下列事件中,哪些是确定事件,哪些是不确定事件?①丙抢到金额为1元的红包;②乙抢到金额为4元的红包③甲、乙两人抢到的红包金额之和一定比丙抢到的红包金额多;(2)记金额最多、居中、最少的红包分别为A,B,C.①求出甲抢到红包A的概率;②若甲没抢到红包A,则乙能抢到红包A的概率又是多少?23. (10分) (2020九上·鞍山期末) 如图,直线l的解析式为y= x,反比例函数y=(x>0)的图象与l交于点N,且点N的横坐标为6.(1)求k的值;(2)点A、点B分别是直线l、x轴上的两点,且OA=OB=10,线段AB与反比例函数图象交于点M,连接OM,求△BOM的面积.24. (10分)(2018·孝感) “绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.25. (10分) (2016九上·济宁期中) 如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.26. (10分)(2012·绍兴) 把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题. (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题. (共8题;共75分)19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省清远市中考数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分) (2022七上·滨江期末) 若a , b是有理数,且,,则()
A . 可以是无理数
B . 一定是负数
C . 一定是有理数
D . 一定是无理数
2. (2分)(2018·梧州) 已知∠A=55°,则它的余角是()
A . 25°
B . 35°
C . 45°
D . 55°
3. (2分) (2020七下·云梦期中) 计算的结果为()
A . 3
B .
C .
D .
4. (2分)(2019·靖远模拟) 如图是由5个相同的正方体搭成的几何体,其左视图是()
A .
B .
C .
D .
5. (2分) (2019七下·兴化月考) 下列运算正确的是()
A . x3•x3=x9
B . x8÷x4=x2
C . (ab3)2=ab6
D . (2x)3=8x3
6. (2分)(2020·黄石模拟) 已知如图,点 C 是线段 AB 的黄金分割点(AC>BC),则下列结论中正确的是()
A . AB2=AC2+BC2
B . BC2=AC•BA
C .
D .
7. (2分) (2019八下·奉化期末) 已知 x=-1 是一元二次方程 x2+px+q=0 的一个根,则代数式 p-q 的值是()
A . 1
B . -1
C . 2
D . -2
8. (2分)如图,矩形ABCD的两条对角线相交于点O ,∠AOB=60°,AB=2,则矩形的对角线AC的长是().
A . 2
B . 4
C .
D .
9. (2分) (2018九下·厦门开学考) 如图,在6×6的正方形网格中,有6个点,M,N,O,P,Q,R(除R 外其余5个点均为格点),以O为圆心,OQ为半径作圆,则在⊙O外的点是()
A . M
B . N
C . P
D . R
10. (2分)(2017·临沭模拟) 如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2 ,则阴影部分图形的面积为()
A . 4π
B . 2π
C . π
D .
二、填空题 (共8题;共9分)
11. (1分) (2018七上·顺德月考) 绝对值小于3的所有负整数的和为________,积为________。
12. (2分) (2016九上·黑龙江月考) 分解因式:a2﹣ab=________.
13. (1分)某商店在一笔交易中卖了两个进价不同的随身听,售价都为132元,按成本计算,其中一个盈利20%,另一个盈利10%,则该商店在这笔交易中共赚了________元.
14. (1分) (2019七下·淮北期末) 当a=________时,分式没有意义.
15. (1分)(2019·石景山模拟) 一个不透明盒子中装有3个红球、5个黄球和2个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是红球的概率为________.
16. (1分) (2019八下·高新期末) 已知四边形是平行四边形,且,,三点的坐标分别是,,则这个平行四边形第四个顶点的坐标为________.
17. (1分)如图,在中,已知,,则阴影部分扇形AOB的面积为________
结果保留
18. (1分)已知,则(a+1)(b﹣1)=________.
三、解答题 (共10题;共89分)
19. (5分) (2019七下·辽阳月考) 计算:
(1)已知3×9m×27m=321 ,求m的值.
(2)()﹣2+(2019﹣π)0÷(﹣2)﹣2﹣32;
(3)已知:,求① ,② ,③ 的值.
20. (5分)解不等式组
21. (10分)(2020·西安模拟) 如图,已知矩形中,连接请利用尺规作图法在对角线上求作一点使得 .(保留作图痕迹不写作法)
22. (5分)(2019·长春模拟) 如图,在Rt△ABC中,∠C=90°,D是AC边上一点,tan∠DBC= ,且BC=6,AD=4.求cosA的值.
23. (10分)(2018·黄梅模拟) 某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:
(1)在这次调查中,喜欢篮球项目的同学有________人,在扇形统计图中,“乒乓球”的百分比为________%,如果学校有800名学生,估计全校学生中有________人喜欢篮球项目.
(2)请将条形统计图补充完整.
(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
24. (12分) (2018九下·滨湖模拟) 某区对即将参加中考的4000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和不完整的频数分布直方图.请根据图表信息回答下列问题:
(1)本次调查样本容量为________;
(2)在频数分布表中,a=________,b=________,并将频数分布直方图补充完整________;
(3)若视力在4.9以上(含4.9)均属标准视力,根据上述信息估计全区初中毕业生中达到标准视力的学生约有多少人?
25. (7分)(2019·成都) 随着技术的发展,人们对各类产品的使用充满期待.某公司计划在某地区销售第一款产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第(为正整数)个销售周期每台的销售价格为元,与之间满足如图所示的一次函数关系.
(1)求与之间的关系式;
(2)设该产品在第个销售周期的销售数量为(万台),与的关系可用来描述。
根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?
26. (10分)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.
(1)求证:四边形ABFC是菱形;
(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.
27. (10分)旋转的性质:
(1)对应点到旋转中心的距离________;
(2)任意一组对应点与旋转中心的连线所成的角等于________;
(3)旋转前、后的图形________.
28. (15分) (2017九上·寿光期末) 已知:二次函数y=ax2+bx+6(a≠0)的图象与x轴交于A,B两点(点A在点B的左侧,与y轴交于点C,点A、点B的横坐标是一元二次方程x2﹣4x﹣12=0的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图,在二次函数对称轴上是否存在点P,使△APC的周长最小?若存在,请求出点P的坐标;若不存在,那个说明理由.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共8题;共9分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共10题;共89分)
19-1、19-2、
19-3、20-1、21-1、
22-1、23-1、
23-2、
23-3、24-1、
24-2、24-3、
25-1、
25-2、26-1、
26-2、27-1、27-2、
27-3、
28-1、
28-2、
28-3、
第11 页共11 页。