极限的运算法则
极限的运算法则

常数因子可以提到极限记号外面.
推论2
如果 lim f ( x)存在,而n是正整数,则 lim[ f ( x)]n [lim f ( x)]n .
二、求极限方法举例
例1
求
lim
x2
x2
x3 1 3x
5
.
解 lim( x 2 3 x 5) lim x 2 lim 3 x lim 5
5 1
2 lim
x
7
3
x 4
x
5 x3 1 x3
2. 7
(无穷小因子分出法)
小结: 当a0 0, b0 0, m和n为非负整数时有
lim
x
a0 x m b0 x n
a1 x m 1 b1 x n1
am bn
0ab,00当,当n n
m m,
,
,当n m,
无穷小分出法:以分母中自变量的最高次幂除分子,分母,以分出 无穷小,然后再求极限.
lim
x x0
f
( x)
a
0
(
lim
x x0
x)n
a1
(
lim
x x0
x)n1
an
a0 x0 n a1 x0 n1 an f ( x0 ).
2. 设
f
(
x)
P( x) Q( x)
,
且Q( x0
)
0,
则有
lim P( x)
lim f ( x) x x0
x x0
lim Q( x)
x x0
一、极限运算法则
定理 设 lim f ( x) A, lim g( x) B,则 (1) lim[ f ( x) g( x)] A B; (2) lim[ f ( x) g( x)] A B; (3) lim f ( x) A , 其中B 0. g( x) B
极限的运算法则及计算方法

极限的运算法则及计算方法极限是微积分中的一个重要概念,用于研究函数在接近其中一点时的趋势。
在许多情况下,计算极限可以通过应用一些运算法则来简化。
本文将介绍极限的运算法则以及一些常用的计算方法。
一、极限的四则运算法则1. 乘法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) * g(x))的极限等于f(x)的极限乘以g(x)的极限,即lim(x→a) [f(x) * g(x)] = lim(x→a) f(x) * lim(x→a) g(x)。
2. 除法法则:如果函数f(x)的极限存在,g(x)的极限存在且g(x)不等于0,则(f(x) / g(x))的极限等于f(x)的极限除以g(x)的极限,即lim(x→a) [f(x) / g(x)] = lim(x→a) f(x) / lim(x→a) g(x)。
3. 加法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) + g(x))的极限等于f(x)的极限加上g(x)的极限,即lim(x→a) [f(x) + g(x)] = lim(x→a) f(x) + lim(x→a) g(x)。
4. 减法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) - g(x))的极限等于f(x)的极限减去g(x)的极限,即lim(x→a) [f(x) - g(x)] = lim(x→a) f(x) - lim(x→a) g(x)。
二、极限的乘方法则1. 幂函数法则:对于任意正整数n,如果函数f(x)的极限存在,则(f(x)^n)的极限等于f(x)的极限的n次方,即lim(x→a) [f(x)^n] = [lim(x→a) f(x)]^n。
2. 平方根法则:如果函数f(x)的极限存在且大于等于0,则√[f(x)]的极限等于f(x)的极限的平方根,即lim(x→a) √[f(x)] =√[lim(x→a) f(x)]。
三、特殊函数的极限计算法则1. 三角函数:常见的三角函数包括正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)等。
极限的运算法则

目录
特例1:常数因子可提到极限记号外面
lim[c f (x)] c lim f (x) (c为常数)
特例2:推广到有限个函数的积
lim[ f (x)]n [lim f (x)]n A(n n N*)
x
a0 xm b0 xn
a1 xm1 b1 xn1
am bn
ቤተ መጻሕፍቲ ባይዱ
a0 ,当n m(分子最高次幂 分母最高次幂) b0
0, 当m (n 分子最高次幂 分母最高次幂)
要记住哦 !
目录
练习
1.求
lim
x
5x2 7x2
3x 6x
4 1
解
x2 16
(x 4)(x 4)
lim
lim
lim(x 4) 8
x4 x 4 x4
x4
x4
目录
lim x2 9 x3 x 3
解 分析:因为 lim(x2 9) 0,lim(x 3) 0.
x3
x3
lim x2 9 lim ( x 3)( x 3) lim( x 3) 6
lim
x
3x2
1
2 lim
x
3
3 x2 1 x2
lim(2
x
3 x2
)
lim(3
x
1 x2 )
20 2 30 3
目录
lim x 1 . ( 型 ) x x2 x 1
lim
1 x
1.3 极限运算法则

解 先用 x 3去除分子分母,再求极限
3 2 3 2 2x 3x 5 x lim 3 lim x 7 x 4 x 2 1 x 4 7 x
2 . 7
5 x3 1 3 x
上页 下页 返回
§1.3 极限运算法则
例3
2x 3 求 lim 2 . x 3 x x 1
( x) a
取 min 0 , 1 , 则当 0 x x0 时 0 ( x) a u a 因此
x x0
f ( u) A ,
故 lim f [ ( x )] A.
上页 下页 返回
§1.3 极限运算法则
lim( x 2 3 x 2) lim x 2 lim 3 x lim 2
x 1 x 1 x 1 x 1
(lim x )2 3lim x 2 12 3 1 2 6 0,
x 1 x 1
lim( x 1) x 1 11 1 x 1 lim 2 . 2 x 1 x 3 x 2 lim( x 3 x 2) 6 3
上页 下页 返回
§1.3 极限运算法则
思考练习
在自变量同一变化过程中,若 f ( x ) 有极限,g( x )无极限,那么 f ( x ) g( x )是 否有极限?为什么?
上页 下页 返回
§1.3 极限运算法则
思考练习
解答
没有极限.
假设 f ( x ) g( x ) 有极限, f ( x ) 有极限, 由极限运算法则可知:
g( x ) f ( x ) g( x ) f ( x ) 必有极限,
与已知矛盾,故假设错误.
函数极限的四则运算法则公式

函数极限的四则运算法则公式
1.两个函数的和的极限等于两个函数极限之和,即
lim[f(x) + g(x)] = lim f(x) + lim g(x)
2. 两个函数的差的极限等于两个函数极限之差,即
lim[f(x) - g(x)] = lim f(x) - lim g(x)
3. 两个函数的积的极限等于两个函数极限之积,即
lim[f(x) * g(x)] = lim f(x) * lim g(x)
4. 两个函数的商的极限等于两个函数极限之商,即
lim[f(x) / g(x)] = lim f(x) / lim g(x) (其中lim g(x) ≠ 0)
这些四则运算法则公式对于求解函数极限问题非常有用,可以大大简化计算过程,提高求解效率。
需要注意的是,在应用这些公式时,应先确定各个函数的极限是否存在,以及分母函数是否为零。
- 1 -。
极限的运算法则

lim(
n
1 n2
2 n2
n n2
)
lim
n
1
2
n2
n
1 n(n 1)
lim 2 n
n2
1 2
lim(1
n
n1 )
1. 2
目录
小结
------极限求法;
1.多项式与分母不为零的分式函数代入法求极限;
2.利用无穷小与无穷大的关系求 A型极限;
0
0
3.消去零因子法求 0极限;
4.分子分母同除以x的最高次方法求 (x 型) 极限; 5.通分法求 极限;
0
则来计算的极限
目录
*求未定式极限方法举例、练习 1. 0 型有理式 0
约零因子法(因 式分解)
方法:分子分母分解因式,消去使他们趋于
零的公因子
( 0型) 0
解
目录
x2 9 lim x3 x 3
解 分析:因为 lim(x2 9) 0,lim(x 3) 0.
x3
x3
lim x2 9 lim ( x 3)( x 3) lim( x 3) 6
lim[c f (x)] c lim f (x) (c为常数)
特例2:推广到有限个函数的积
3、除法法则: 商的极限等于极限的商
lim
f (x) g( x)
lim f (x)
lim g(x)
A B
(B 0)
小 结: 函数的和、差、积、商的极限等于函数极限
的和、差、积、商
目录
(1)和函数的极限等于极限的和. (2)积函数的极限等于极限的乘积. (3)商函数的极限等于极限的商(分母不为零).
lim
x
2 3
2.4 极限的运算法则

10
极限的运算法则
练习
x5 1 lim 7 x2 x 1 x3 x3 2 lim lim x3 x 2 9 x 3 x 3 x 3
高 等 数 直接代入法 学 经 1 济 6 消零因子法 类
8 x 3 8 x 3
x x
(2) lim[ f ( x ) g( x )] A B ;
f ( x) A (3) lim , 其中B 0. x g( x ) B
高 等 数 学 经 济 类
上一页 下一页 主页
2
极限的运算法则
推论1
如果 lim f ( x )存在, 而c为常数, 则 lim[cf ( x )] c lim f ( x ).
3 xlim 1
8 x 3 lim x 1 x 1
8 x 3
x 1
x 1
11
lim
x 1 8 x 3
x 1
1 6
上一页 下一页 主页
极限的运算法则
高 3x x 1 等 例6 求 lim 2 . ( 型) x 2 x 4 x 3 数 学 解 x 时, 分子, 分母的极限都是无穷大 .经 济 2 先用x 去除分子分母, 分出无穷小, 再求极限.类
则 lim( x 2 ax b ) 1 a b 0.
x 1
x +ax b ( x 1 a )( x 1) 于是 lim 2 lim x 1 x 2 x 3 x 1 ( x 3)( x 1)
2
Байду номын сангаас经 济 类
x 1 a 2 a lim 2. x 1 x3 4 故a 6, b 7.
第四节 极限的运算法则

a0 b , 当n m , 0 m m 1 a0 x a1 x a m lim 0,当n m , n n 1 x b x b x bn 0 1 , 当n m ,
无穷小分出法:以分母中自变量的最高次幂 除分子、分母,以分出无穷小,然后再求极限.
. 解: x 时, 分子, 分母的极限都是无穷大
先用x 去除分子分母, 分出无穷小, 再求极限.
3
3 2 3 2 2x 3x 5 x lim 3 lim 2 x 7 x 4 x 1 x 4 7 x
(无穷小因子分出法)
5 3 x 2. 7 1 3 x
小结: 当a 0 0, b0 0, m 和n为非负整数时有
x2 2
x2
x2
小结: 1. 设 f ( x ) a x n a x n 1 a , 则有 0 1 n
x x0
lim f ( x ) a 0 ( lim x ) n a1 ( lim x ) n 1 a n
a0 x0 a1 x0
lim P ( x )
二、求下列各极限:
1 1 1 1、 lim(1 ... n ) n 2 4 2
( x h) 2 x 2 2、 lim h 0 h
1 3 3、 lim( ) 3 x 1 1 x 1 x
1 x 3 4、 lim x 8 2 3 x
5、 lim ( x x x x )
0
n
x x0
n 1
a n f ( x 0 ).
x x0
P( x) 2. 设 f ( x ) , 且Q( x 0 ) 0, 则有 Q( x )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.7 (2)极限的运算法则
一、教学内容分析
本小节的教学内容是在理解无穷数列极限的概念的基础上学习数列极限的运算性质及四个重要的极限,鉴于高二学生现有的数学基础,教材采取从实际的例子引入,给出数列极限的运算性质及四个重要极限的结论,然后通过例题加以说明的方式.
教学重点是数列极限的运算性质,教学中要强调运算性质成立的条件是两个数列的极限都存在.
教学难点是数列极限的运算性质及四个重要极限结论的灵活运用,会进行恒等变形,运算性质可从两个数列推广到有限个数列,注意有限与无限的本质区别.
二、教学目标设计
掌握数列极限的运算性质,会利用这些性质计算数列的极限.
知道数列极限的四个重要结论,并会用它们来求有关数列的极限;
会运用式的恒等变形,把分子、分母极限不存在的分式转化为若干个极限存在的数列的代数和,从而求出极限,提高观
察,分析以及等加转换的能力.
三、教学重点及难点
重点:数列极限的运算性质.
难点:数列极限的运算性质及重要极限的灵活运用.
四、教学流程设计
五、教学过程设计
一、复习回顾
1、数列极限的定义.
2、已知1
23-=n n a n 试判断数列{}n a 是否有极限,如果有,写 出它的极限.
二、讲授新课
1、实例引入
计算由抛物线x y =2,x 轴以及直线x=1所围成的区域
面积S :2
6)12)(1(lim lim n n n S S n n n --==∞→∞→ 2、数列极限的运算性质
(1)数列极限的运算性质
如果B b A a n n n n ==∞
→∞→lim ,lim ,那么 (1)B A b a b a n n n n n n n ±=±=±∞
→∞→∞→lim lim )(lim ; (2)B A b a b a n n n n n n n ⋅=⋅=⋅∞
→∞→∞→lim lim )(lim ; (3)B A b a b a n n n n n n n ==∞
→∞→∞→lim lim lim ; (2)的推论:若C 是常数,则A C a C b C n n n n n ⋅=⋅=⋅∞
→∞→∞→lim lim )(lim 说明:1、运算性质成立的条件
2、在数列商的极限中,作为分母的数列的项及其极 限都不为零.
(2)常用的数列极限的几个结论
(1)对于数列{}n q ,当1<q 时,有0lim =∞
→n n q (2)对于数列⎭⎬⎫⎩⎨⎧n 1,有01lim =∞→n
n (3)对于无穷常数列{}C ,有C C n =∞
→lim (3)例题解析
例1:(1))27(lim n n -∞→;(2)n n n 43lim +∞→;(3)26)12)(1(lim n
n n n --∞→ 例2:(1))23741(lim 2222n n n n n n -++++∞→ (2)13
23
443lim +++∞→+-n n n n n 说明:1、(2)(3)中,当n 无限增大时,分式中的分子,分
母的极限都不存在,因式极限的运算性质不能直接运 用,为此,可将公式中的分子,分母同时除以n 的最 高次幂,再运用极限的运算性质求出极限;
2、极限的运算性质可由两个数列的和、差、积、商推
广到有限项的和、差、积、商.
3、巩固练习
1.“B b A a n n n n ==∞→∞→lim ,lim ”是“B A b a n n n +=+∞
→)(lim ”成立的 什么条件?为什么?
2.已知2lim ,3lim -==∞→∞→n n n n b a ,求n
n n n b b a 2lim +∞→ 3.计算:
(1))3
2(lim ++∞→n n n ;(2)22
)12()2(3lim -+∞→n n n ; (3))1
131211(lim 2222++++++++∞→n n n n n n (4)n
n n n n 5335lim 121-++++∞→ 三、课堂小结
1、数列极限的运算性质
(1)条件
(2)运算
(3)推广
2、四个重要极限 思考题:设0,0>>b a ,求2
1lim ++∞→+-n n n
n n b a b a。