农业智能灌溉系统解决方案

合集下载

智慧农业滴灌系统设计设计方案

智慧农业滴灌系统设计设计方案

智慧农业滴灌系统设计设计方案智慧农业滴灌系统设计方案一、引言滴灌技术是一种高效的灌溉方式,通过将水滴滴入植物根系附近,可以减少水分的蒸发和浪费,提高水的利用效率,减少农药的使用量,降低土壤侵蚀和水资源污染的风险。

为了进一步提高滴灌系统的效率和智能化水平,本文设计了一套智慧农业滴灌系统,并提供了详细的设计方案。

二、系统概述本系统由传感器、控制器、执行器和用户界面组成。

传感器负责监测土壤湿度、土壤温度和光照强度等参数,控制器根据传感器数据作出决策,并通过执行器控制水泵和阀门的开关,从而实现对滴灌系统的精确控制。

三、系统设计1. 传感器:选择高精度、低功耗的土壤湿度传感器、土壤温度传感器和光照强度传感器,安装在植物根部附近,用于监测环境参数。

2. 控制器:采用嵌入式系统设计,主要包括数据采集模块、数据处理模块和决策控制模块。

数据采集模块负责读取传感器数据,数据处理模块将传感器数据进行处理和分析,决策控制模块根据处理后的数据作出灌溉决策。

3. 执行器:包括水泵和阀门。

水泵负责将水泵送至滴灌管道,阀门负责控制滴灌管道的通断。

4. 用户界面:提供一个用户友好的界面,可以显示当前土壤湿度、土壤温度和光照强度等数据,并允许用户手动调节灌溉参数,例如调节灌溉时长和灌溉周期等。

4. 系统工作流程1) 传感器实时监测土壤湿度、土壤温度和光照强度等数据,并将数据发送给控制器。

2) 控制器接收传感器数据,并根据事先设定的算法对数据进行处理和分析。

3) 控制器根据处理后的数据作出灌溉决策,例如当土壤湿度低于一定阈值时,自动开启水泵和相应阀门进行灌溉。

4) 控制器将灌溉决策发送给执行器,执行器开启相应的水泵和阀门进行滴灌。

5) 用户界面显示当前的环境参数,并允许用户手动调节灌溉参数。

5. 系统特点1) 精确控制:通过实时监测土壤湿度、土壤温度和光照强度等参数,可以实现对滴灌系统的精确控制,减少水分的浪费。

2) 自动化决策:根据传感器数据和事先设定的算法,控制器可以自动做出灌溉决策,减少人为干预。

智能农业灌溉系统

智能农业灌溉系统

智能农业灌溉系统智能农业灌溉系统是一项利用现代科技和先进设备来提高农业生产效率的创新解决方案。

它集成了无线传感器网络、数据分析和自动化控制技术,能够实时监测土壤湿度、气象条件和植物生长情况,从而智能地调节灌溉水量和灌溉时间,为农田提供最佳的水分供应。

这篇文章将详细介绍智能农业灌溉系统的工作原理、优势和应用前景。

一、工作原理智能农业灌溉系统的工作原理主要包括以下几个方面:1. 传感器监测:在农田中布置一定数量的土壤湿度传感器,通过测量土壤湿度和其他参数,了解农田当前的水分状况。

同时,还可以添加气象传感器来收集气温、湿度、风向等气象数据。

2. 数据分析:传感器采集到的数据通过无线网络传输到集中控制中心,进行数据分析和处理。

利用机器学习和人工智能算法,对大量数据进行挖掘和分析,生成决策模型和预测模型。

3. 自动控制:根据分析结果,智能农业灌溉系统能够自动地调节灌溉设备的工作状态。

通过智能控制阀门、水泵等设备,调整灌溉水量和灌溉时间,以实现农田的最优灌溉。

二、优势智能农业灌溉系统相比传统的灌溉方式具有明显的优势:1. 提高水资源利用率:智能农业灌溉系统能够根据农田的实际需水量进行精确灌溉,避免了传统方式中的过量灌溉和浪费,有效地节约了水资源。

2. 减少劳动力成本:传统的灌溉需要大量的人工操作,而智能农业灌溉系统可实现自动化控制,减轻了农田管理人员的工作负担,降低了劳动力成本。

3. 提高农作物产量和质量:智能农业灌溉系统可以根据农田的实际情况调节灌溉水量,保证作物在不同生长阶段得到适当的水分供应,从而提高农作物的产量和质量。

4. 减少农药使用量:智能农业灌溉系统可以实时监测农田的水分状况,避免了过度灌溉导致的积水,减少了病虫害的滋生,降低了农药的使用量。

三、应用前景智能农业灌溉系统在现代农业中有广阔的应用前景:1. 大规模农田应用:智能农业灌溉系统适用于大面积农田的灌溉管理,可以有效地提高农田的灌溉效率,降低水资源的利用成本。

智慧灌溉解决方案

智慧灌溉解决方案

06
环境友好:减少化肥和农药的使用,降低对环境的影响
园林绿化
智能灌溉系统:根据植物需求,自动调节灌溉水量和频率
01
01
02
03
04
节水节能:降低水资源浪费,提高灌溉效率
植物监测:实时监测植物生长状况,及时发现问题并采取措施
远程控制:通过手机APP或电脑端远程控制灌溉系统,方便管理
02
03
04
城市绿化
4
3
数据传输:通过无线网络将传感器数据传输到控制中心
数据处理:利用人工智能算法对传感器数据进行处理和分析,生成灌溉方案
2
1
传感器类型:土壤湿度传感器、温度传感器、光照传感器等
传感器功能:实时监测土壤湿度、温度、光照等参数
通信技术
物联网技术:实现设备间的互联互通和数据传输
01
传感器技术:实时监测土壤湿度、温度、光照等参数
智慧灌溉解决方案
演讲人
目录
01.
概述
02.
核心技术
03.
应用场景与功能
04.
部署与实施
05.
应急处理措施
06.
实践与展望
1
概述
智慧灌溉的概念
智慧灌溉是一种利用现代科技手段,实现农业灌溉的智能化、精准化和高效化的技术。
智慧灌溉系统通常包括传感器、控制器、执行器等设备,可以实时监测土壤湿度、温度、光照等环境参数,并根据作物需求进行自动灌溉。
03
环境友好:减少化肥和农药的使用,降低对环境的污染
04
智慧灌溉的应用领域
2019
农业:提高农作物产量,减少水资源浪费
01
2020
园林绿化:提高绿化效果,降低维护成本

自动灌溉方案

自动灌溉方案

自动灌溉方案第1篇自动灌溉方案一、项目背景随着现代农业的快速发展,水资源的高效利用日益受到重视。

为提高灌溉效率,减少人工成本,降低水资源浪费,本项目旨在设计一套自动灌溉系统。

本方案结合当前先进的自动控制技术和灌溉设备,力求实现灌溉的自动化、智能化,以满足农业生产需求。

二、方案目标1. 实现灌溉的自动控制,降低人工干预。

2. 提高灌溉效率,减少水资源浪费。

3. 提高作物产量和品质,促进农业可持续发展。

4. 符合国家相关法律法规,确保系统安全可靠。

三、系统设计1. 灌溉水源: 采用地下水或地表水作为灌溉水源,确保水质符合国家相关标准。

2. 控制系统: 采用先进的自动控制技术,实现对灌溉设备的远程监控与自动控制。

- 传感器: 安装土壤湿度、温度、光照等传感器,实时监测作物生长环境。

- 控制器: 采用可编程逻辑控制器(PLC),实现灌溉系统的自动控制。

- 通信模块: 利用无线或有线通信技术,实现数据传输与远程监控。

3. 执行机构: 包括水泵、阀门、喷灌设备等,根据控制信号实现灌溉操作。

4. 电源系统: 采用太阳能发电系统,实现灌溉系统的绿色环保、节能降耗。

四、实施方案1. 前期调研: 对项目区域进行实地考察,了解土壤性质、气候条件、作物种类等,为灌溉系统设计提供依据。

2. 设备选型: 根据项目需求,选择合适的传感器、控制器、执行机构等设备。

3. 系统设计: 设计灌溉系统布局,包括传感器布置、控制设备安装、灌溉管网规划等。

4. 施工安装: 按照设计方案,进行设备安装和调试。

5. 系统调试: 对灌溉系统进行调试,确保各设备正常运行,实现自动控制。

6. 培训与验收: 对项目相关人员开展技术培训,确保系统正常运行。

完成项目验收,确保系统符合设计方案。

五、运行与维护1. 运行监控: 实时监控灌溉系统的运行状态,确保系统稳定可靠。

2. 数据管理: 建立数据库,对采集的数据进行分析处理,为灌溉决策提供支持。

3. 维护保养: 定期对设备进行维护保养,确保设备正常运行。

智能灌溉工程施工方案范本

智能灌溉工程施工方案范本

智能灌溉工程施工方案范本一、项目背景随着农业的发展和科技的进步,智能灌溉系统已经成为现代农业生产的重要工具。

传统的人工灌溉方式存在着水资源浪费、劳动力成本高等问题,而智能灌溉系统能够通过自动化控制,根据土壤湿度、气温等因素自动调整灌溉量和灌溉时间,从而达到节水、节能的效果。

本项目旨在应用智能灌溉技术,为农田提供高效、节水、节能的灌溉服务,提高农田水资源利用效率,改善农业生产环境,提高农产品质量和产量。

二、工程内容本工程包括智能灌溉系统的设计、安装、调试和使用培训等一系列工作。

具体内容包括:1. 智能灌溉系统的设计:根据农田的地形、作物类型、土壤条件等因素,设计出符合实际需求的智能灌溉系统方案,包括灌溉管网的布置、灌溉设备的选择、控制系统的设计等。

2. 灌溉设备的安装:根据设计方案,对灌溉设备进行布置和安装,包括灌溉管道、喷头、阀门等设备的安装工作。

3. 控制系统的安装和调试:安装智能灌溉系统的控制设备,包括传感器、控制器、执行器等设备,并进行系统调试,确保系统能够正常运行。

4. 系统使用培训:对农民进行智能灌溉系统的使用培训,包括系统的操作方法、维护保养知识,以及如何利用系统进行灌溉管理等方面的培训。

5. 系统的后期维护和服务:在系统建成后,对智能灌溉系统进行定期的巡检和维护,确保系统的正常运行。

三、施工方案1. 设计方案根据农田的实际情况,设计一个符合灌溉需求的智能灌溉系统方案。

设计应该考虑农田的地形、土壤性质、作物类型等因素,保证系统能够实现精准的灌溉。

2. 材料采购根据设计方案,采购所需的灌溉设备、管道、控制系统等材料。

保证采购的材料符合质量标准,满足系统的要求。

3. 施工过程(1)灌溉管网的布置:根据设计方案,对灌溉管网进行布置,保证灌溉管道的连接和布置符合要求。

(2)灌溉设备的安装:对喷头、阀门等灌溉设备进行布置和安装,保证设备的位置和角度符合设计要求。

(3)控制系统的安装:安装控制系统的传感器、控制器、执行器等设备,并进行线路的连接和调试,确保系统能够正常运行。

智能浇灌系统的策划书3篇

智能浇灌系统的策划书3篇

智能浇灌系统的策划书3篇篇一智能浇灌系统的策划书一、引言随着人们对环境保护和水资源节约意识的不断提高,智能浇灌系统作为一种高效、节能的灌溉解决方案,正逐渐受到广泛关注。

本策划书旨在提出一个全面的智能浇灌系统方案,以满足农业、园林和家庭园艺等领域对精准灌溉的需求,提高水资源利用效率,降低灌溉成本,同时提供便捷的管理和控制方式。

二、市场分析1. 农业领域:传统的灌溉方式往往存在水资源浪费和灌溉不均匀的问题,导致农作物产量不稳定。

智能浇灌系统可以根据土壤湿度、气象条件等因素实时调整灌溉量和灌溉时间,提高农作物的产量和质量,同时减少水资源的浪费。

2. 园林领域:园林景观的灌溉需要耗费大量的水资源,而且人工灌溉难以保证灌溉的均匀性和及时性。

智能浇灌系统可以实现自动化灌溉,根据植物的需求进行精准灌溉,节省水资源,提高园林景观的美观度和养护效率。

3. 家庭园艺领域:越来越多的人热衷于家庭园艺,但是对于家庭园艺的灌溉管理往往缺乏专业知识和经验。

智能浇灌系统可以为家庭园艺爱好者提供便捷的灌溉解决方案,让他们轻松地照顾自己的花草植物。

三、系统功能1. 实时监测:系统通过传感器实时监测土壤湿度、温度、光照等环境参数,以及灌溉设备的运行状态,为精准灌溉提供数据支持。

2. 智能控制:根据监测到的参数和预设的灌溉策略,自动控制灌溉设备的开启和关闭,实现精准灌溉,避免水资源的浪费。

3. 远程控制:用户可以通过手机 APP、电脑等远程设备随时随地对智能浇灌系统进行控制和管理,方便快捷。

4. 数据分析:系统对监测到的数据进行分析和统计,灌溉报表和数据分析报告,为用户提供决策依据。

5. 预警功能:当系统监测到异常情况时,如传感器故障、灌溉设备故障等,会及时发出预警信息,提醒用户进行处理。

四、系统组成1. 传感器:包括土壤湿度传感器、温度传感器、光照传感器等,用于实时监测环境参数。

2. 控制器:负责接收传感器的数据,根据预设的灌溉策略进行控制和决策,驱动灌溉设备的运行。

农业科技现代化智能灌溉系统方案

农业科技现代化智能灌溉系统方案第一章:引言 (2)1.1 项目背景 (2)1.2 研究目的 (2)1.3 研究意义 (2)第二章:智能灌溉系统概述 (3)2.1 智能灌溉系统的定义 (3)2.2 智能灌溉系统的发展历程 (3)2.3 智能灌溉系统的分类 (3)第三章:系统设计原理 (4)3.1 系统设计目标 (4)3.2 系统设计原则 (4)3.3 系统设计方法 (4)第四章:硬件设施 (5)4.1 传感器设备 (5)4.2 执行设备 (5)4.3 数据传输设备 (5)第五章:软件系统 (6)5.1 数据采集与分析 (6)5.1.1 数据采集 (6)5.1.2 数据分析 (6)5.2 控制算法 (6)5.2.1 算法设计 (6)5.2.2 算法实现 (7)5.3 用户界面 (7)5.3.1 界面设计 (7)5.3.2 界面实现 (7)第六章:系统实施与集成 (7)6.1 系统实施流程 (7)6.2 系统集成方法 (8)6.3 系统测试与优化 (8)第七章:智能灌溉系统应用案例 (9)7.1 案例一:水稻智能灌溉 (9)7.2 案例二:蔬菜智能灌溉 (9)7.3 案例三:果园智能灌溉 (9)第八章:经济效益分析 (10)8.1 投资成本分析 (10)8.2 运行成本分析 (10)8.3 收益分析 (10)第九章:政策与市场前景 (11)9.1 政策支持 (11)9.1.1 国家层面 (11)9.1.2 地方层面 (11)9.2 市场需求 (11)9.2.1 农业用水需求 (11)9.2.2 农业企业需求 (12)9.2.3 农民需求 (12)9.3 发展趋势 (12)9.3.1 技术创新 (12)9.3.2 市场规模扩大 (12)9.3.3 产业链整合 (12)9.3.4 跨界融合 (12)第十章:结论与展望 (12)10.1 研究结论 (12)10.2 存在问题与改进方向 (13)10.3 未来发展展望 (13)第一章:引言1.1 项目背景我国经济的快速发展和农业现代化的不断推进,农业科技在农业生产中发挥着越来越重要的作用。

农业智能灌溉系统解决方案

农业智能灌溉系统解决方案农业智能灌溉系统是一种利用先进的传感器技术、自动控制和数据分析算法等技术手段,将农田的灌溉过程进行智能化管理的一种系统。

该系统通过实时监测土壤湿度、气温、降雨量等环境条件,利用数据分析算法进行决策,自动调节灌溉设备的灌溉水量和时间,从而实现农田的精准灌溉,提高灌溉效率和水资源利用效率。

1.传感器技术:系统应配备土壤湿度传感器、气温传感器、降雨量传感器等多种传感器,用于实时监测环境条件。

传感器应具有高精度、稳定性好、能耗低等特点,能够长期有效地工作在田间环境中。

2.数据采集与传输:传感器采集到的数据需要通过无线通信或有线通信方式传输到数据中心进行分析。

使用无线传感器网络技术可以实现灵活布置传感器节点,提高数据采集的稳定性和可靠性。

3.数据分析与决策:在数据中心对传感器采集的数据进行实时分析,并经过算法处理得出灌溉决策。

通过分析土壤湿度数据、气温等环境数据,结合作物需水量等参数,采用模糊控制、遗传算法等方法,自动调整灌溉设备的灌溉水量和时间,实现精准灌溉。

4.控制系统:针对不同类型的灌溉设备,设计相应的控制系统,并与数据中心进行通信,实现远程控制和监控。

控制系统应具备可靠性高、反应速度快、易于操作等特点,能够满足各种环境条件下的灌溉需求。

5.动力系统:灌溉设备通常需要配备动力系统,如水泵、发动机等。

动力系统应具备高效、低噪音、可靠性好等特点,能够满足长时间、大流量的灌溉需求。

6.系统监测与维护:在系统运行过程中,需要对传感器、控制系统、动力系统等进行实时监测和维护。

通过远程监控和故障报警系统,可以实现对系统的及时维护和故障处理。

1.精准调控:通过实时监测环境条件和作物需水量等信息,能够根据作物的生长状态和需水量等因素,对灌溉进行动态调控,实现精确灌溉,减少水资源的浪费。

2.节约资源:通过灌溉水量的精确调控,可以避免过度灌溉,减少对水资源的消耗。

同时,系统的自动控制和数据分析功能,能够减少人工干预和管理成本。

农业种植行业智能灌溉系统方案

农业种植行业智能灌溉系统方案第一章智能灌溉系统概述 (2)1.1 系统简介 (2)1.2 系统组成 (2)2.1 数据采集模块 (2)2.2 数据处理模块 (2)2.3 控制执行模块 (2)2.4 通信模块 (2)2.5 用户界面 (3)2.6 电源管理模块 (3)2.7 安全保护模块 (3)第二章智能灌溉系统设计原理 (3)2.1 灌溉需求分析 (3)2.2 系统设计原则 (3)2.3 系统功能模块设计 (4)第三章硬件设备选型与配置 (4)3.1 传感器选型 (4)3.2 执行器选型 (5)3.3 数据传输设备选型 (5)第四章数据采集与处理 (5)4.1 数据采集方法 (5)4.2 数据处理技术 (6)4.3 数据存储与管理 (6)第五章控制策略与算法 (7)5.1 控制策略设计 (7)5.2 算法实现 (7)5.3 系统优化 (8)第六章智能灌溉系统软件设计 (8)6.1 系统架构设计 (8)6.2 界面设计 (9)6.3 功能模块开发 (9)第七章系统集成与调试 (9)7.1 硬件集成 (10)7.2 软件集成 (10)7.3 系统调试 (10)第八章系统运行与维护 (11)8.1 系统运行管理 (11)8.2 系统维护方法 (11)8.3 故障处理 (12)第九章智能灌溉系统应用案例 (12)9.1 应用场景分析 (12)9.2 系统实施与效果评估 (12)9.2.1 系统实施 (12)9.2.2 效果评估 (13)9.3 案例总结 (13)第十章发展前景与趋势 (13)10.1 行业发展趋势 (13)10.2 技术创新方向 (13)10.3 市场前景分析 (13)第一章智能灌溉系统概述1.1 系统简介智能灌溉系统是利用先进的计算机技术、通信技术、传感器技术和自动控制技术,实现对农业种植过程中灌溉的智能化管理。

该系统通过实时监测土壤湿度、气象数据等信息,根据作物需水规律和土壤水分状况,自动调节灌溉水量和灌溉时间,以达到节水和提高作物产量的目的。

农业智能化精准施肥与灌溉系统开发方案

农业智能化精准施肥与灌溉系统开发方案第一章绪论 (3)1.1 研究背景 (3)1.2 研究目的与意义 (3)1.2.1 研究目的 (3)1.2.2 研究意义 (3)1.3 研究内容与方法 (4)1.3.1 研究内容 (4)1.3.2 研究方法 (4)第二章农业智能化精准施肥与灌溉技术概述 (4)2.1 精准施肥技术 (4)2.2 精准灌溉技术 (5)2.3 智能化技术在农业中的应用 (5)第三章系统需求分析 (6)3.1 功能需求 (6)3.1.1 系统概述 (6)3.1.2 功能模块划分 (7)3.2 功能需求 (7)3.2.1 数据采集 (7)3.2.2 数据处理与分析 (7)3.2.3 精准施肥与灌溉建议 (7)3.3 可行性分析 (8)3.3.1 技术可行性 (8)3.3.2 经济可行性 (8)3.3.3 社会可行性 (8)第四章系统设计 (8)4.1 系统架构设计 (8)4.2 硬件设计 (8)4.3 软件设计 (9)第五章数据采集与处理 (9)5.1 数据采集技术 (9)5.1.1 概述 (9)5.1.2 传感器技术 (10)5.1.3 无线通信技术 (10)5.1.4 数据预处理技术 (10)5.2 数据处理方法 (10)5.2.1 概述 (10)5.2.2 数据挖掘 (10)5.2.3 数据分析 (10)5.2.4 数据可视化 (10)5.3 数据存储与管理 (11)5.3.1 概述 (11)5.3.3 数据管理 (11)第六章精准施肥模块开发 (11)6.1 肥料种类识别 (11)6.1.1 模块概述 (11)6.1.2 技术路线 (11)6.1.3 开发步骤 (12)6.2 肥料配比优化 (12)6.2.1 模块概述 (12)6.2.2 技术路线 (12)6.2.3 开发步骤 (12)6.3 施肥决策支持系统 (12)6.3.1 模块概述 (12)6.3.2 技术路线 (13)6.3.3 开发步骤 (13)第七章精准灌溉模块开发 (13)7.1 土壤湿度监测 (13)7.1.1 监测原理与技术 (13)7.1.2 监测布局 (13)7.1.3 数据采集与传输 (13)7.2 灌水策略优化 (14)7.2.1 灌水策略制定 (14)7.2.2 灌水策略实施 (14)7.2.3 灌水效果评估 (14)7.3 灌水决策支持系统 (14)7.3.1 系统架构 (14)7.3.2 数据处理与分析 (14)7.3.3 决策制定与执行 (14)7.3.4 用户交互与反馈 (14)第八章系统集成与测试 (15)8.1 系统集成 (15)8.2 系统测试 (15)8.3 系统优化 (15)第九章经济效益分析与评估 (16)9.1 经济效益分析 (16)9.1.1 投资成本分析 (16)9.1.2 运营成本分析 (16)9.1.3 经济效益评估 (16)9.2 社会效益分析 (17)9.2.1 促进农业现代化 (17)9.2.2 增加农民收入 (17)9.2.3 促进农村经济发展 (17)9.3 生态效益分析 (17)9.3.1 减少化肥污染 (17)9.3.3 改善生态环境 (17)第十章总结与展望 (17)10.1 研究成果总结 (17)10.2 存在问题与挑战 (18)10.3 未来发展趋势与展望 (18)第一章绪论1.1 研究背景我国农业现代化的不断推进,农业生产效率和产品质量的提升已成为农业发展的重要目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

农业智能灌溉系统解决方案
农业智能灌溉系统又叫物联网智能滴灌控制系统,是托普云农为实现现代农业所提倡的节水、节肥、省力、高效而研发出的一种自动化控制灌溉浇水系统。

农业智能灌溉系统是将灌溉节水技术、农作物栽培技术及节水灌溉工程的运行管理技术有机结合,同时集电子信息技术、远程测控网络技术、计算机控制技术及信息采集处理技术于一体,通过计算机通用化和模块化的设计程序,构筑供水流量、压力、土壤水分、作物生长信息、气象资料的自动监测控制系统,进行水、土环境因子的模拟优化,实现灌溉节水、作物生理、土壤湿度等技术控制指标的逼近控制,从而将农业高效节水的理论研究提高到现实的应用技术水平。

农业智能灌溉系统实用性强,灌溉定时定量,适用范围广,功能强大,操作简单,可广泛应用于粮食、蔬菜、花卉、果树、大棚等灌溉管理。

一、农业智能灌溉系统组成:
浙江托普物联网研制的农业智能灌溉系统由首部枢纽、管路和滴头组成。

1.首部枢纽:包括水泵(及动力机)、施肥罐、过滤器、控制与测量仪表等。

其作用是抽水、施肥、过滤,以一定的压力将一定数量的水送入干管。

2.管路:包括干管、支管、毛管以及必要的调节设备(如压力表、闸阀、流量调节器等)。

其作用是将加压水均匀地输送到滴头。

3.滴头:其作用是使水流经过微小的孔道,形成能量损失,减小其压力,使它以点滴的方式滴入土壤中。

滴头通常放在土壤表面,亦可以浅埋保护。

二、农业智能灌溉系统系统工作原理:
1.灌溉控制
灌溉分为人工干预、定时定量、条件控制3种灌溉控制方式,不论哪一种控制方式,当达到灌溉开始条件时,先打开田间阀和主控阀,然后启动水泵,开始进行灌溉。

当一组阀门灌溉结束时,先打开下一组阀门,再关闭正在灌溉的阀门(水泵一直处于运行状态)。

当所有需要灌溉的田间阀灌溉完毕,先关闭水泵,再关闭主控阀和田间阀,这样,一个灌溉过程结束。

2.营养控制
营养液控制方式也分为人工干预、定时定量、条件控制三种。

当进行营养液时,计算机系统根据选定的配方和已设定好的营养液PH、EC值,利用文丘里注肥器进行水肥混合,同时在线实时监测混合营养液的PH、EC值,根据PH、EC设定值与检测值之间的偏差来调整混肥阀的注肥频率,在短时间内使营养液的检测值和设定值之差达到允许的范围内。

当一组田间阀门结束时,先打开下一组阀门,再关闭正在运行的阀门。

当所有需要的田间阀完毕,先关闭泵和水泵,再关闭正在运行的所有阀门,结束控制。

3.过滤器自动反冲洗控制
过滤器反冲洗有2种控制方式,一种为自动控制,一种为计算机手动控制。

自动控制是利用差压开关监测过滤器进、出口两端差压,当过滤器由于堵塞,两端差压达到设定值时,立即中断当前的工作,对过滤器组依次进行反冲洗,冲洗时长可任意设定,冲洗完毕,恢复系统原来的运行状态。

过滤器反冲洗手动控制是当认为过滤器需要反冲洗时,通过启动反冲洗程序界面上的启动键,随时可进行过滤器的反冲洗,冲洗方式与自动控制相同。

4.优先权控制
根据不同控制的重要程度和紧急程度,系统控制的优先权级别划分为3级。

最高级为过滤器反冲洗控制,即不论系统正在执行什么任务,只要接到过滤器反冲洗指令,立即中断当前的工作,执行过滤器反冲洗控制,反冲洗完毕,恢复系统原运行状态。

次高级为人工干预灌溉控制,最低级为定时定量和条件控制灌溉控制。

任何高一级控制都可随时中断比它级别低的控制,并可逐级恢复中断前系统的运行状态。

这样,使系统的应用更加方便实用。

5.环境监测
为保证温室内植物在适宜的环境下生长,提高作物的产量和品质。

FICS-1型智能化控制系统可在线进行温室内外的环境监测,主要监测因子有温室内外的温度、湿度、光照度、CO2浓度。

根据不同作物生长所需的温度、湿度、光照度、CO2浓度等,设置环境因子的上下限报警值。

当达到设定值时,计算机控制系统会发出声光报警,提醒用户介入进行处理,这样可以防止对作物造成伤害。

三、农业智能灌溉系统系统功能:
浙江托普物联网农业智能灌溉系统包括现代温室和普通温室两种类型,系统主要实现以下功能。

(1)人工干预灌溉功能:根据用户设定的不同作物多个阀门的灌溉参数,可实现一次性多个阀门的自动灌溉控制。

(2)定时定量灌溉功能:根据用户设定的不同作物多个阀门的灌溉参数,系统可实现一个月内多个阀门的自动灌溉控制。

(3)条件控制灌溉功能:利用土壤水势传感器监测土壤的含水量,实现多个阀门的全自动灌溉控制。

(4)过滤器反冲洗功能:当自冲洗过滤器两端的压差达到设定压力时,计算机可自动控制过滤器逐一进行冲洗。

(5)多种控制方式的穿插和记忆保存功能:控制方式的优先级别顺序为过滤器反冲洗>人工干预>定时定量=条件控制。

(6)灌溉信息的统计、查询、打印功能。

(7)温室内外环境因子的实时监测功能。

(8)系统运行状态的动态显示功能。

(9)系统传感器的通断选择及校正功能。

(10)系统的报警及安全保护功能。

(11)田间电磁阀的任意分组功能。

(12)水泵恒压变频控制功能。

四、农业智能灌溉系统系统主要特点:
(1)功能强大,操作简便。

拥有人工干预、定时定量、条件控制3种灌溉控制
方式,用户可根据实际情况选用。

同时系统还拥有过滤器反冲洗、信息查询、环境监测等多种功能;全中文界面,方便用户使用。

(2)系统硬件配置高,性能稳定,价格低廉;系统控制硬件选用进口的PLC和触摸屏、工控机和板卡,执行机构为进口的电磁阀、水泵,保证了系统的可靠性和稳定性。

系统关键设备如自冲洗过滤器、文丘里注肥器、PH/EC监测仪实现了国产化,降低了系统造价,该系统价格比同类进口产品低40%左右。

(3)节水、节肥、省工、降低劳动强度,提高了自动化管理水平。

(4)系统规格齐全,产品系列化;拥有现代温室农业智能灌溉系统、大规模日光温室农业智能灌溉系统,系统的控制流量为10~50 M3/H,用户可根据实际需要选用。

(5)实用性强,适用范围广;可广泛应用于蔬菜、花卉、果树、食用菌的灌溉管理,具有较强的通用性。

相关文档
最新文档