人工智能及其应用复习资料(DOC 33页)

合集下载

人工智能复习

人工智能复习
第三章
1.基本的盲目搜索算法有两种? 宽度优先搜索 深度优先搜索 2. 比较宽度优先搜索与深度优先搜索? 3.什么是启发式搜索的启发信息?可分些有关具体问题领域的特性的,与具体问题求解过 程有关的,并可指导搜索过程朝着最有希望方向前进的控制信息,把此种信息叫做启发信息。
问题求解 逻辑推理与定理证明 自然语言理解 自动程序设计 专家系统 机器学习 神经网络 机器人学 模式识别 机器视觉 智能控制 智能检索(搜索) 智能调度与指挥 分布式人工智能与 Agent 计算智能与进化计算 数据挖掘与知识发现 人工生命 7. 专家系统: 是一个含有大量的某个领域专家水平的知识与经验智能计算机程序系统, 能够利用人类专家的知识和解决问题的方法来处理该领域问题。简而言之,专家系统是一种 模拟人类专家解决领域问题的计算机程序系统。 8.专家系统特点? 启发性:专家系统能运用专家的知识与经验进行推理、判断和决策。 透明性:专家系统能够解释本身的推理过程和回答用户提出的问题,以便让用户能够了 解推理过程,提高对专家系统的信赖感。 灵活性:专家系统能不断地增长知识,修改原有知识,不断更新。 9.专家系统的优点? (1) 专家系统能够高效率、准确、周到、迅速和不知疲倦地进行工作。 (2) 专家系统解决实际问题时不受周围环境的影响,也不可能遗漏忘记。 (3) 可以使专家的专长不受时间和空间的限制,以便推广珍贵和稀缺的专家知识与经验。 (4) 专家系统能促进各领域的发展。 (5) 专家系统能汇集多领域专家的知识和经验以及他们协作解决重大问题的能力。 (6) 军事专家系统的水平是一个国家国防现代化的重要标志之一。 (7) 专家系统的研制和应用,具有巨大的经济效益和社会效益。 (8) 研究专家系统能够促进整个科学技术的发展。
人工智能复习大纲
第一章

第6章 人工智能及其应用(考点梳理)

第6章  人工智能及其应用(考点梳理)

第6章人工智能及其应用1、人工智能是研究计算机模拟人的某些感知能力、思维过程和智能行为(如学习、推理、思考、规划等)的学科。

2、智能问答系统主要包括常见问题解答(FAQ)、问题理解、信息检索、文档库、答案抽取五大模块。

3、问题理解模块该模块主要实现计算机理解用户的问题,确定问题的关键词和问题的类型,为后面的信息检索和答案提供服务。

问题理解模块的实现过程一般包括问题预处理、问题分类、关键词提取和关键词扩展等。

其中,问题分类主要确定问题的类别,以方便信息检索和答案抽取。

问题理解模块主要运用的技术有分词、同义词词典、分类方法等。

4、信息检索模块该模块主要从互联网或者知识库中找到与问题相关的文档作为答案提取的原材料。

信息检索的方法一般有两种,一种是直接利用搜索引擎检索信息;另一种是建立特定的知识库,然后根据知识库建立索引模块,从而可以方便、快速地找到相关文档,并根据特点的排序算法对文档进行排序。

信息检索模块运用的技术主要包括查询扩展、语料库的构建技术、词汇索引、文档排序等。

5、文档库模块文档库用于存放专家提供的知识,其内部含有大量某个领域的常识性知识和专家水平的知识与经验总结,且能够利用专家的知识和解决问题的方法来处理该领域问题。

6、答案抽取模块该模块主要利用问题的类型构建相应的答案抽取策略,从信息检索后的文档中对排序靠前的文档进行答案的定位和输出,所用技术主要有答案抽取模板的制定、模式匹配、聚类等。

7、图灵测试是指测试者在与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。

问过一些问题后,如果被测试者有超过70%的答复不能使测试者确认出哪个是人、哪个是机器,那么这台机器就通过了测试,并被认为具有人类智能。

8、人工智能发展大致分为三个阶段。

第一阶段(20世纪50-80年代)刚刚诞生,符号主义快速发展。

第二阶段(20世纪80年代-90年代末)专家系统快速发展,数学模型有重大突破。

人工智能复习资料

人工智能复习资料

人工智能复习资料一、引言人工智能(Artificial Intelligence,简称AI)是一门研究如何使计算机能够像人一样思考和行动的科学与工程领域。

它涵盖了多个子领域,包括机器学习、自然语言处理、计算机视觉等。

本文将围绕人工智能的基本概念、发展历程、应用领域以及未来发展趋势等方面进行复习。

二、人工智能的基本概念1. 人工智能的定义和特点人工智能是指使计算机具备智能的能力,能够模拟和实现人类的思维和行为。

其特点包括自主学习、推理、问题解决、语言理解和感知等。

2. 人工智能的分类人工智能可以分为弱人工智能和强人工智能。

弱人工智能是指在特定领域内具备智能的计算机系统,而强人工智能则是指能够在各个领域都表现出与人类相当的智能水平的计算机系统。

三、人工智能的发展历程1. 人工智能的起源人工智能的起源可以追溯到20世纪50年代。

当时,人们开始研究如何使计算机能够模拟人类的思维和行为,提出了“人工智能”这一概念。

2. 人工智能的发展阶段人工智能的发展可以分为符号主义阶段、连接主义阶段和混合主义阶段。

符号主义阶段主要研究基于逻辑和规则的推理和知识表示;连接主义阶段则侧重于神经网络和模式识别;混合主义阶段则将符号主义和连接主义相结合。

四、人工智能的应用领域1. 机器学习机器学习是人工智能的重要分支,它通过让计算机从数据中学习和改进,实现自主学习和决策能力。

机器学习在语音识别、图像识别、推荐系统等领域有广泛应用。

2. 自然语言处理自然语言处理是指让计算机能够理解和处理人类语言的能力。

它在机器翻译、语音识别、智能客服等方面有着重要应用。

3. 计算机视觉计算机视觉是指让计算机能够理解和分析图像和视频的能力。

它在人脸识别、目标检测、智能监控等领域有广泛应用。

4. 智能机器人智能机器人是指具备感知、决策和执行能力的机器人系统。

它在工业生产、医疗护理、军事作战等领域有着广泛应用。

五、人工智能的未来发展趋势1. 深度学习深度学习是机器学习的一种方法,通过构建多层神经网络实现对大规模数据的学习和分析。

人工智能复习资料整理(修正版-如发现计算错误请指出)

人工智能复习资料整理(修正版-如发现计算错误请指出)

一、填空题(40分)1.人工智能的主要学派:(1)符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要是为物理符号系统假设和有限合理性原理。

(2)连接主义:又称仿生学派或生理学派,其原理主要是为神经网络及神经网络间的连接机制与学习算法。

(3)行为主义:又称进化主义或控制论学派,其原理为控制论及感知-动作型控制系统。

2.人工智能三个基本问题:知识获取、知识推理、知识利用。

3.常用的知识表示方法包括:状态空间法、问题归纳法、谓词演算法、语义网络法、框架表示法、本体表示法、过程表示法和神经网络表示法。

4.机器学习分为:监督学习、无监督学习、强化学习。

5.遗传算法基本操作分为:选择、交叉和变异。

6.产生式系统的构成分为:规则库、综合数据库和推理机。

7.问题状态空间包含的三种说明集合分别为:初始状态集(S)、操作符集合(F)、以及目标状态集合(G)。

8.可信度方法中,不精确推理规则的一般形式为:IF E THEN H (CF(H,E)),其中(CF(H,E))是该规则的可信度,称为可信度因子或规则强度。

(1)当证据E的可信度CF(E)的取值范围与CF(H,E)相同,即-1 ≤ CF(E)≤ 1;(2)当证据以某种程度为真时,CF(E) > 0(3)当证据肯定为真时,CF(E) = 1(4)当证据以某种程度为假时,CF(E) < 0(5)当证据肯定为假时,CF(E) = -1(6)当证据一无所知时,CF(E) = 09.用产生式方法表示张和李是同学关系:(classmate,Zhang,Li)10.模糊集合表示,例如有一组数据:85,90,82,70,98,模糊集合表示为:11.自然语言理解过程的层次有:语音分析、句词分析、语义分析。

12.人工生命研究实例有:人工脑、计算机病毒、计算机进程、细胞自动机、人工核苷酸。

13.计算智能涉及神经计算、模糊计算、进化计算、粒群计算、自然计算、免疫计算和人工生命等研究领域。

人工智能及其应用(PPT 33张)

人工智能及其应用(PPT 33张)

文学志 南京信息工程大学计软学院 2010年2月
1.1.2 人工智能的起源与发展(3)
知识应用期(1971——20世纪80年代末,低潮期) •挫折和教训 博弈方面:塞缪尔的下棋程序与世界冠军的战绩:5战4负 定理证明:鲁滨逊归结法的能力有限:用归结原理证明两个连续函数之和还是 连续函数时,推了10万步也没证出结果 问题求解方面:理想的良结构问题,现实的不良结构问题,产生组合爆炸 机器翻译:如,把“心有余而力不足”的英语句子“The spirit is willing but the flesh is weak”翻译成俄语,然后再翻译回来时竟变成了“酒是好 的,肉变质了”,即英语句子为“The wine is good but the meat is spoiled”. •以人工智能为目标的3个研究小组 在神经生理学方面,研究发现人脑由1011~1012个神经元组成,在现有技术条件 下用机器从结构上模拟人脑是根本不可能的。 人工智能的本质、理论、思想和机理受到了来自哲学、心理学、神经学等社会 各界的责难、怀疑和批评。
文学志 南京信息工程大学计软学院 2010年2月
1.1.2 人工智能的起源与发展(5)
智能科学技术学科的兴起(本世纪初到现在) •由对人工智能的单一研究走向以自然智能、人工智能、集成 智能为一体的协同智能研究; •由人工智能学科的独立研究走向重视与脑科学、认知科学等 学科的交叉研究 •由多个不同学派的分立研究走向多学派的综合研究 •由对个体、集中智能的研究走向对群体、分布智能的研究
文学志 南京信息工程大学计软学院 2010年2月
1.1.2 人工智能的起源与发展(2)
形成期(1956——1970年)
•1956年夏季,达特茅斯(Dartmouth)大学数学家、计算机专家麦卡锡和 他的3位朋友:哈佛大学数学家、神经学家明斯基,IBM公司信息中心负责 人洛切斯特,贝尔实验室信息部数学研究员香农共同发起在达特茅斯大学 举行了一个为期两个月的夏季学术研讨会(用机器模拟人类智能)—— 人 工智能诞生 •以人工智能为目标的3个研究小组 纽厄尔和西蒙的卡内基-兰德小组(心里学小组) 塞缪尔的IBM公司工程课题研究小组 明斯基和麦卡锡的MIT研究小组 •3个小组取得的成就领域 定理证明、问题求解、博弈

人工智能复习资料

人工智能复习资料

⼈⼯智能复习资料1.3什么是⼈⼯智能?它研究的⽬标是什么?从能⼒的⾓度:⼈⼯智能是指⽤⼈⼯的⽅法在机器(计算机)上实现的智能。

从学科的⾓度:⼈⼯智能是⼀门研究如何构造智能机器或智能系统,去模拟、延伸和扩展⼈类智能的学科。

⽬标:1)对智能⾏为有效解释的理论分析。

2)解释⼈类智能。

3)构造具有智能的⼈⼯制品。

1.8⼈⼯智能有哪些主要研究和应⽤领域?其中哪些是新的研究热点?机器思维、机器学习、机器感知、机器⾏为计算智能、分布智能、智能系统、⼈⼯⼼理与⼈⼯情感⼈⼯智能的典型应⽤:智能机器⼈、智能检索、智能游戏问题求解(下棋程序),逻辑推理与定理证明(四⾊定理证明),⾃然语⾔理解,⾃动程序设计,专家系统,机器学习,神经⽹络,机器⼈学(星际探索机器⼈),模式识别(⼿写识别,汽车牌照识别,指纹识别),机器视觉(机器装配,卫星图像处理),智能控制,智能检索,智能调度与指挥(汽车运输⾼度,列车编组指挥),系统与语⾔⼯具新的研究热点:分布式⼈⼯智能与Agent,计算智能与进化计算,数据挖掘与知识发现(超市市场商品数据分析),⼈⼯⽣命1.9⼈⼯智能有未来发展有哪些值得思考和关注的重要问题?1. 多学科交叉研究2. 分布智能与社会智能研究3. 集成智能研究4. 智能⽹络研究5. 认知计算与情感计算研究6. 智能系统与智能服务2.2什么是知识表⽰?知识表⽰有哪些要求?知识表⽰是对知识的描述,即⽤⼀组符号把知识编码成计算机可以接受的某种结构。

要求:1)表⽰能⼒。

2)可利⽤性。

3)可组织性与可维护性。

4)可理解性与可实现性。

2.4什么是推理?它有哪些分类⽅法?推理是由具体事例归纳出⼀般规律,或者根据已有知识推出新的结论的思维过程。

分类⽅法:按推理的逻辑基础:演绎推理和归纳推理按知识的确定性:确定性推理和不确定性推理按推理的控制策略:推理策略和搜索理策略2.5推理中的控制策略包括哪⼏个⽅⾯的内容?主要解决哪些问题?推理的控制策略是指如何使⽤领域知识使推理过程尽快达到⽬标的策略解决推理⽅向控制策略、求解策略、限制策略、冲突消解策略等2.6什么是命题?什么是命题的真值?断⾔:⼀个陈述句称为⼀个断⾔.命题:具有真假意义的断⾔称为命题.命题的意义通常称为真值,它只有真、假两种情况。

人工智能及应用(复习课件 )-高中信息技术必修1 浙教版(2019)

人工智能及应用(复习课件 )-高中信息技术必修1 浙教版(2019)

汽车驶入时,智能终端通过摄像头获取车辆信息,语音播报车牌号码,上传数据到服务
器; 汽车驶出时,出口处LED屏显示车牌号、停车费用、付费二维码,待用户扫码付款
后放行。该系统的下列应用中,体现了人工智能技术的是( )
C.模仿人类大脑中神经元之间的交互
D.关注智能体与环境之间的交互和反馈
【典型例题】
4.电商客服机器人采用自然语言理解技术精准分词,搭建以数据驱动为核心的AI算 法模型,通过服务数万家客户积累海量真实语料,进行深度训练;同时可根据不同用户, 基于数据反馈实时调整推荐商品并生成如图所示的商品销售比例图。
【知识梳理】
一、人工智能的产生与发展
(二)人工智能的发展历程
3. 以符号主义表达与推理为代表的人工智能 (1)1965年第一个专家系统DENDRAL,化学领域 (2)1976年,医学专家系统MYCIN,专家系统的设计规范 (3)1977年,“知识工程”被提出,即尽可能对人类知识进行逻辑编码,然后通 过推理引擎对编码知识进行操作,形成某一领域的“专家系统”。
二、人工智能的应用
(三)混合增强智能
1.定义: 混合增强智能是多种智能体的混合形式,它将人的作用或人的认知模型引入人工智 能系统,形成“混合增强智能”的形态。 案例:达芬奇外科手术机器人
【知识梳理】
三、人工智能对社会的影响
(一)人工智能改善人类生活
1.智能家居 2.智慧城市 3.智能出行 4.智能购物
A.知识获取 B.知识表示 C.知识推理 D.知识管理
2.以下哪种类型的专家系统最适合用于处理非结构化问题( )
A.基于规则的专家系统
B.基于模型的专家系统
C
C.基于案例的专家系统
D.基于统计的专家系统

人工智能原理及应用复习提纲

人工智能原理及应用复习提纲

人工智能原理及应用复习提纲第一章1.什么是人工智能?答:人工智能从学科角度说是一门研究如何构造智能机器或智能系统,使它能模拟、延伸和扩展人类智能的学科。

2.人工智能的产生和发展过程有哪些?答:①孕育期(1956年以前)②形成期(1956年~1970年)③知识应用期(1971年~80年代末)④综合集成期3.人工智能的研究和应用领域答:机器学习;自然语言理解;专家系统;模式识别;计算机视觉;机器人学;博弈;自动定理证明;自动程序设计;智能控制;智能决策支持系统;人工神经网络;知识发现和数据挖掘;分布式人工智能第二章1.什么是知识表示?答:知识表示:就是对知识的一种描述,即用一些约定的符号把知识编码成一组计算机可以接受的数据结构。

2.常用的知识表示方法有哪些?答:目前使用较多的有:一阶谓词逻辑表示法、产生式表示法、语义网络表示法、框架表示法等。

3.产生式系统的基本结构答:综合数据库;规则库;控制系统4. 什么是产生式系统?答:用产生式知识表示方法构造的智能系统称为产生式系统。

第三章1.什么是推理?答:所谓推理是指按照某种策略从已知事实出发去推出结论的过程2.推理的控制策略包括哪些内容?分别解决什么问题?答:推理的控制策略又可分为推理策略和搜索策略推理策略主要解决推理方向、冲突消解等问题。

搜索策略主要解决推理线路、推理效果、推理效率等问题。

3.推理的方向有哪些?答:推理分为正向、逆向及混合推理。

4.冲突消解策略有几种?答:特殊知识优先;新鲜知识优先;差异性大的知识优先;领域特点优先;上下文关系优先;前提条件少者优先第四章1.什么是不确定性推理答:不确定性推理就是从不确定性的初始证据出发,通过运用不确定性的知识,最终推理出具有一定程度的不确定性,但又是合理或者基本合理的结论的思维过程。

2.C-F模型(大题)在C-F模型中,知识是用产生式规则表示的,其一般形式为:IF E THEN H (CF(H,E))例4.2 设有如下一组知识:r1: IF E1 THEN H (0.9)r2: IF E2 THEN H (0.6)r3: IF E3 THEN H (-0.5)r4: IF E4 AND (E5 OR E6 ) THEN E1 (0.8)已知:CF(E2)=0.8, CF(E3)=0.6, CF(E4)=0.5, CF(E5)=0.6, CF(E6)=0.8 求:CF(H)=?解:由r4得到:CF(E1)=0.8xmax{0,CF(E4 AND (E5 OR E6 ))}= 0.8xmax{0,min{CF(E4),CF(E5 OR E6 )}}= 0.8xmax{0,min{CF(E4),max{CF(E5),CF(E6)}}}= 0.8xmax{0,min{CF(E4),max{0.6,0.8}}}= 0.8xmax{0,min{0.5,0.8}}= 0.8xmax{0,0.5}= 0.4由r1得到:CF1(H) = CF(H,E1) x max{0, CF(E1)}=0.9x max{0,0.4}=0.36由r2得到:CF2(H) = CF(H,E2) x max{0, CF(E2)}=0.6x max{0,0.8}=0.48由r3得到:CF3(H) = CF(H,E3) x max{0, CF(E3)}= -0.5x max{0,0.6}= -0.3根据结论非精确性的合成算法得到:CF1,2(H)=CF1(H) + CF2(H) - CF1(H) x CF2(H)=0.36+0.48-0.36x0.48=0.84-0.17=0.67= 0.53CF(H)=0.53第五章1.什么是搜索?答:根据问题的实际情况,不断寻找可利用知识,从而构造一条代价最小的推理路线,使问题得以解决的过程称为搜索。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人工智能及其应用复习资料(DOC 33页)人工智能及其应用(2)第一章绪论1-1. 什么是人工智能?试从学科和能力两方面加以说明。

从学科角度来看:人工智能是计算机科学中涉及研究、设计和应用智能机器的一个分支。

它的近期主要目标在于研究用机器来模仿和执行人脑的某些智能功能,并开发相关理论和技术。

从能力角度来看:人工智能是智能机器所执行的通常与人类智能有关的功能,如判断、推理、证明、识别、感知、理解、设计、思考、规划、学习和问题求解等思维活动1-2. 在人工智能的发展过程中,有哪些思想和思潮起了重要作用?控制论之父维纳1940 年主张计算机五原则。

他开始考虑计算机如何能像大脑一样工作。

系统地创建了控制论,根据这一理论,一个机械系统完全能进行运算和记忆。

帕梅拉·麦考达克(Pamela McCorduck)在她的著名的人工智能历史研究《机器思维》(Machine Who Think,1979)中曾经指出:在复杂的机械装置与智能之间存在着长物理符号系统的假设伴随有3 个推论。

推论一: 既然人具有智能,那么他(她)就一定是个物理符号系统。

推论二: 既然计算机是一个物理符号系统,它就一定能够表现出智能。

推论三: 既然人是一个物理符号系统,计算机也是一个物理符号系统,那么我们就能够用计算机来模拟人的活动。

1-4. 现在人工智能有哪些学派?它们的认知观是什么?符号主义(Symbolicism),又称为逻辑主义(Logicism)、心理学派(Psychlogism)或计算机学派(Computerism) [ 其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。

]认为人的认知基元是符号,而且认知过程即符号操作过程。

认为人是一个物理符号系统,计算机也是一个物理符号系统,因此,我们就能够用计算机来模拟人的智能行为。

知识是信息的一种形式,是构成智能的基础。

人工智能的核心问题是知识表示、知识推理和知识运用。

联结主义(Connectionism),又称为仿生学派(Bionicsism)或生理学派(Physiologism) [ 其原理主要为神经网络及神经网络间的连接机制与学习算法]认为人的思维基元是神经元,而不是符号处理过程。

认为人脑不同于电脑,并提出联结主义的大脑工作模式,用于取代符号操作的电脑工作模式。

行为主义(Actionism),又称进化主义(Evolutionism)或控制论学派(Cyberneticsism) [ 其原理为控制论及感知-动作型控制系统]认为智能取决于感知和行动。

认为智能不需要知识、不需要表示、不需要推理;人工智能可以象人类智能一样逐步进化。

智能行为只能在现实世界中与周围环境交互作用而表现出来。

符号主义、联结主义对真实世界客观事物的描述及其智能行为工作模式是过于简化的抽象,因而是不能真实地反映客观存在的。

1-5. 你认为应从哪些层次对认知行为进行研究?心理活动的最高层级是思维策略,中间一层是初级信息处理,最低层级是生理过程,与此相应的是计算机程序、语言和硬件。

研究认知过程的主要任务是探求高层次思维决策与初级信息处理的关系,并用计算机程序来模拟人的思维策略水平,而用计算机语言模拟人的初级信息处理过程。

1-6. 人工智能的主要研究和应用领域是什么?其中,哪些是新的研究热点?问题求解(下棋程序),逻辑推理与定理证明(四色定理证明),自然语言理解,自动程序设计,专家系统,机器学习,神经网络,机器人学(星际探索机器人),模式识别(手写识别,汽车牌照识别,指纹识别),机器视觉(机器装配,卫星图像处理),智能控制,智能检索,智能调度与指挥(汽车运输高度,列车编组指挥),系统与语言工具。

新的研究热点:分布式人工智能与Agent,计算智能与进化计算,数据挖掘与知识发现(超市市场商品数据分析),人工生命。

第二章知识表示方法2-2 设有3 个传教士和3 个野人来到河边,打算乘一只船从右岸渡到左岸去。

该船的负载能力为两人。

在任何时候,如果野人人数超过传教士人数,那么野人就会把传教士吃掉。

他们怎样才能用这条船安全地把所有人都渡过河去?用S i (nC, nY) 表示第i 次渡河后,河对岸的状态,nC 表示传教士的数目,nY 表示野人的数目,由于总人数的确定的,河对岸的状态确定了,河这边的状态也即确定了。

考虑到题目的限制条件,要同时保证,河两岸的传教士数目不少于野人数目,故在整个渡河的过程中,允许出现的状态为以下3 种情况:1. nC=02. nC=33. nC=nY>=0 (当nC 不等于0 或3)用d i (dC, dY)表示渡河过程中,对岸状态的变化,dC 表示,第i 次渡河后,对岸传教士数目的变化,dY 表示,第i 次渡河后,对岸野人数目的变化。

当i 为偶数时,dC,dY 同时为非负数,表示船驶向对岸,i 为奇数时,dC, dY 同时为非正数,表示船驶回岸边。

初始状态为S 0 (0, 0),目标状态为S 0 (3, 3),用深度优先搜索的方法可寻找渡河方案。

在此,用图求法该问题,令横坐标为nY, 纵坐标为nC,可行状态为空心点表示,每次可以在格子上,沿对角线移动一格,也可以沿坐标轴方向移动1 格,或沿坐标轴方向移动2 格。

第奇数次数状态转移,沿右方,上方,或右上方移动,第偶数次数状态转移,沿左方,下方,或左下方移动。

从(0,0)开始,依次沿箭头方向改变状态,经过11 步之后,即可以到达目标状态(3,3),相应的渡河方案为:d1(1,1)--d2(-1,0)--d3(0,2)--d4(0,-1)--d5(2,0)--d6(-1,-1)--d7(2,0)--d8(0,-1)--d9(0,2)--d10(-1,0)--d11 (1,1)2-4 试说明怎样把一棵与或解树用来表达图2.28 所示的电网络阻抗的计算。

单独的R、L 或C 可分别用R、jωL 或1/jωC 来计算,这个事实用作本原问题。

后继算符应以复合并联和串联阻抗的规则为基础。

约定,用原来的与后继算法用来表达并联关系,用原来的或后继算法用来表达串联关系2-5 试用四元数列结构表示四圆盘梵塔问题,并画出求解该问题的与或图。

用四元数列(nA, nB, nC, nD) 来表示状态,其中nA 表示A 盘落在第nA 号柱子上,nB 表示B 盘落在第nB 号柱子上,nC 表示C 盘落在第nC 号柱子上,nD 表示D 盘落在第nD 号柱子上。

初始状态为1111,目标状态为3333如图所示,按从上往下的顺序,依次处理每一个叶结点,搬动圆盘,问题得解。

2-6 把下列句子变换成子句形式:(1) ( x){P(x)→P(x)}(2) x y(On(x,y)→Above(x,y))(3) x y z(Above(x,y)∧Above(y,z)→Above(x,z))(4) ~{( x){P(x)→{(y)〔p(y)→p(f(x,y))〕∧( y)〔Q(x,y)→P(y)〕}}}(1) (ANY x) { P(x)P(x) }(ANY x) {~P(x) OR P(x)}~P(x) OR P(x)最后子句为~P(x) OR P(x)(2) (ANY x) (ANY y) { On(x,y)Above(x,y) }(ANY x) (ANY y) { ~On(x,y) OR Above(x,y) }~On(x,y) OR Above(x,y)最后子句为~On(x,y) OR Above(x,y)(3) (ANY x) (ANY y) (ANY z) { Above(x,y) AND Above(y,z) Above(x,z) }(命题联结词之优先级如下:否定→合取→析取→蕴涵→等价)(ANY x) (ANY y) (ANY z) { ~ [ Above(x,y) ANDAbove(y,z) ] OR Above (x,z) }~ [ Above(x,y) AND Above(y,z) ] OR Above (x,z)最后子句为~[Above(x,y), Above(y,z)] OR Above(x,z) (4) ~{ (ANY x) { P(x){ (ANY y) [ p(y)p(f(x,y)) ] AND (ANY y) [ Q(x,y) P(y) ] } } }~ { (ANY x) { ~P(x) OR { (ANY y) [ ~p(y) OR p(f(x,y)) ] AND (ANY y) [ ~Q(x,y) OR P(y) ] } } }(EXT x) { P(x) AND { (EXT x) [ p(y) AND ~p(f(x,y)) ] OR (EXT y) [ Q(x,y) AND ~P(y) ] } }(EXT x) { P(x) AND { (EXT w) [ p(y) AND ~p(f(w,y)) ] OR (EXT v) [ Q(x,v) AND ~P(v) ] } }P(A) AND { [ p(y) AND ~p(f(B,y)) ] OR [ Q(A,C) AND ~P(C) ] }P(A) AND { [ p(y) AND ~p(f(B,y)) OR Q(A,C) ] AND [ p(y) AND ~p(f(B,y)) OR ~P(C) ] }P(A) AND { { p(y), ~p(f(B,y)) } OR Q(A,C) } AND { { p(y), ~p(f(B,y)) } OR ~P(C) }最后子句为P(A){ p(x), ~p(f(B,x)) } OR Q(A,C){ p(y), ~p(f(B,y)) } OR ~P(C)2-7 用谓词演算公式表示下列英文句子(多用而不是省用不同谓词和项。

例如不要用单一的谓词字母来表示每个句子。

) A computer system is intelligent if it can perform a task which, if performed by a human, requires intelligence. 先定义基本的谓词INTLT(x) means x is intelligentPERFORM(x,y) means x can perform yREQUIRE(x) means x requires intelligenceCMP(x) means x is a computer systemHMN(x) means x is a human上面的句子可以表达为(任意x){ (存在t) (存在y) [ HMN(y) 合取PERFORM(y,t) 合取REQUIRE(t) 合取CMP(x) 合取PERFORM(x,t) ] INTLT(x) }2-8 把下列语句表示成语义网络描述:(1) All man are mortal.(2) Every cloud has a silver lining.(3) All branch managers of DEC participate in a profit-sharing plan.(1)(2)(3)2-9 作为一个电影观众,请你编写一个去电影院看电影的剧本。

相关文档
最新文档