《勾股定理》教学案例

合集下载

人教版八年级数学下册17.1勾股定理优秀教学案例

人教版八年级数学下册17.1勾股定理优秀教学案例
1.导入:以生动有趣的故事引入勾股定理,激发学生的学习兴趣。
2.自主探究:让学生通过观察、实验、推理等方法,发现并证明勾股定理。
3.合作交流:组织学生进行小组讨论,分享学习心得,培养合作精神。
4.巩固练习:设计有针对性的练习题,让学生在实践中掌握勾股定理。
5.课堂讨论:组织学生分享自己的解题心得,丰富数学思维。
3.引导学生认识数学在生活中的应用,提高他们运用数学解决实际问题的能力。
4.培养学生团队协作、沟通交流的能力,增强他们的社会责任感。
三、教学重点与难点
1.教学重点:勾股定理的定义及其证明方法,勾股定理在实际问题中的应用。
2.教学难点:勾股定理的推导过程,运用勾股定理解决复杂直角三角形问题。
四、教学过程
2.生活实例:展示一些生活中常见的直角三角形现象,如建筑物、家具等,让学生感受数学与生活的紧密联系,提高他们运用数学解决实际问题的意识。
3.提问引导:教师提问:“你们知道什么是勾股定理吗?”“勾股定理在我国古代是如何被发现的?”引发学生的思考和讨论。
(二)讲授新知
1.勾股定理的定义:引导学生通过观察、实验、推理等方法,发现并证明勾股定理。例如,可以让学生分组讨论,每组设计一个实验来验证勾股定理。
2.自主探究,培养能力:在讲授新知环节,我引导学生通过观察、实验、推理等方法,自主发现并证明勾股定理。这种自主探究的学习方式,培养了学生的数学思维能力,提高了他们的问题解决能力。
3.小组合作,增强合作精神:在学生小组讨论环节,我将学生分成若干小组,让他们选择一个证明方法进行讨论。这种小组合作的方式,既能够提高学生的团队合作能力,又能够促进学生之间的沟通交流。
1.激发学生兴趣:通过故事、图片等素材,引发学生对勾股定理的好奇心,激发他们学习数学的兴趣。

勾股定理案例-完整版公开课教学设计

勾股定理案例-完整版公开课教学设计

勾股定理我们本节课要学的内容是勾股定理,通过这节课的学习,要求我们掌握勾股定理的证明,并且能初步运用勾股定理解决问题。

本节课分为以下几个环节,创设情景,引入新课、合作交流,探究新知、动手操作,证明结论、巩固训练,反馈矫正、师生小结,共同提升、自主检测,巩固提升、课后拓展,布置作业。

(一)下面开始新课,大家可以看到这样一个问题:某楼房三楼失火,消防员赶来救火,了解到每层楼高3米,消防员取来米长的云梯,如果梯子的底部离墙基的距离是米,请问消防员能否进入三楼灭火画出图形后,指出需要解决的问题:已知直角三角形的两边,怎样求第三边通过本节的学习我们可以解决这个问题(二)活动一早在2500年前,古希腊数学家毕达哥拉斯从朋友家的地板砖铺”成的地面上找到了灵感,并且对此展开研究,下面我们也来重温数学家的发现之路,探究这个“饭局中诞生的定理。

”●探究:等腰直角三角形三边的关系思考:1)你能发现图中的三个正方形的面积有什么联系吗2)你能用直角三角形的边长表示正方形的面积吗3)你能发现图中的直角三角形三边长度之间存在什么关系吗初步猜想:在等腰直角三角形中,两直角边的平方和等于斜边的平方。

进一步猜想: 在直角三角形中,两直角边的平方和等于斜边的平方。

以上仅仅是我们的猜想,这个命题如何来进行证明呢(三)活动二探究:一般直角三角形三边之间的关系是否也是如此1.图形A的面积= ,图形B的面积=交流:图形C的面积如何求出2.你能用直角三角形的边长表示正方形的面积吗3.你能发现图中的直角三角形三边长度之间存在什么关系吗四我国古代人民早在几千万年前就发现和运用勾股定理,在已有的文献记载中,最早给出证明的是三国时期的吴国数学家赵爽在给出勾股定理的证明。

大家利用手中4个全等直角三角形进行拼图。

✓赵爽“勾股圆方图”大正方形的面积可以表示为c2也可以表示为4*1/2abb-a2,于是可得:c2=4*1/2abb-a2整理得:a2b2=c2➢得到勾股定理在直角三角形中,两直角边的平方和等于斜边的平方。

3.1勾股定理优秀教学案例

3.1勾股定理优秀教学案例
4.反思与评价:在课堂教学的最后,我组织学生进行反思与评价。学生通过反思自己的学习过程,总结自己的优点和不足,提高自我认知。同时,学生通过对他人的评价,学会欣赏他人的优点,培养良好的团队合作精神。
5.教学策略的灵活运用:在教学过程中,我根据学生的实际情况,灵活运用了情景创设、问题导向、小组合作等教学策略。这些教学策略的运用使得课堂更加生动有趣,提高了学生的学习兴趣和参与度。
在教学过程中,我组织学生进行小组合作,让学生在合作中发现问题、解决问题,培养学生的团队合作能力和沟通能力。每个小组选择一个代表进行讲解,其他小组成员进行补充,充分发挥了每个学生的积极性和主动性。小组合作教学策略使得学生在合作中发现问题、解决问题,提高了学习效果。
(四)反思与评价
在课堂教学的最后,我组织学生进行反思与评价。首先,让学生反思自己在课堂上的学习过程,总结自己的优点和不足,提高自我认知。然后,让学生对他人进行评价,学会欣赏他人的优点,培养良好的团队合作精神。此外,我还让学生对自己的学习成果进行评价,激发学生的自信心,提高学习兴趣。
在教学过程中,我注重启发学生思考,培养学生的创新意识和解决问题的能力。针对学生的不同观点,我给予及时的反馈和评价,鼓励学生敢于发表自己的见解。同时,我还注重引导学生运用数学语言进行表达,提高学生的数学素养。
本节课结束后,我对学生的学习情况进行总结,发现绝大多数学生能够掌握勾股定理的内容,并在实际问题中运用。此外,学生对我国古代数学家的贡献有了更深入的了解,增强了爱国情怀。实践证明,本节课的教学设计符合学生的认知规律,达到了预期的教学效果。
(五)作业小结
在课堂的最后,我给出了几个与勾股定理相关的作业题目,让学生课后进行练习。我强调了解题时要注意的细节和常见错误,并鼓励学生在完成作业后进行自我检查和反思。同时,我也提醒学生在遇到困难时可以寻求同学和老师的帮助。通过作业小结,学生能够巩的导入通过有趣的故事和实际应用实例,激发了学生的学习兴趣和好奇心,使学生主动参与到课堂学习中。情境的创设使得学生能够更好地理解和感受到勾股定理的重要性。

《勾股定理》教学案例

《勾股定理》教学案例

《勾股定理》教学案例一、研究缘由《勾股定理》在八年级教材下册,这部分内容详细介绍了勾股定理的相关知识与探索过程,包含了大量应用习题,学生需要巧妙运用列式变形等方法验证勾股定理内容。

教师需要做到数形结合,发展学生的形象思维。

勾股定理属于基础性知识,在中考几何证明题中运用广泛,只有学生熟练掌握,才能挖掘出题目当中的隐含信息,为此,教师需要对勾股定理的教学方法进行研究,提高学生知识迁移能力。

二、教学实践初中阶段的学生已经具有了一定的数学基础,对三角形的相关性质、面积、周长等概念比较熟悉,能够完成计算等任务。

在本节课的教学中,教师可以引导学生开展自主探究,让学生分析勾股定理的产生过程,从多个角度研究勾股定理。

【教学片段一】运用传统数学经典,导入教学内容师:在《周髀算经》中,有这样一段话,“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五……”同学们知道这段话当中所蕴含的数学定理吗?生:勾股定理。

师:非常聪明,同学们能够抓住这段话的关键字,知道描述的是勾股定理,也就是我们今天要学习的内容。

师:在2500多年前,毕达哥拉斯就从地板砖上发现了一些三角形的规律,现在大家打开课本,看看能够发现什么奥秘呢?师:大家看课本中的地板砖示意图,其中为我们描绘了大正方形、小正方形,大家可以拿出笔算一算,能发现什么?生:两个小正方形面积相加,可以得到大正方形的面积。

师:正方形的面积是边的平方,所以等腰直角三角形的三边关系是怎样的呢?生:两条直角边的平方和等于斜边的平方。

师:非常好,说出了老师想要听的答案。

【分析思考】教师运用我国传统的数学名著引入新知识,能够有效调动学生学习兴趣,激发学生数学文化素养,培养学生热爱祖国、传承传统文化的意识。

在勾股定理的探索过程中,教师从课本中的方格图形入手,引导学生自主探究,让学生通过计算、变式等方法,从面积关系转移到边长关系,增强对勾股定理的理解。

【教学片段二】开展小组合作探究,完成知识迁移师:现在教师用多媒体课件呈现了普通直角三角形,用不同颜色呈现了相应的正方形,现在大家分小组探究,看刚才得出的结论能否应用在这些直角三角形当中。

第一课时勾股定理优秀教学案例

第一课时勾股定理优秀教学案例
(五)作业小结
1.布置巩固性作业:让学生运用勾股定理解决实际问题,如计算房屋建筑中的长度、设计直角三角形图案等。检查学生对勾股定理的理解和应用能力。
2.布置拓展性作业:让学生探索其他数学定理或公式,如平方根、立方根等。培养学生的探索精神和创新能力。
3.鼓励学生进行自我评价,反思自己在学习过程中的优点和不足。指导学生制定改进措施,提高学习效果。
此外,我还注重课堂评价的多元化,充分关注学生的个体差异,给予他们积极的评价和鼓励,使他们在课堂上充满自信,更好地投入到学习过程中。整个教学过程既注重知识的传授,又重视学生的全面发展,体现了新课程改革的理念和要求。
二、教学目标
(一)知识与技能
1.让学生掌握勾股定理的内容,理解直角三角形三边之间的关系,能够运用勾股定理解决实际问题。
(一)导入新课
1.故事导入:讲述毕达哥拉斯如何通过观察木匠修鞋匠的鞋子长度比例,发现了勾股定理。引导学生关注古代数学家的伟大发现,激发学生学习兴趣。
2.实物模型导入:展示古代的勾股定理证明雕塑,让学生直观地感受数学与艺术的完美结合。引发学生对勾股定理的好奇心,激发他们的探究欲望。
3.现实生活实例导入:分析房屋建筑、自行车轮胎等实例,让学生感受到勾股定理在实际应用中的重要性,引发学生思考。
2.鼓励学生提出问题,培养他们的问题意识和批判性思维。例如,在教学过程中,让学生大胆质疑,挑战古代数学家的证明方法。
3.创设循序渐进的问题序列,引导学生逐步深入探究勾股定理。例如,从简单的情形开始,让学生观察、实验、猜测,逐步引导学生得出勾股定理的结论。
(三)小组合作
1.组织学生进行小组讨论,培养他们的团队协作能力和沟通能力。例如,在探究勾股定理的过程中,让学生分组讨论,相互启发,共同解决问题。

人教版八年级数学下17.1勾股定理(3)优秀教学案例

人教版八年级数学下17.1勾股定理(3)优秀教学案例
3.运用直观教具、几何画板等工具,帮助学生直观地理解勾股定理的应用。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发学生学习数学的内在动力。
2.培养学生的自信心和自主学习能力,让学生体验到成功的喜悦。
3.通过解决实际问题,培养学生的应用意识,让学生认识到数学与生活的紧密联系。
4.培养学生严谨治学的态度,养成积极主动、认真负责的学习习惯。
人教版八年级数学下17.数学下册第17.1节勾股定理(3),学生在学习了勾股定理的基础上,进一步探究勾股定理的应用。通过前面的学习,学生已经掌握了勾股定理的表述和证明,但对勾股定理的理解还停留在表面,对勾股定理在实际问题中的应用还不够熟练。因此,本节课的教学目标是让学生深入理解勾股定理,并能运用勾股定理解决实际问题。
四、教学内容与过程
(一)导入新课
1.利用多媒体课件展示房屋装修、篮球架安装等实际生活中的例子,让学生感受到数学与生活的紧密联系。
2.提出问题:“在这些实际问题中,我们如何运用数学知识来解决呢?”引导学生思考,为新课的引入做好铺垫。
3.教师总结:通过实际例子,我们可以发现一个规律——直角三角形两条直角边的平方和等于斜边的平方,这就是我们今天要学习的勾股定理。
(二)问题导向
1.自主探究:引导学生通过自主学习,发现问题、解决问题,培养学生的自主学习能力。
2.合作交流:组织学生进行小组讨论,分享彼此的想法和成果,促进学生之间的思维碰撞。
3.教师引导:在学生探究过程中,教师要善于引导学生,给予必要的提示和帮助,引导学生正确思考。
(三)小组合作
1.小组讨论:让学生在小组内进行讨论交流,共同解决问题,培养学生的团队合作意识。
3.教师评价:教师对学生的学习过程和成果进行评价,关注学生的成长和进步,给予鼓励和指导。

八年级数学下学期17.1勾股定理优秀教学案例

八年级数学下学期17.1勾股定理优秀教学案例
1.教师布置课后作业,要求学生运用勾股定理解决实际问题,巩固所学知识。
2.教师鼓励学生在课后进行深入研究,如探究勾股定理在其他领域的应用。
3.教师提醒学生在下次课堂上分享自己的作业成果,增强合作交流能力。
五、案例亮点
1.情景创设:本节课通过展示古代建筑图片,巧妙地引导学生发现三角形稳定性的重要性,激发了学生对勾股定理的好奇心。这种情景创设不仅使学生产生了浓厚的学习兴趣,还让学生体会到了数学在实际生活中的应用价值。
3.学生能够运用现代教育技术,如多媒体课件、网络资源等,获取丰富的学习素材,增强学习的趣味性和互动性。
(三)情感态度与价值观
1.学生能够在学习过程中,体验到数学的趣味性和实用性,提高对数学的兴趣,树立学习数学的信心。
2.学生能够在探究活动中,培养合作精神,提高团队协作能力,增强集体荣誉感。
3.学生能够通过学习勾股定理,感受到数学在古代文明中的重要作用,提高对数学历史的认识,培养民族自豪感。
2.教师提供一些实际问题,如“一个直角三角形两个直角边的长度分别为3cm和4cm,求斜边的长度。”
3.学生分组讨论,交流解题思路,共同解决问题。
(四)总结归纳
1.教师引导学生总结勾股定理的定义、表达式和应用,巩固所学知识。
2.教师强调勾股定理在数学和实际生活中的重要性,激发学生学习兴趣。
(五)作业小结
(三)小组合作
1.教师将学生分成若干小组,每组学生共同探讨、交流勾股定理的证明方法,培养学生的合作精神和团队意识。
2.教师设计小组活动,如一起制作直角三角形模型,让学生动手操作,增强对勾股定理的理解。
3.教师鼓励小组成员之间相互评价、相互学习,提高学生的自我认知和表达能力。
(四)反思与评价

教学案例-勾股定理

教学案例-勾股定理
参与人:
上高四中初二(2)班全体学生 罗自成
1、利用等积法理解直角三角形三边平方和的 关系(勾股定理)
2、利用面积相等的方法证明勾股定理。
3、运用勾股定理进行简单的运算。
自学内容及要求:
1、看书P64-67理解勾股定理的推导过程(3分钟) 2、运用勾股定理完成书P64-67探究1、2的填空 3、完成书P68的练习
2 m ∴能通过
要求出AC的长,怎样求呢?
A 1m B
探究二:
(2)如图,一个3米长的梯子AB,斜着靠在 竖直的墙AO上,这时AO的距离为2.5米.
①求梯子的底端B距墙角O多少米?
②如果梯子的顶端A沿墙角下滑0.5米至C,
请同学们:
∵BD=OD-OB,要求BD,可以先求OB、OD
猜一猜,底端也将滑动0.5米吗?
B
(17 )
A 则x2+x2=4
10 6
C(8) A
(1)
2
30°
( 3)
2x2=4
8
x2=2
C
x= 2
( 2)
( 2)
45°
2
回答:
①在解决上述问题时,每个直角三角形需知道几个条件?
②直角三角形哪条边最长?
探究一: (5分钟)
(1)一个门框尺寸如下图所示.
①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?
②若薄木板长3米,宽1.5米呢?
③若薄木板长3米,宽2.2米呢?为什么?
∵木板的宽2.2米大于1米, ∴ 横着不能从门框通过; ∵木板的宽2.2米大于2米,
∴竖着也不能从门框通过. C
AC= AB2 BC2
= 12 22
=5
∴ 只能试试斜着能否通过, 对角线AC的长最大,因此需
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学案例13 勾股定理(第一课时)
一、教材分析
(一)教材的地位和作用
“勾股定理”是人教版《数学》八年级下册第十八章第一节内容,分三课时完成。

本节说课为第一课时,主要讲解勾股定理的探索证明以及简单应用。

勾股定理是几何中几个重要的定理之一,它揭示了直角三角形三边之间的一种美妙的数量关系,将数与形密切联系起来,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础,因此这节课在知识体系中有着承上启下的作用。

本课时内容有学习勾股定理的发现、证明及简单应用。

勾股定理的发现主要让学生亲自动手,在实践中观察、分析、发现、猜想得出直角三角形三边之间的数量关系,再对a2+b2=c2的直角三角三边之间的数量关系,再对a2、b2、c2的结构特点与几何中正方形的面积公式产生联想,确定以面积来证明猜想的基本思想。

(二)学情分析
(1)学生的认知基础:八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法,但是学生对用割补法和面积法证明几何命题还存在障碍,不能快速有效地将数与形有机结合起来。

(2)学生年龄心理特点:八年级的学生在心理与生理方面已经较为成熟,对待事物的看法有一定的个性见解,探究欲强。

二、教学任务
(一)教学目标
【知识与技能目标】
理解并掌握勾股定理的内容和证明,能够简单的运用勾股定理。

【过程与方法目标】
在学生经历“观察—猜想—归纳—验证”勾股定理的过程中,发展合情推理能力,体会数形结合和从特殊到一般的数学思想。

【情感态度与价值观目标】
通过对勾股定理历史的了解,感受数学文化,培养学生的民族自豪感,激发学习兴趣,在探究活动中,培养学生的合作交流意识和探索精神。

(二)教学重点、难点
【教学重点】探索发现并验证勾股定理。

【教学难点】用面积法和拼图法证明勾股定理。

三、教法与学法分析
(一)教法分析
好的课堂结构不是那种“填鸭式、膨胀式”的结构,而应该是留有很大余地的可塑性结构,充分调动学生学习的积极性和主动性。

贯彻“以学生为主体,教师为主导”的教学原则,培养学生自主学习的能力和创新意识。

根据教学内容的特点和学生的实际情况,本节课采用“自主探究”式的教学方法。

(二)学法分析
我国古代《学记》说,教师应做到“道而弗牵,强而弗抑,开而弗达”。

意思是:引导学生而不牵着学生走,激励他们而不强加逼迫,启发他们独立思考,而不直接把结论告诉学生。

在学习定理时,先设计好观察、实验用的图形。

通过自己观察、实践探究出的新知识,进一步亲自动手尝试,对图形割、补、拼、凑,从而达到面积割补法的证明思想,从而让学生得到学习成功的体验。

同时,在定理证明的探究过程中,以充满启发性的问题引路,并渗透“数形”结合的思想。

(三)、教学策略
【教法】引导探索法
【学法】自主探索合作交流
【教学手段】多媒体辅助教学
【学具准备】剪刀四个全等直角三角形
正是基于上述的指导,因此设计了以下的教学过程。

四、教学过程
五、设计说明
1.教学流程体现了知识产生、形成和发展的过程,符合学生的认知结构和认知规律。

2.教学面向全体学生,发挥学生的主体作用,尊重学生的创造性。

3.注重数学思想方法的渗透;体现了“方法比知识重要”的教学价值观。

相关文档
最新文档