组合体的投影习题

合集下载

初中数学北师大版九年级上册第五章投影与视图练习题

初中数学北师大版九年级上册第五章投影与视图练习题

初中数学北师大版九年级上册第四章投影与视图练习题一、选择题1.如图,路灯灯柱OP的长为8米,身高米的小明从距离灯的底部点米的点A处,沿AO所在的直线行走14米到达点B处,人影的长度A. 变长了米B. 变短了米C. 变长了米D. 变短了米2.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是A. B.C. D.3.如图,在直角坐标系中,点是一个光源.木杆AB两端的坐标分别为,则木杆AB在x轴上的投影长为A. 3B. 5C. 6D. 74.在相同时刻的物高与影长成比例,如果高为m的测杆的影长为m,那么影长为30m的旗杆的高是A. 20mB. 16mC. 18mD. 15m5.小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成的投影不可能是A. B.C. D.6.在相同时刻的物高与影长成比例,如果高为的测杆的影长为3m,那么影长为30m的旗杆的高是A. 15mB. 16mC. 18mD. 20m7.相同时刻太阳光下,若高为的测杆的影长为3m,则影长为30m的旗杆的高是A. 15mB. 16mC. 18mD. 20m8.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿,它的影子,木竿PQ的影子有一部分落在了墙上,它的影子,,木竿PQ的长度为A. 3mB.C.D.9.如图中的几何体是由六个完全相同的小正方体组成的,它的主视图是A. B.C. D.10.如图,该几何体的俯视图是A. B. C. D.11.如图所示,该几何体的俯视图是A. B. C. D.12.如图所示的几何体的主视图为A. B. C. D.13.观察如图所示的三种视图,与之对应的物体是A.B.C.D.14.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底面边长分别为A. 3,B. 2,C. 3,2D. 2,315.下列四个几何体中,主视图与俯视图不同的共有.A. 1个B. 2个C. 3个D. 4个二、填空题16.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为______17.如图,AB和DE是直立在地面上的两根立柱,米,某一时刻AB在阳光下的投影米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为_________.18.一个长方体的主视图和左视图如图所示单位:,则这个长方体的体积是______.19.用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要_____个立方块,最多要_________个立方块.20.如图所示是若干个大小相同的小正方体搭成的几何体从三个不同方向看到的图形,则搭成这个几何体的小正方体的个数是______.三、解答题21.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.22.如图,灯杆AB与墙MN的距离为18米,小丽在离灯杆底部米的D处测得其影长DF为3m,设小丽身高为.求灯杆AB的高度;小丽再向墙走7米,她的影子能否完全落在地面上?若能,求此时的影长;若不能,求落在墙上的影长.23.一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC 方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得,已知标杆直立时的高为,求路灯的高CD的长.24.一个几何体从三个方向看到的图形如图所示单位:.写出这个几何体的名称:_____;若其从上面看为正方形,根据图中数据计算这个几何体的表面积.答案和解析1.【答案】D【解析】【分析】此题考查中心投影及相似三角形的应用,应注意题中三角形的变化.小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x米,B处时影长为y米.则米,米,,,∽,∽,,,则,;,,,故变短了米.故选D.2.【答案】C【解析】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A 选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.3.【答案】C【解析】【分析】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大即位似变换的关系.利用中心投影,延长PA、PB分别交x轴于、,作轴于E,交AB于D,如图,证明∽,然后利用相似比可求出的长.【解答】解:延长PA、PB分别交x轴于、,作轴于E,交AB于D,如图,,,.,,,,∽,,即,,故选C.4.【答案】C【解析】【分析】本题考查的是中心投影,熟知同一时刻物高与影长成正比是解答此题的关键.设影长为30m的旗杆的高是xm,再由同一时刻物高与影长成正比列式计算即可得出结论.【解答】解:设影长为30m的旗杆的高是xm,在相同时刻物高与影长成比例,高为的测杆的影长为,,解得.故选C.5.【答案】B【解析】【分析】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【解答】解:当等边三角形木框与阳光平行时,投影是A;当等边三角形木框与阳光垂直时,投影是C;当等边三角形木框与阳光有一定角度时,投影是D;投影不可能是B.故选B.6.【答案】A【解析】【分析】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.设影长为30m的旗杆的高是xm,再由同一时刻物高与影长成正比即可得出结论.【解答】解:设影长为30m的旗杆的高是xm,在相同时刻物高与影长成比例,高为的测杆的影长为3m,,.故选A.7.【答案】A【解析】【分析】此题考查了物高与影长的关系,解题的关键是将实际问题转化为数学问题,根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.【解答】解:,,解得:旗杆的高度米.故选A.8.【答案】B【解析】【分析】此题主要考查了平行投影以及相似三角形的应用有关知识,直接利用同一时刻物体影子与实际高度成比例,进而得出答案.【解答】解:连接AC,过点M作,同一时刻物体影子与实际高度成比例,,解得:,,故选B.9.【答案】B【解析】解:从正面看第一层是3个小正方形,第二层右边1个小正方形.故选:B.根据从正面看是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10.【答案】A【解析】解:从几何体的上面看可得,故选:A.找到从几何体的上面所看到的图形即可.此题主要考查了简单几何体的三视图,关键是掌握所看的位置.11.【答案】D【解析】解:从上边看是三个矩形,故选:D.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.12.【答案】D【解析】解:从几何体的正面看,是一个矩形,矩形的中间有一条纵向的实线.故选:D.利用主视图的定义,即从几何体的正面观察得出视图即可.此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.13.【答案】D【解析】【分析】本题考查了由三视图判断几何体的知识,解题的关键是结合三视图及三个几何体确定正确的答案,难度不大,首先根据主视图中有两条虚线,发现该几何体的应该有两条从正面看不到的棱,然后结合俯视图及提供的三个几何体确定正确的序号.【解答】解:结合主视图和俯视图发现几何体的背面应该有个凸起,故淘汰选项ABC,选D.故选:D.14.【答案】C【解析】【分析】本题考查简单几何体的三视图,由俯视图和主视图知道棱柱顶的正方形对角线长是,根据勾股定理列出方程求解.【解答】解:设底面边长为x,则,解得,即底面边长为2,根据图形,这个长方体的高是3,根据求出的底面边长是2 ,故选C.15.【答案】B【解析】【分析】本题考查了几何体的三种视图,掌握定义及各几何体的特点是关键.主视图是从正面看到的图形,俯视图是从物体的上面看到的图形,可根据各几何体的特点进行判断即可.【解答】解:圆柱的主视图是矩形,俯视图是圆,它的主视图与俯视图不同;圆锥的主视图是等腰三角形,俯视图是圆,它的主视图与俯视图不同;球体的三视图均为圆,故它的主视图和俯视图相同;正方体的三视图均为正方形,故它的主视图和俯视图也相同;所以主视图与俯视图不同的是圆柱和圆锥,故选B.16.【答案】24【解析】解:设这栋建筑物的高度为xm,由题意得,,解得,即这栋建筑物的高度为24m.故答案为:24.根据同时同地的物高与影长成正比列式计算即可得解.本题考查了相似三角形的应用,熟记同时同地的物高与影长成正比是解题的关键.17.【答案】10米【解析】【分析】本题通过投影的知识结合图形相似的性质巧妙地求出灯泡离地面的距离,是平行投影性质在实际生活中的应用.根据平行的性质可知∽,利用相似三角形对应边成比例即可求出DE的长.【解答】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,由题意得,∽,,,,,,米.故答案为10米.18.【答案】24【解析】解:由主视图可知,这个长方体的长和高分别为3和4,由左视图可知,这个长方体的宽和高分别为2和4,因此这个长方体的长、宽、高分别为3、2、4,因此这个长方体的体积为.故答案为:24.由所给的视图判断出长方体的长、宽、高,根据体积公式计算即可.本题是由两种视图考查长方体的特征,这种类型问题在中考试卷中经常出现,本题所用的知识是:主视图主要反映物体的长和高,左视图主要反映物体的宽和高.19.【答案】10,14【解析】【分析】本题主要考查了三视图判断几何体,要分成最多,最少两种情况进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”算出个数.根据“俯视图打地基,正视图疯狂盖,左视图拆违章”解答即可.【解答】解:根据主视图和俯视图可知,正方体的分布的情况如下图所示:最多的正方体需要14个;正方体的分布最少的情况如下图所示:最少需要10个.故答案为10,14.20.【答案】7【解析】解:在俯视图标出相应位置摆放小立方体的个数,如图所示:因此需要小立方体的个数为7,故答案为:7.在俯视图上摆小立方体,确定每个位置上摆小立方体的个数,得出答案.考查简单几何体的三视图的画法,画三视图时还要注意“长对正、宽相等、高平齐”.21.【答案】解:如图所示:【解析】读图可得,从正面看有3列,每列小正方形数目分别为1,2,1;从左面看有3列,每列小正方形数目分别为2,1,1;从上面看有3行,每行小正方形数目分别为2,2,2,依此画出图形即可.本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.22.【答案】解:,,∽,,.灯杆AB的高度为米.将CD往墙移动7米到,作射线交MN于点P,延长AP交地面BN于点Q,如图所示.,,∽,,即,.同理,可得出∽,,即,.小丽的影子不能完全落在地面上,小丽落在墙上的影长为1米.【解析】由、可得出∽,根据相似三角形的性质可求出AB的长度,此题得解;将CD往墙移动7米到,作射线交MN于点P,延长AP交地面BN于点Q,由、可得出∽,根据相似三角形的性质可求出的长度,同理可得出∽,再利用相似三角形的性质可求出PN的长度,此题得解.本题考查了相似三角形的应用以及中心投影,解题的关键是:由∽利用相似三角形的性质求出AB的长度;由∽利用相似三角形的性质求出PN的长度.23.【答案】解:设CD长为x米,,,,,,米,∽,,即,解得:.经检验,是原方程的解,路灯高CD为米.【解析】根据,,,得到,从而得到∽,利用相似三角形对应边的比相等列出比例式求解即可.本题考查了相似三角形的应用,解题的关键是根据已知条件得到平行线,从而证得相似三角形.24.【答案】解:长方体;由三视图知,几何体是一个长方体,长方体的底面是边长为3的正方形,高是4,则这个几何体的表面积是答:这个几何体的表面积是.【解析】【分析】此题考查了由三视图判断几何体和几何体的表面积求法,正确判断出几何体的形状是解题的关键.由2个视图是长方形,那么这个几何体为棱柱,另一个视图是正方形,那么可得该几何体是长方体;由三视图知,长方体的底面是边长为3的正方形,高是4,根据长方体表面积公式列式计算即可.【解答】解:根据三视图可得这个几何体是长方体.故答案为长方体;见答案.。

九年级数学下册第二十九章《投影与视图》综合经典习题(答案解析)

九年级数学下册第二十九章《投影与视图》综合经典习题(答案解析)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图所示的几何体的主视图是()A.B.C.D.2.一张矩形纸片在太阳光的照射下,在地面上的投影不可能是()A.正方形B.平行四边形C.矩形D.等边三角形3.如图由5个相同的小正方体组成的-个立体图形,其俯视图是()A.B.C.D.4.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是()A.6 B.5 C.4 D.35.如图所示立体图形,从上面看到的图形是()A.B.C.D.6.如图,把一个棱长为3的正方体的每个面等分成9个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去7个小正方体),所得到的几何体的表面积是()A.78 B.72 C.54 D.487.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)8.下列四个几何体中,主视图是三角形的是()A.B.C.D.9.如图所示,所给的三视图表示的几何体是()A.圆锥B.四棱锥C.三棱锥D.三棱柱10.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A.B.C.D.11.如图是一个由若干个相同的小正方体组成的几何体的三种形状图,则组成这个几何体的小正体的个数是( )A.7 B.8 C.9 D.1012.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和左视图,那么组成该几何体所需小正方体的个数最少为()A.4 B.5C.6 D.713.如图,是一块带有圆形空洞和正方形空洞(圆面直径与正方形边长相等)的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的可能是().A.B.C.D.14.如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是()A.6个B.7个C.8个D.9个第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题15.10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是____________.16.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是________(结果保留 ).17.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积是__________.18.八中食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如表:碟子的个数碟子的高度(单位:cm)1222+1.532+342+4.5……现在分别从三个方向上看若干碟子,得到的三视图如图所示,厨房师傅想把它们整齐地叠成一摞,求叠成一摞后的高度为_____cm.19.在一快递仓库里堆放着若干个相同的正方体快递件,管理员从正面看和从左面看这堆快递如图所示,则这正方体快递件最多有_____件.20.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=______m.21.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30°,同一时刻,一根长为1米,垂直于地面放置的标杆在地面上的影长为2米,则树的高度为___.22.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.23.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是_____.24.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.25.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.26.张师傅按1:1的比例画出某直三棱柱零件的三视图,如图所示,已知EFG中,==,4512,18EF cm EG cm∠=︒,则AB的长为_____cm.EFG参考答案三、解答题27.如图是由几个小立方体所堆成的几何俯视图,小下方形里的数学字表示该位置小立方块的个数,请画出这个几何主视图和左视图:28.画出如图所示的几何体的主视图、左视图和俯视图.29.如图,王乐同学在晩上由路灯A走向路灯B.当他行到P处时发现,他往路灯B下的影长为2m,且恰好位于路灯A的正下方,接着他又走了6.5m到Q处,此时他在路灯A下的影孑恰好位于路灯B的正下方(已知王乐身高1.8m,路灯B高9m).(1)王乐站在P处时,在路灯B下的影子是哪条线段?(2)计算王乐站在Q处时,在路灯A下的影长;(3)计算路灯A的高度.30.如图,是由8块棱长都为1的小正方体组合成的简单几何体.(1)请画出这个几何体的三视图并用阴影表示出来;(2)该几何体的表面积(含下底面)为________.【参考答案】一、选择题1.C2.D3.C4.B5.C6.B7.C8.B9.D10.C11.C12.B13.B14.D二、填空题15.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的16.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm高是6cm圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周17.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键18.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x时碟子的高度为2+15(x﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=2319.39【分析】由主视图可得组合几何体有4列由左视图可得组合几何体有4行可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得20.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB21.6+【解析】【分析】延长AC交BF延长线于D点则BD即为AB的影长然后根据物长和影长的比值计算即可【详解】延长AC交BF延长线于D点则∠CFE=30°作CE⊥BD于E在Rt△CFE中∠CFE=30°22.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键23.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为724.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△ECD∴解25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC中作AD⊥BC于D则26.【分析】作EH⊥FG于点H解直角三角形求出EH即可得出AB的长度【详解】解:如图所示作EH⊥FG于点H∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图三、解答题27.28.29.30.【参考解析】一、选择题1.C解析:C【分析】根据三视图的定义,主视图是底层有两个正方形,左侧有三层,即可得到答案.【详解】解:由题图可知,主视图为故选:C【点睛】本题考查了简单几何体的三视图,解题的关键是熟练掌握三视图的定义.2.D解析:D【分析】根据平行投影的性质求解可得.【详解】一张矩形纸片在太阳光线的照射下,形成影子不可能是等边三角形,故选:D.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.3.C解析:C【分析】根据立体图形三视图的性质进行判断即可.【详解】根据立体图形三视图的性质,该立体图形的俯视图为故答案为:C.【点睛】本题考查了立体图形的三视图,掌握立体图形三视图的性质是解题的关键.4.B解析:B【分析】根据主视图和俯视图分析每行每列小正方体最多的情况,即可得出答案.【详解】由题中所给出的主视图知物体共两列,且左侧一列高两层,右侧一列最高一层;由俯视图可知左侧两行,右侧一行,于是,可确定右侧只有一个小正方体,而左侧可能是一行单层一行两层,可能两行都是两层.最多的情况如图所示,所以图中的小正方体最多5块.故选:B.【点睛】本题考查根据三视图判断小正方体个数,需要一定空间想象力,熟练掌握主视图与俯视图的定义是解题的关键.5.C解析:C【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【详解】从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点睛】本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.6.B解析:B【解析】【分析】如图所示,一、棱长为3的正方体的每个面等分成9个小正方形,那么每个小正方形的边长是1,所以每个小正方面的面积是1;二、正方体的一个面有9个小正方形,挖空后,这个面的表面积增加了4个小正方形,减少了1个小正方形,即:每个面有12个小正方形,6个面就是6×12=72个,那么几何体的表面积为72×1=72.【详解】如图所示,周边的六个挖空的正方体每个面增加4个正方形,减少了1个小正方形,则每个面的正方形个数为12个,则表面积为12×6×1=72.故选:B.【点睛】主要考查学生的空间想象能力,解决本题的关键是能够想象出物体表面积的变化情况. 7.C解析:C【分析】根据平行投影的规律:早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长可得.【详解】根据平行投影的规律知:顺序为(4)(3)(1)(2).故选C.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.8.B解析:B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.9.D解析:D【解析】分析:由左视图和俯视图可得此几何体为柱体,根据主视图是三角形可判断出此几何体为正三棱柱.详解:∵左视图和俯视图都是长方形,∴此几何体为柱体,∵主视图是一个三角形,∴此几何体为三棱柱.故选D.点睛:考查了由三视图判断几何体,用到的知识点为:由左视图和俯视图可得几何体是柱体,锥体还是球体,由主视图可确定几何体的具体形状.10.C解析:C【解析】分析:俯视图就是要从问题的正上方往下看,相当于把物体投影到平面.详解:圆柱体和球体投影到平面以后都是圆形,故排除A,因为圆形的轮廓线都是可以看到的,所以选C.点睛:三视图中,可以看到的轮廓线,要化成实线,看不到的轮廓线,要化成虚线. 11.C解析:C【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行判断.【详解】解:综合三视图,这个几何体的底层有3+2+1=6个小正方体,第二层有1+1=2个小正方体,第三层有1个,因此组成这个几何体的小正方形有6+2+1=9个.故选C.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就容易得到答案了.12.B解析:B【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【详解】由题中所给出的主视图知物体共三列,且左侧一列高两层,中间一列高1层,右侧一列最高两层;由左视图可知左侧两,右侧一层,所以图中的小正方体最少3+2=5块.故选B.【点睛】本题主要考查三视图的相关知识:主视图主要确定物体的长和高,左视图确定物体的宽和高,俯视图确定物体的长和宽.13.B解析:B【分析】根据题意,满足条件的空间几何体的三视图中含有圆和正方形.然后分别进行判断即可.【详解】A.正方体的正视图为正方形,侧视图为正方形,俯视图也为正方形,不满足条件.B.圆柱的正视图和侧视图为相同的矩形,俯视图为圆,满足条件.C.圆锥的正视图为三角形,侧视图为三角形,俯视图为圆,不满足条件.D.球的正视图,侧视图和俯视图相同的圆,不满足条件.故选B.【点睛】本题主要考查三视图的识别和判断,解题关键在于熟练掌握常见空间几何体的三视图,比较基础.14.D解析:D【解析】由俯视图可得得最底层有5个立方体,由左视图可得第二层最少有1个立方体,最多有3个立方体,所以小立方体的个数可能是6个或7个或8个,小立方体的个数不可能是9.故选D.点睛:本题主要考查了三视图的应用,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.注意俯视图中有几个正方形,底层就有几个立方体.二、填空题15.【分析】先画出这个图形的三视图从而可得上下面前后面左右面的小正方形的个数再根据正方形的面积公式即可得【详解】由题意画出这个图形的三视图如下:则这个图形的表面积是故答案为:【点睛】本题考查了求几何体的解析:2236a cm【分析】先画出这个图形的三视图,从而可得上下面、前后面、左右面的小正方形的个数,再根据正方形的面积公式即可得.【详解】由题意,画出这个图形的三视图如下:则这个图形的表面积是()()22226262636a a cm ⨯+⨯+⨯=, 故答案为:2236a cm .【点睛】本题考查了求几何体的表面积,正确画出图形的三视图是解题关键.16.24πcm²【分析】根据三视图确定该几何体是圆柱体再计算圆柱体的侧面积【详解】解:先由三视图确定该几何体是圆柱体底面半径是4÷2=2cm 高是6cm 圆柱的侧面展开图是一个长方形长方形的长是圆柱的底面周解析:24π cm²【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是4÷2=2cm ,高是6cm ,圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,且底面周长为:2π×2=4π(cm),∴这个圆柱的侧面积是4π×6=24π(cm²).故答案为:24π cm².【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.17.【分析】先由勾股定理求出母线再根据圆锥侧面积公式S=r 计算即可【详解】圆锥半径:r=8÷2=4S=r=20故答案为:20【点睛】本题考查圆锥侧面积的求法理解并掌握圆锥侧面积公式是解题关键解析:20π【分析】先由勾股定理求出母线l ,再根据圆锥侧面积公式S=πr l 计算即可.【详解】圆锥半径:r=8÷2=422345l =+=S=πr l=20π故答案为:20π【点睛】本题考查圆锥侧面积的求法,理解并掌握圆锥侧面积公式是解题关键.18.23【分析】根据三视图得出碟子的总数由(1)知每个碟子的高度即可得出答案【详解】可以看出碟子数为x时碟子的高度为2+15(x﹣1);由三视图可知共有15个碟子∴叠成一摞的高度=15×15+05=23解析:23【分析】根据三视图得出碟子的总数,由(1)知每个碟子的高度,即可得出答案.【详解】可以看出碟子数为x时,碟子的高度为2+1.5(x﹣1);由三视图可知共有15个碟子,∴叠成一摞的高度=1.5×15+0.5=23(cm).故答案为:23cm.【点睛】本题考查了图形的变化类问题及由三视图判断几何体的知识,找出碟子个数与碟子高度的之间的关系式是此题的关键.19.39【分析】由主视图可得组合几何体有4列由左视图可得组合几何体有4行可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得解析:39【分析】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,可得最底层几何体最多正方体的个数为:4×4=16;由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;相加可得所求.【详解】由主视图可得组合几何体有4列,由左视图可得组合几何体有4行,最底层几何体最多正方体的个数为:4×4=16,由主视图和左视图可得第二层最多正方体的个数为:4×4=16;由主视图和左视图可得第3层最多正方体的个数为:3×2=6;由主视图和左视图可得第4层最多正方体的个数为:1;16+16+6+1=39(件).故这正方体快递件最多有39件.故答案为:39.【点睛】此题考查由视图判断几何体;得到最底层正方体的最多的个数是解决本题的突破点;用到的知识点为:最底层正方体的最多的个数=行数×列数.20.2【分析】首先判定△ABE∽△CDE根据相似三角形的性质可得然后代入数值进行计算即可【详解】解:∵AB⊥EDCD⊥ED∴AB∥DC∴△ABE∽△CDE∴∵AB=15mCD=6mBD=6m∴解得:EB解析:2【分析】首先判定△ABE∽△CDE,根据相似三角形的性质可得AB EBCD ED=,然后代入数值进行计算即可.【详解】解:∵AB⊥ED,CD⊥ED,∴AB∥DC,∴△ABE∽△CDE,∴AB EB CD ED=∵AB=1.5m,CD=6m,BD=6m,∴1.566EBEB=+解得:EB=2,故答案为2【点睛】此题主要考查了相似三角形的应用,属于简单题,关键是掌握相似三角形对应边成比例是解题关键.21.6+【解析】【分析】延长AC交BF延长线于D点则BD即为AB的影长然后根据物长和影长的比值计算即可【详解】延长AC交BF延长线于D点则∠CFE=30°作CE⊥BD于E在Rt△CFE中∠CFE=30°解析:6【解析】【分析】延长AC交BF延长线于D点,则BD即为AB的影长,然后根据物长和影长的比值计算即可.【详解】延长AC交BF延长线于D点,则∠CFE=30°,作CE⊥BD于E.在Rt△CFE中,∠CFE=30°,CF=4,∴CE=2,EF在Rt△CED中,∵同一时刻,一根长为1米、垂直于地面放置的标杆在地面上的影长为2米,CE=2,CE:DE=1:2,∴DE=4,∴BD=BF+EF+ED在Rt△ABD中,AB12=BD12=(12+23)=6+3.故答案为(6+3)米.【点睛】本题考查了相似三角形的性质.解决本题的关键是作出辅助线得到AB的影长.22.64【分析】根据平行投影同一时刻物长与影长的比值固定即可解题【详解】解:由题可知:解得:树高=64米【点睛】本题考查了投影的实际应用属于简单题熟悉投影概念列比例式是解题关键解析:6.4【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:1.628=树高,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.23.7【解析】该几何体的主视图的面积为1×1×4=4左视图的面积是1×1×3=3所以该几何体的主视图和左视图的面积之和是3+4=7故答案为7解析:7【解析】该几何体的主视图的面积为1×1×4=4,左视图的面积是1×1×3=3,所以该几何体的主视图和左视图的面积之和是3+4=7,故答案为7.24.16【分析】易得△AOB∽△ECD利用相似三角形对应边的比相等可得旗杆OA的长度【详解】解:∵OA⊥DACE⊥DA∴∠CED=∠OAB=90°∵CD∥OE∴∠CDA=∠OBA∴△AOB∽△EC D∴解解析:16【分析】易得△AOB∽△ECD,利用相似三角形对应边的比相等可得旗杆OA的长度.【详解】解:∵OA ⊥DA ,CE ⊥DA ,∴∠CED=∠OAB=90°,∵CD ∥OE ,∴∠CDA=∠OBA ,∴△AOB ∽△ECD , ∴CE OA 16OA ,DE AB 220==, 解得OA=16.故答案为16. 25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC 中作AD ⊥BC 于D 则 解析:1823+【分析】先判断出几何体为正三棱柱,求出三棱柱的底面积,最后求表面积即可.【详解】解:由三视图得,几何体为正三棱柱,上下底为边长为2的等边三角形,侧面积为长为3,宽为2的矩形.如图,等边三角形ABC 中,作AD ⊥BC 于D ,则BD=1BC=12, 在t ABD R △中,2222AD=AB -BD =21=3-;∴11=BC AD=23=322ABC S ⨯⨯⨯⨯△, ∴三棱柱的表面积为23323=18+23⨯⨯+⨯.故答案为: 183+【点睛】本题考查了三视图,等边三角形的面积计算等知识,根据三视图判断出几何体形状是解题关键.26.【分析】作EH ⊥FG 于点H 解直角三角形求出EH 即可得出AB 的长度【详解】解:如图所示作EH ⊥FG 于点H ∵∠EHF=90°∠EFG=45°∴∠EFG=∠FEH=45°∴EH=HF=∵∴EH=根据三视图 解析:62 【分析】 作EH ⊥FG 于点H ,解直角三角形求出EH 即可得出AB 的长度.【详解】解:如图所示,作EH ⊥FG 于点H ,∵∠EHF=90°,∠EFG=45°,∴∠EFG=∠FEH=45°,∴EH=HF=22EF , ∵12EF cm ,∴EH=62,根据三视图的意义可知,AB=EH=62故答案为:62【点睛】本题考查了三视图,解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题27.见解析【分析】利用俯视图即可得出几何体的形状,进而得出几何体的主视图和左视图.【详解】解:如图所示:.【点睛】此题主要考查了作三视图以及由三视图判断几何体的形状,正确得出几何体的形状是解题关键.28.见解析.【分析】分别从正面、左面、上面看得到的图形即可.看到的棱用实线表示,实际存在但是被挡住看不见的棱用虚线表示.【详解】【点睛】本题考查了三视图的作图.29.(1)线段CP为王乐在路灯B下的影子;(2)王乐站在Q处时,在路灯A下的影长为1.5m;(3)路灯A的高度为12m【分析】(1)影长为光线与物高相交得到的阴影部分;(2)易得Rt△CEP∽Rt△CBD,利用对应边成比例可得QD长;(3)易得Rt△DFQ∽Rt△DAC,利用对应边成比例可得AC长,也就是路灯A的高度.【详解】解:(1)线段CP为王乐在路灯B下的影子.(2)由题意得Rt△CEP∽Rt△CBD,∴1.8292 6.5QD=++,解得:QD=1.5m.所以王乐站在Q处时,在路灯A下的影长为1.5m (3)由题意得Rt△QDF∽Rt△CDA,∴FQ QD=,AC DC∴1.8 1.5=,AC10解得:AC=12m.所以路灯A的高度为12m.【点睛】本题考查了中心投影及相似的判定和性质,利用两三角形相似,对应边成比例来求线段的长.30.(1)见解析;(2)34【分析】(1)从正面看得到从左往右4列正方形的个数依次为1,3,1,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右,4列正方形的个数依次为2,1,,1,1,依此画出图形即可;(2)有顺序的计算上下面,左右面,前后面的面积之和,然后加上2个三视图中没看到的面,计算表面积之和,即可;【详解】解:(1)如下图:(2)(5×2+7×2+4×2+2)×(1×1)=(10+14+8+2)×1=34×1=34故答案为:34.【点睛】考查了作图-三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错.。

组合体三视图练习题

组合体三视图练习题

组合体三视图练习题课程学习目标[课程目标]目标重点:正投影与三视图的画法与应用, 目标难点:三视图的画法以及应用学法关键1.画三视图时,可以把垂直投影面的视线想象成平行光线从不同的方向射向几何体,体会可见的轮廓线的投影就是所要画出的视图,画出的三视图要检验是否符合.长对正、高平齐、宽相等.的基本特征.2.由三视图想象几何体时也要根据.长对正、高平齐、宽相等.的基本特征,想象视图中每部分对应的实物的形象,特别注意几何体中与投影面垂直或平行的线及面的位置研习教材重难点研习点1 正投影1.定义:在物体的平行投影中,如果投射线与投射面垂直,则称这样的平行投影为正投影.. 正投影的性质:①直线或线段的平行投影仍是直线或线段;②平行直线的平行投影是平行或重合的直线;③平行于投影面的线段,它的投影与这条线段平行且等长;④与投影面平行的平面图形,它的投影与这个图形全等;⑤在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比;⑥垂直于投影面的直线或线段的正投影是点;⑦垂直于投影面的平面图形的正投影是直线或直线的一部分.研习点三视图1. 水平投射面:一个投射面水平放置,叫做水平投射面.. 俯视图:投射到水平投射面内的图形叫做俯视图.3. 直立投射面:一个投射面放置在正前方,这个投射面叫做直立投射面.. 主视图:投射到直立投射面内的图形叫做主视图.5. 侧立投射面:和直立、水平两个投射面都垂直的投射面叫做侧立投射面.. 左视图:投射到侧立投射面内的图形叫做左视图.7. 三视图:将空间图形向水平投射面、直立投射面、侧立投射面作正投影,然后把这三个投影按一定的布局放在一个平面内,这样构成的图形叫做空间图形的三视图.研习点3.三视图的画法要求:三视图的主视图、俯视图、左视图分别是人从物体的正前方、正上方、正左方看到的物体轮廓线的正投影组成的平面图形;一个物体的三视图的排列规则是:俯视图放在主视图的下面,长度与主视图一样,左视图放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样;记忆口诀:长对正,高平齐,宽相等;主左一样高,主俯一样长,俯、左一样宽。

第九章 组合体的投影图

第九章 组合体的投影图
第九章 组合体的投影图 §9.1 组合体的形式和投影图的画法 建筑工程中的各种形体,以组合体的形式居多。组合体是由基本几何体通 过叠加、切割、相交或相切的形式组合而成。因此,在画组合体的投影图 时,要先进行形体分析(通常假想把组合体分解成若干基本部分,弄清楚 各部分的形状、相对位置、组合形式以及表面连接关系,这种分析方法称 为形体分析法。),然后选择适当的投影,再进行画图。 一、组合体的组合形式和及其相对位置 (一)组合体的组合形式 1、叠加型 由两个或两个以上的几何体按不同的方式叠加而成。
旋转归位想形状(四)
F形柱体Ⅳ
例一(f)
F形柱体Ⅳ
矩形柱体Ⅰ L形柱体Ⅲ L形柱体Ⅱ
例一(g)
综合起来想整体
例一(h)
E:\proe-course\jt5-21.asm.1
[例二]用形体分析法看下面组合体的投影图:
例二(a)
抓住特征分部分:底板Ⅰ、圆筒Ⅱ、支板Ⅲ、肋板Ⅳ。 圆筒Ⅱ
肋板Ⅳ 支板Ⅲ
[例]根据两个投影图,求作第三个投影图,并求出物 [例一]根据正立面图和左侧立面图,补画出平面图,并求物体 体上点A及B的其余投影。 上点A及点B的其余投影。
E:\proe-course\p4-53.prt.1
[例二]分析物体上平面A 和直线ⅠⅡ的投影,并 求作物体的第三投影。
A平面是铅垂面; A平面是铅垂面; ⅠⅡ线是一般位置直线。 ⅠⅡ线是一般位置直线。
[例一]补全三面投影图中缺漏的 图线。
E:\proe-course\p4-54.prt.4
[例二]补全三面投影图中缺漏的图线。
E:\proe-course\9-15-2.析
例一(b)
线面分析(一)
例一(c)
线面分析(二)

2024年6月份考试 1350消防制图与识图综合复习题

2024年6月份考试 1350消防制图与识图综合复习题

消防制图与识图综合复习题一、单选题(共20 题)1、下列关于组合体多面正投影图的阅读说法有误的一项是( )。

(2.0)A、读图就是根据物体的投影图,通过分析,想象出物体的空间形状B、读图和画图是紧密联系在一起的,不会读图也就画不了图,读图是基础C、读图可以看成是画图的逆过程D、采用形体分析进行读图时,不得对复杂组合体进行分解正确答案: D2、如果空间点的位置用A(x,y,z)形式表示,那么它的W面投影的坐标应为( )。

(2.0)A、 a"(x,y,0)B、 a"(x,0,z)C、 a"(0,y,0)D、 a"(0,y,z)正确答案: D3、楼房建筑中联系上下各层的垂直交通设施,供人们能够上下楼层和紧急疏散使用的建筑部分是( )。

(2.0)A、楼梯B、地基C、屋顶D、栏杆正确答案: A4、( )能够提供采光、通风和供人们瞭望,在建筑立面的形象中也有相当重要的作用。

(2.0)A、楼板B、窗C、地基D、基础正确答案: B5、相比较而言,正轴测图更适宜于表达的物体是( )。

(2.0)A、各方向均复杂的物体B、某一个方向形状复杂的物体C、各坐标面方向都有圆或圆弧的物体D、某一方向圆形较多的物体正确答案: C6、为做到尺寸标注完整,可按形体分析的方法,把组合体尺寸分为三类,即( )。

(2.0)A、定形尺寸、定位尺寸和总体尺寸B、定形尺寸、定位尺寸和定量尺寸C、定形尺寸、定量尺寸和总体尺寸D、定量尺寸、定位尺寸和总体尺寸正确答案: A7、民用建筑包括居住建筑和公共建筑,下面属于居住建筑的是( )(2.0)A、幼儿园B、疗养院C、宿舍D、旅馆正确答案: C8、下列关于断面图相关说法有误的一项是( )。

(2.0)A、断面图同剖面图一样,都是假想剖切后得到的B、断面图一般只使用单一剖切平面引入断面图的目的是为了表达物体的内部形状和结构C、引入断面图的目的是为了表达物体的内部形状和结构D、剖面图和断面图所表达形体的对象不同,断面图中只画物体被剖开后的截面投影正确答案: C9、当长方体放置位置为前后两个侧面为正平面,则左右两个侧面为侧平面,则上下底面为( )。

《土木工程制图Ⅰ》习题(2015)

《土木工程制图Ⅰ》习题(2015)

【13-10】求作AB、CD两交叉线的公垂线MN的真长及投影。
【13-11】已知交叉线AB与CD的距离为10毫米,补全CD的正面投影。
【13-12】已知正方形ABCD的一条对角线BD在直线EF上,补全正 方形ABCD的两面投影。
【14-13】求作两平面间的交线及其可见性。
【14-14】已知等边△ABC对H面的倾角为30°,补全其两面投影。 有几解? 有四解
【4-8】直线MN与直线AB、CD、EF均相交,且交直线EF于2:3点, 求作直线MN的两面投影。
【4-9】过点M作直线MN与直线AB平行,且与直线CD相交于点N。
【5-10】 作直线GH平行于直线AB,且与直线CD、EF相交。
【5-11】过点K作直线KF与直线CD正交。
【5-12】 过点A作直线AB与直线CD正交。
第15页 第16页 第17页 第18页 第19页 第20页 第21页 第22页 第23页 第24页
15-1 16-7 17-1 18-7 19-1 20-7 21-1 22-1 23-1 24-7
15-2 16-8 17-2 18-8 19-2 20-8 21-2 22-2 23-2 24-8
15-3 16-9 17-3 18-9 19-3 20-9 21-3 22-3 23-3 24-9
【2-6】已知点A与W面距离20mm;点B距点A12mm;点C与点A是对 V面的重影点,在点A的正前方15mm;点D在点A的正下方 20mm。补全诸点的三面投影及其可见性。
【3-1】判别下列直线对投影面的相对位置,并填写名称。
【3-2】过点A作下列直线的三面投影。⑴ 一般线AB,点B在点A 之上5mm、之左20mm、之后10mm;⑵ 正平线AC,点C在点A的右上 方,α=30°,长25mm;⑶ 正垂线AD,点D在点A正前方15mm。

组合体的三面投影图1

组合体的三面投影图1

错开 共面 2、共面(平齐): 中间不画线。
3、相交:两立体表面彼此相交,在相交处就有交线,它是两立体表面的 分界线,投影图中必须画出交线的投影。
4、相切:相切处不画线。
相切 相切
画组合体的投影图时,必须正确表示各基本形体之间的表
面连接。形体之间的表面连接可归纳为以下四种情况:
(1)两形体表面相交时,两表面投影之间应画出交线的投影; (2)两形体的表面共面时,两表面投影之间不应画线; (3)两形体的表面相切时,由于光滑过渡,两表面投影之间不应画线; (4)两形体的表面不共面时,两表面投影之间应该有线分开。
2. 根据组合体的两面投影补画第三面投影
例1 已知组合体的正立面图和平面图,试补画其左侧立面图。
解题步骤 1.形体分析 划分线框; 对照投影,想象形状; 带孔、槽的底板; 半圆形支座(中间有圆孔) 综合分析 2.补投影
例2 补画组合体的左侧立面图。
本 章 小 结
在对组合体的组 合方式进行分析的基 础上,运用形体分析 法画组合体的三面图、 尺寸标注,读图。
平行面的投影具有实形性和积聚性垂直面的投影具有积聚性和类似性一般位置面的投影具有类似性垂直线的投影具有实长性和积聚性平行面的投影具有实形性和积聚性正平面的投影侧平面的投影水平面的投影题目返回线面分析法读图按投影关系确定线框的对应投影直曲线垂直于直曲线所在投影面的垂直面投影轴的直线段投影轴的直线段线框所在投影面的平行面直线段投影轴的直线段类似线框垂直于直线段所在投影面的垂直面一线框类似线框类似线框一般位置平面返回垂直面和一般面的投影具有类似性返回一般情况由投影图中一线框找其另一投影图时不积聚必类似
二、组合体三面图中的尺寸种类 (1) 定形尺寸 按形体分析的方法,确定组合体中各基 本体形状大小的尺寸; (2) 定位尺寸 确定组合体中各基本体之间相对位置的 尺寸; (3) 总体尺寸 确定组合体总长、总宽、总高的尺寸。

建筑制图与识图习题集1

建筑制图与识图习题集1

建筑制图与识图习题集..第1章 投影基本知识1-1 找出与轴测图相对应的三视图,在每题的括号内填写轴测图的序号(一)1.第1章投影基本知识1-1 找出与轴测图相对应的三视图,在每题的括号内填写轴测图的序号(一) 2..第1章投影基本知识1-2 画三视图练习班级姓名学号 3.第1章投影基本知识1-3 已知正等轴测图,量取尺寸,画出三视图。

班级姓名学号 4 1. 2..3.4.第1章 投影基本知识1-3已知正等轴测图,量取尺寸,画出三视图。

班级 姓名 学号5.5.6.7.8.第1章投影基本知识1-4 根据两视图,参照轴测图补画第三视图。

班级姓名学号 6 .1. 2.3. 4.第1章投影基本知识1-4 根据两视图,参照轴测图补画第三视图。

班级姓名学号7 5. 6..7. 8.第1章投影基本知识1-5 根据两视图,补画第三视图。

班级姓名学号8 .1. 2.3. 4.第1章投影基本知识1-5 根据两视图,补画第三视图。

班级姓名学号9 5. 6..7. 8.第1章投影基本知识1-6 根据轴测图补全视图中的漏线。

班级姓名学号10 ..1.2.3.4..第1章 投影基本知识1-6 根据已知视图补画缺线。

班级 姓名 学号11.1.2.3.4.第1章投影基本知识.1.按立体图作各点的两面投影。

2. 已知点A在V面之前40,点B在H面之上12,点C在V面上,点D在H面上,点E在投影轴上,补全各点的两面投影。

.第1章投影基本知识..3. 根据立体图,画A 点的三面投影图。

4.根据A ,B ,C 三点的立体图作出它们的投影图。

第1章投影基本知识.5. 已知A点的投影,B点在A点左方15、前方25、上方13,求作B 点的三面投影。

6.已知点B在点A的正左方15;点C与点A是对V面的重影点,点D在点A的正下方20,,补全各点的三面投影,并表明可见性。

.第1章投影基本知识..1. 判断下列直线对投影面的相对位置,并填写直线类型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【10-8】求作圆心位于点A、直径为24mmm、处于左下到右上的、 α=45°的正垂圆的三面投影。
【11-1】作圆柱的水平投影,并补全圆柱表面上的点A、B、C、 D、E、F、G、I的三面投影。
【11-2】作圆锥的正面投影,并补全圆锥表面上直线和曲线的 三面投影。
【11-3】作球的侧面投影,并补全球面上的曲线ACB和ADFEB的 水平投影和侧面投影。
【8-6】求作∠ABC的真实大小。
【8-7】已知直线AB的端点B比A高,AB的真长为35mm,补全AB的 正面投影。
【8-8】补全矩形ABCD的水平投影。
【8-9】求作△ABC与正面V的倾角β,并过点D作△ABC的垂线DE, 作出垂足E,注明点D与△ABC的真实距离。
【8-10】已知∠ABC=45°,点C在直线AB的前方,补全∠ABC的 水平投影。
【16-3】求作三棱柱与三棱锥的相贯线。
【16-4】求作四棱柱与四棱台的相贯线。
【16-5】补全房屋轮廓的烟囱的正面投影和气楼的水平投影。
【16-6】作屋面交线的水平投影,并补全房屋轮廓模型的水平投 影。
【16-7】求作屋面交线。
【17-1】作四棱柱与圆柱的相贯线。
【17-2】作三棱柱与半圆柱的相贯线,并补全相贯体的正面投影。
【例】求作直线AB上与△CDE、△CDF平面等距的点G。
【例】求作直线AB与△CDE平面的夹角θ。
【10-1】作六棱柱的水平投影,并作出三棱柱表面上折线ABCDE 的另外两个投影。
【10-2】作左端面为正垂面的T形侧垂柱的水平投影,及棱柱表 面上的点A、B、C、D、E、F的三面投影。
【10-3】作三棱锥的侧面投影,并作出三棱锥表面上的折线ABCD 的另外两个投影。
【2-3】已知直线AD和点C、B的两面投影,判别C、B是否在 AD上,已知点E在AD上,AE:ED为3:5,作出AD的侧面投影 和点E的三面投影。
【2-4】作直线AB的真长及其对投影面H、V的倾角α、β,在AB 上作与点A相距25mm的点C的两面投影。
【2-5】求作直线CD的真长及与投影面V、W的倾角α、β。
【13-3】作正五棱柱与正垂面P的截交线,补全截断体的三面投影。
【13-4】作具有燕尾槽的四棱柱与铅垂面P的截交线和截断体的 侧面投影。
【13-5】作具有三棱柱孔和左上方切口的正六棱柱的水平投影, 并补全其侧面投影。
【13-6】补全三棱锥被正垂面P截切后的截断体的水平投影和侧 面投影。
【13-7】补全左右、前后对称的楔形块被水平面、正垂面、侧平 面截切成左上方的切口后的水平投影和侧面投影。
【1-6】已知点A(40,20,60);点B(0,0,50);点C在点A的正前 方10mm;点D在点A之下50mm、之右15mm,且在V面上; 点E在点D的正左方20mm。作诸点的两面投影,并表明可见性。
【2-1】判别下列直线对投影面的相对位置。
【2-2】过点A作下列直线的三面投影。⑴一般位置直线AB,B 在A之上5mm、A之左20mm、A之后10mm;⑵正平线AC,C 在A的右上方,α=30°,长25mm;⑶正垂线AD,D在A之正前 方15mm;⑷侧平线AE,E在A的后下方,β=45°,长20mm。
【3-7】作两交叉线AB、CD的公垂线,并表明AB、CD之间的真实 距离。
【4-1】按下列平面对投影面的相对位置,分别填写它们的名称 和角度。
【4-2】过点A作正平面P;过点B作侧垂面Q和R,β=60°;过CD 作正垂面T。
β
【4-3】已知AB为正方形ABCD铅垂面的左后边,β=60°,补全 其两面投影;已知水平面正三角形EFG的顶点E的两面投影,后 边FG为侧垂线,边长为20mm,补全其两面投影。
【14-1】补全具切口的四棱台的水平投影,并作出其侧面投影。
【14-5】已知涵洞端部挡土墙的两面投影,补全其正面投影和水 平投影。
【14-6】求作圆柱被平面截切后的水平投影,并补全其侧面投影。
【14-7】 补全圆柱被截切后的侧面投影,并做出其正面投影。
【14-8】补全圆柱被截切后的侧面投影和正面投影。
【10-4】作四棱台的正面投影,补全四棱台的侧面投影,并作出 其表面上的点A、B、C、D、E、F、G、H的另外两个投影。
【10-5】已知正垂面P上的曲线的侧面投影,求作这条曲线的另 外两个投影。
【10-6】已知平行四边形平面上曲线的正面投影,求作这条曲线 的侧面投影。
【10-7】求作圆心位于点A、直径为24mmm的侧平圆的三面投影。
【2-6】已知直线AB对投影面H的倾角α=30°,补全它的正平 投影,并回答有几解,图中任求一解。
【2-7】通过作图检验直线AB、CD、EF的相对位置。
【3-1】检验直线AB、CD的相对位置。
【3-2】已知一直线与直线AB、CD都相交,且与直线EF交于分线 段EF成2:3的点,求作该直线的两面投影。
【14-9】补全圆柱筒被截切后的水平投影,并做出其侧面投影。
【14-10】补全圆锥被截切后的侧面投影,并作出其水平投影及 截断面实形。
【15-1】求作圆锥被平面截切后的正面投影和侧面投影,并补全 其水平投影。
【15-2】求作圆锥被平面截切后的水平投影和侧面投影。
【15-3】求作半球被平面截切后的正面投影。
【7-6】求作一直线IJ垂直于△ABC,与直线DE、FG都相交。
【8-1】求作直线AB的真长和倾角α、β。
【8-2】求作点A与直线BC间的真实距离。
【8-3】求作吸气罩相邻壁面之间夹角的真实大小。
【8-4】求作两平行线AB、CD所确定平面的倾角α和β。
【8-5】求作正垂面平行四边形ABCD的真形
【15-4】 求作半球被平面截切后的正面投影。
【15-5】求作圆球被平面截切后的水平投影。
【15-6】具有同轴圆台、圆柱、半球构成的组合回转体被平面截 去上部,补全截断体的水平投影。
【15-7】求作鼓体与平面P相交的表面交线。
【16-1】求作四棱柱与五棱柱的相贯线,并作出其侧面投影。
【16-2】 补全穿孔四棱柱的水平投影,并作出其正面投影。
【4-4】已知正垂面P的正面迹线PV以及其上的△ABC的水平投影, 补全正垂面的正面迹线和水平迹线,以及△ABC的三面投影。
【4-5】已知平面P上的正方形ABCD的一条对角线AC为侧垂线,平 面P与水平面H的倾角为45°,顶点B在AC的后上方,完成正方形 的三面投影。
【4-6】已知正方形ABCD的后边AB为正平线,且AB的侧面投影及 正方形的正面投影,补全正方形的侧面投影。
【11-4】已知轴线为正垂线的环以及环面上的点A、B、C、D、E、 F、G、P、Q、R、T的水平投影,求作环的正面投影以及 这些点的正面投影。
【11-7】已知由圆锥和圆柱所构成的组合回转体,完成它的正面 投影,并补全其表面上的线段SABCDEFGS的三面投影。
【11-8】已知由圆柱的左端面和同轴的圆柱面、内环面、球面所 围成的组合回转体,求作它的水平投影,并补全其表面 上的线段ABCDEFGA的三面投影。
【1-4】已知点A与W面距离为20mm;点B距点A12mm;点 C与点A是对V面的重影点,在点A的正前方15mm;点D在点A 的正下方20mm。补全诸点的三面投影,并表明可见性。
【1-5】已知点A与H、V面等距,点B在V面上,与点A是对V面 的重影点;点C在点A之右55mm、之后15mm、之下10mm; 点D(40,20, 30);点E在点D的正下方20mm。作出点A的水平 投影,以及点B、C、D、E的两面投影,并表明可见性。
【1-1】按照立体图作诸点的三面投影。
【1-2】已知点A、B、C、D的两面投影,作出各点的第三投影, 并写出这些点的空间位置。
A
【1-3】作出诸点的三面投影:点A(25,15,20);点B距离投影 面W、V、H分别为20mm、10mm、15mm;点C位于点A之 左10mm、之前15mm、之上10mm;点D在点A之下8mm、 与投影面V、H等距,与投影面W的距离是与H面距离的2.5倍。
【5-7】求作下列直线与平面的交点,并判别其可见性。
【6-1】求作下列两平面的交线,并判别其可见性。
【6-2】已知平面△ABC和直线DE,求作下列直线或平面。 ⑴过点F作直线FG⊥△ABC;⑵过直线IJ作平面IJK⊥△ABC;⑶过 点P作平面PQR⊥DE。
【6-3】已知平面P、Q,直线AB、CD,求作下列直线或平面。 ⑴过点E作直线EF⊥平面P,直线EG⊥平面Q;⑵过直线IJ作平面 IJK⊥平面P,过直线IJ作平面R⊥平面Q;⑶过点U作平面S⊥AB, 作平面T⊥CD。
【9-1】已知直线DE平行于△ABC平面,与△ABC平面的距离为5mm, 求作DE的水平投影。
【9-2】已知等腰△ABC的底边BC,其对V面的倾角β=45°,三角 形高为20mm,补全△ABC的两面投影。
【9-3】已知点D与△ABC平面的距离为12mm,BC为水平线,补全 △ABC的正面投影。
【9-4】已知点A与直线BC的距离为10mm,求作点A的水平投影。
【9-5】作两交叉线AB、CD的公垂线,并注明它们之间的最短距离。
【9-6】已知两交叉直线AB、CD的距离为10mm,补全CD的正面投影。
【9-7】已知正方形ABCD的对角线BD在直线PQ上,补全正方形ABCD 的两面投影。
【9-8】已知等边△ABC的一边AB,平面的倾角β=30°,顶点C 在AB的前上方,补全△ABC的两面投影。
【6-4】检查下列直线与平面或平面与平面的相对位置。
【7-1】作图检验下列直线与平面或平面与平面的相对位置。
【7-3】过点A作直线与直线BC、OX轴都相交。
【7-4】已知等腰△ABC的底边BC,顶点A在BC的前方,补全△ABC 的水平投影。
【7-5】求作一直线与AB平行,与CD、EF都相交。
【5-5】已知正垂面△DEF,求作下列平面和直线:(1)过点A作平 面P∥△DEF;(2)过正垂线BC作平面Q∥△DEF(3)IJ∥△DEF,补 全直线IJ的正面投影;(4)过点K作正平线KL∥△DEF,长度任意。
相关文档
最新文档